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Abstract

Background: One of the challenges in the bioinformatics field is the
characterization of genetic diseases, more precisely of the anomalies of the
genetic code that lead to the onset of various pathologies. Concerning leukemia,
there exist different types, such as acute and chronic leukemia. The acute ones
are Acute Lymphoblastic Leukemia (ALL) and Acute Myeloid Leukemia (AML).
This paper considers a dataset of patients belonging to two distinct classes: ALL
and AML. The aim is to define a feature selection analysis process mainly based
on Deep Learning for both classifying the leukemia of patients as ALL or AML
and identifying the list of differential expressed genes.

Method: The analyzed data are extracted from dual-channel microarray
experiments from the Gene Express Omnibus (GEO) platform, a public database
available on the NCBI website containing genomic data, which represent the
methylation values for each gene of each sample. The analysis exploits feature
selection techniques aimed at reducing the consistent number of variables
(genes). To this aim, we use linear models for differential expression for
microarray data, and an autoencoder based unsupervised deep learning model to
simplify and speed up the classification.

Results: Following the reduction in the number of variables, classification models
have been implemented with the use of a deep neural network (DNN), obtaining
a classification accuracy of approximately 92%. Then, the results have been
compared with the ones provided by an approach based on support vector
machines (SVM) giving an accuracy of 87,39%. Moreover, another feature
selection approach based on genetic algorithms has been experimented obtaining
60,36% (DNN) and 30,63% (SVM) of accuracy.

Conclusions: For further verification of the relevance of the selected set of
genes, we conducted a gene enrichment analysis based on the functional
annotation of the differentially expressed genes. As a result, a differentially
expressed pathway between the two pathologies has been detected.

Keywords: Microarray; Leukemia; DNN; Pathway; Feature Selection

1 Introduction

Bioinformatics is a multidisciplinary science that analyzes biological, biochemi-

cal and biophysical information with computational, mathematical and statistical

methods, to formulate hypotheses about life processes. It is one of the scientific

areas which get wide benefits from the analysis of big data.
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Figure 1 Acute Lymphoblastic Leukemia and Acute Myeloid Leukemia .

Given the heterogeneity of biological information, the different types of experi-

ments and platforms used, as well as the possible presence of noise in the surveys,

there is no universally better computational model or technique in terms of perfor-

mance or accuracy. Thus, it is necessary to define the processes individually, not

only for each research area but also for each set of data analyzed. To this aim, dif-

ferent Machine Learning and Deep Learning methodologies have been successfully

proposed to detect patterns from bioinformatics big data [1, 2].

Human tumors are characterized by a global loss of DNA methylation associ-

ated with hypermethylation of promoters, leading to silencing of the corresponding

genes [3]. Usually, hypermethylation and silencing regions contain repetitive ele-

ments, which are instead significantly demethylated in cancer cells; while tumor

suppressor genes and those involved in DNA repair are silenced with hypermethy-

lation of promoters and can affect tumor response to anticancer drugs [4].

Epidemiological studies aim at correlating epigenetic variations with environmen-

tal factors and identifying some diagnostic and prognostic biomarkers that can be

used in routine clinical practice [5];

Among the human tumors, leukemia is one of the most relevant: in 2020 worldwide

it has been the cause of death for 311,594, while the new leukemia cases have been

474,519[1]. For leukemias we mean a heterogeneous group of neoplastic diseases,

which foresee any process of proliferative alteration of a progressive and irreversible

nature of the blood cells of the bone marrow. Leukemias originate from the malig-

nant transformation of hematopoietic stem progenitor cells, with alteration of the

proliferation and differentiation of the same cells (examples are in Fig. 1).

In leukemias, blasts (i.e., immature and undifferentiated cells) have a prolifer-

ative advantage over normal tissue, proliferating uncontrollably. The cells most

involved in this process are the white blood cells, also named lymphocytes, which

are produced in large quantities by the bone marrow. These leukemia cells could

interrupt their maturation process early and then become resistant to programmed

death mechanisms, in this way more cells are produced than they die and these,

accumulating in the bone marrow, determine an alteration of proliferation and dif-

ferentiation of normal hematopoietic cells (e.g., red blood cells and platelets).

There exist different types of leukemia. They are commonly divided into acute

and chronic, based on the rate of progression of the disease. In acute leukemia, the

number of cancer cells increases rapidly and the onset of symptoms is early, while

in chronic leukemia the malignant cells tend to proliferate more slowly. Over time,

however, chronic forms also become aggressive and cause an increase in leukemia

cells in the bloodstream. If the disease arises from the lymphoid cells of the bone

marrow (from which white blood cells called lymphocytes develop) it is called Acute

Lymphoid Leukemia (ALL), if instead, the starting cell is of the myeloid type (from

which red blood cells, platelets and different white blood cells develop from lym-

phocytes) we speak of Acute Myeloid Leukemia (AML).

[1]https://gco.iarc.fr/today/data/factsheets/cancers/36-Leukaemia-fact-sheet.pdf
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In this paper, we define a process aiming at detecting a set of differentially ex-

pressed genes in terms of methylation level, i.e., genes that in different conditions

have an expression level significantly different in the AML and ALL cases, and their

characteristic pathways. The detection of gene expression data samples involves fea-

ture selection and classification. To this aim, we adopt Deep Learning models (e.g.,

feature selection techniques and classifiers methods). The analysis has been per-

formed on a dataset consisting of samples from people with leukemia, characterized

by a fixed list of genes; the samples belong to two distinct classes: ALL and AML.

The analyzed data are extracted from experiments on the dual-channel microarray

(spotted microarrays) Illumina Human Methylation 450k BeadChip. They repre-

sent the methylation values for each gene of each sample from the GEO database,

developed by the NCBI[2], a heterogeneous resource for data submission and recov-

ery.

The microarray Illumina Human Methylation 450k BeadChip assesses the methy-

lation levels of 485,577 CpG sites, covering 99% of RefSeq genes and the different

epigenetically important genomic regions such as CpG island, shore and shelf island,

5’ and 3’ UTRs, and promoter and gene body [6]. It also quantifies the methylation

by treating the DNA with sodium bisulfite; then the DNA converted to bisulfite is

subjected to an amplification phase, followed by fragmentation and hybridization

with the microarray probes. Following the allele-specific hybridization with a sin-

gle base extension of the probes, a fluorescent label (ddNTP) is incorporated for

detection. The methylation level is determined by the differential signal intensities

detected by the two probes.

The process starts with an overview of the data and removal of the batch effect;

then pre-processing techniques have been applied to reduce the consistent number

of variables (genes) and to simplify and speed up the classification. The reduction

in the number of variables (feature selection) is carried out taking into account

bioinformatics data extracted from microarray experiments, aimed at classifying

genes based on their differential expression between ALL and AML biological states.

In particular, for feature selection we apply two different approaches: i) the first one,

consisting of two steps is carried out by using statistical and artificial intelligence

techniques; ii) the second one is based on the use of a genetic algorithm. For the

classification, two different approaches have experimented: a deep neural network

(DNN) and support vector machines (SVM). Finally, we conduct a pathway analysis

on the reduced dataset to identify therapeutic targets of leukemia.

The main contributions of the paper are the following:

• the definition and the evaluation of a process for the classification of ALL and

AML leukemias based on Bayesian and autoencoder approaches and deep

neural networks (DNN);

• the identification of an ”RNA degradation” pathway in the reduced features

detected by the classification process, as an important factor in the develop-

ment of ALL leukemia.

The paper is structured as follows: Section 2 introduces the background. Section 3

outlines related works, and Section 4 describes the leukemia dataset. Section 5

[2]https://www.ncbi.nlm.nih.gov/geo
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presents the analysis process proposed based on the Bayesian method and autoen-

coders for feature selection, whilst DNN and SVM for the classification. Section 6

shows the analysis process where feature selection is based on genetic algorithms,

while Section 7 discusses the results and their implication in therms of pathway

analysis. Finally, Section 8 concludes the paper.

2 Background

Methylation is considered to be biologically important in the pathogenesis of many

malignancies, therefore it is extremely important to investigate the methylome

(DNA methylation profile) in patients both at diagnosis and as the disease pro-

gresses [7].

DNA methylation is a chemical modification of DNA that consists in adding a

methyl group mainly in the context of CpG dinucleotides, in which the cytosines of

the CpG sites can be methylated to become 5-methylcytosine. Areas of DNA with

a high density of CpG sites, small regions about 0.5-2 kb in length, are called CpG

islands and are usually located in regulatory regions of constitutive (housekeeping)

genes and tissue-expressing genes. specification [8]. The 60% of these segments are

located in human gene promoters and less frequently in gene bodies or intergenic

regions. Methylation involves the DNA methyltransferase (DNMT) family of en-

zymes. The DNMT family mainly comprises two types of enzymes: DNMT1, which

specifically recognizes methylation sites in a DNA half-strand and copies them to

the child strand during replication, ensuring the fidelity of the methylation pro-

file during mitosis; DNMT3a and 3b, which are instead involved in the ”de novo”

methylation that occurs during embryonic development and cell differentiation.

Silencing of gene transcription is associated with methylation of CpG sites, and

these are located near the transcription initiation sites (TSS) of genes [8]. In cancer

cells, these sites can often be methylated, leading to blockage of transcription of

many cancer-associated genes. Although methylation of sites contained in the gene

body may contribute to a tumor by causing somatic and germline mutations, the

function of intergenic CpG methylation is not fully understood. Since this transfor-

mation is reversible, the methylated genes can be re-expressed by the use of DNMT

inhibitors, such as 5aza-2’-deoxycytidine (Aza-dC) genes [9].

DNA microarray data have great importance in fields such as molecular biology

and medicine. Gene expression profiles can provide details to accurately classify

cancer samples. This can be used not only for prediction but also for diagnosis,

understanding and prognosis of the disease. A microarray dataset consists of a

large number of gene expressions. Each expression measures the activity level of

genes in a particular tissue, enabling us to compare genes expressed in abnormal

cancer tissue with those in normal tissue. DNA microarray analysis is useful for

simultaneously studying the expression of thousands of genes, and has been rapidly

adopted by the research community for the study of a variety of biological processes.

It enables to compare two biological classes to identify the differential expression

of genes within them, genes with potential relevance to a wide range of biological

processes, including cancer development [10].

We have adopted the standard process of microarray analysis [11] depicted in

Fig. 2. For our analysis, we used data from the microarray Human Illumina 450k



Frasca et al. Page 5 of 20

Figure 2 Visualization of the process in microarray analysis [11].

Beadchip dataset. It quantifies DNA methylation by treating DNA with sodium

bisulfite. The DNA converted to bisulfite is subjected to an amplification step,

followed by fragmentation and hybridization to probes on the microarray. The hy-

bridization is allele-specific with a single-base extension of the probes. After this,

an out-tag label (ddNTP) is incorporated for detection. The analysis is performed

according to the standard protocol provided by Illumina: the DNA is changed to the

EZ DNA Methylation kit (Zymo Research), the Bead chip signals are detected and

digitized with an Illumina scanner [12]. Bisulfite deaminates unmethylated cytosine,

causing its chemical conversion to uracil upon alkaline desulfonation. By selective

conversion of cytosine but not 5mC to uracil, followed by PCR and sequencing of

cloned amplicon DNA, BGS accurately detects the presence of 5mC in each region

of interest at single-nucleotide resolution. After bisulfite conversion, each probe is

whole-genome amplified (WGA) and enzymatically fragmented. During hybridiza-

tion, the WGA-DNA molecules anneal to locus-specific DNA oligomers linked to

individual bead types. The two bead types correspond to each CpG locus, one to the

methylated (C) and the other to the unmethylated (T) state. Allele-specific primer

annealing is followed by single-base extension using DNP-labeled and Biotin-labeled

ddNTPs. Both bead types for the same CpG locus will incorporate the same type

of labeled nucleotide, determined by the base preceding the interrogated “C” in the

CpG locus, and therefore will be detected in the same color channel[3]. The 99%

of RefSeq genes are covered, including those in regions of low CpG island density

and at risk for being missed by commonly used capture methods[4]. At the end of

the process, the chip is scanned to show the intensities of the unmethylated and

methylated bead types. The raw data are analyzed and the fluorescence intensity

ratios between the two bead types are calculated. A ratio value of 0 represents a

non-methylation of the locus; a ratio of 1 concern total methylation; a value of

0.5 means that one copy is methylated and the other is not, in the diploid human

genome.

3 Related work

Neural networks are powerful machine learning methods that are often used to

learn data representations at multiple levels of abstraction. These representations

are useful for many applications such as reconstruction, classification, grouping, and

recognition. Prediction models use the neural network capabilities to classify, group

samples, or apply statistical analysis [13]. In particular, neural networks are also

commonly used to build cancer prediction models from microarray data [13]. The

high dimensionality of gene expression profiles is a crucial problem in building these

models. To minimize the feature size and maximize the classification performance

a feature selection pre-processing phase has to be adopted. It is a type of multi-

objective optimization problem.

[3]https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/appnote_

dna_methylation_analysis_infinium.pdf
[4]https://cancergenome.nih.gov/abouttcga/aboutdata/platformdesign/illuminamethylation450
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Feature selection on microarray data is an area currently very explored to dis-

criminate a subset of optimal features of the various existing classifiers to obtain

maximum accuracy. In the following, we discuss the main results of feature selection

approaches applied on microarray data, summarized in Table 1, where we report

for each approach the considered datasets and classifiers, and the average accuracy.

Chen et al. [14] adopted a Kernel-based clustering methods (KBCGS) for gene

selection. They compared the performance of their approach with other algorithms

to select an excellent number of features. The Maximum-Minimum Cross-Entropy

Criterion [15] is used to determine the best method.

Recently, different approaches have been developed to perform gene selection on

a genetic dataset.

Dhrif et al. [16] presented a new variant of the Particle Swarm Optimization (PSO)

algorithm to increase the classification accuracy and preserve the acceptable dimen-

sions of feature subsets when there are many uninformative data. For this purpose,

a new encoding scheme is used for mapping particle positions to probabilities. The

aim is to expand the search of features in a continuous space without limiting so-

lutions to local optima. To test the stability and scalability of the algorithm they

created synthetic datasets.

Kang et al. [17] proposed a relaxed Lasso-Gen (rL-Gen) method for tumor clas-

sification in which the dataset is first z-scored normalized, then a relaxed Lasso

is applied for gene selection and, finally, a generalized multi-class support vector

machine (Gen) is used as a classifier.

Ghosh et al. [18] proposed a recursive meta-heuristic model is called Recursive

Memetic Algorithm (RMA), inspired by Dawkin’s notion of meme. The proposed

Recursive Memetic Algorithm (RMA) model improves classification accuracy and

has a higher convergence rate in finding the cancer biomarker compared to other

meta-heuristics such as genetic algorithm (GA) or basic MA.

Sun et al. [19] presented a global feature selection method based on a semidefinite

programming model relaxed from the quadratic programming model with maxi-

mization of feature relevance and minimization of feature redundancy, i.e., Mini-

mum Redundancy Maximum Relevance (MRMR).

Saini et al. [20] proposed a gene masking derived from the genetic algorithm.

An optimal gene mask is searched that provides the largest performance gain by

removing the largest number of features for the chosen classification algorithm.

Lv et al. [21] applied a multi-objective model following the analytic hierarchy

process that gives more importance to the detection accuracy than the feature size

to build a model such as the multi-objective optimization algorithm (MOEDA).

This solution is based on a type of distribution estimation algorithm (EDA) that

guides the search for the optimum by building and sampling explicit probabilistic

models of promising candidate solutions.

Othman et al. [22] proposed and developed multi-objective hybrid cuckoo research

with evolutionary operators for gene selection. The evolutionary operators used are

double mutation and simple crossover operators. The results of the experiments

revealed that the developed algorithm, multi-objective cuckoo search with evolu-

tionary operators, outperformed the cuckoo and multi-objective search algorithms

with less significant selected genes.



F
ra
sca

e
t
a
l.

P
a
g
e
7
o
f
2
0

T
a
b
le

1
F
ea
tu
res

selectio
n
a
p
p
ro
a
ch

es
a
p
p
lied

o
n
m
icro

array
d
a
ta
.

Dataset Approach Classifier Average accuracy

ALL, AML, DLBCL, Lung, Prostate, Lymphoma,
SRBCT, Brain, NCI60 KBCGS [14] SVM, KNN 93,45%

Leukemia, Prostate, B-cell Lymphoma PSO [16] Random Forest 97,22%
DLBCL, CNS, Lung, Ovarian, Brain, Lymphoma,

MLL, TOX171 Relaxed Lasso [17] rL-GenSVM, KNN 96,43%
MLGSE2191, Colon, DLBCL, Leukemia, Prostate,

MLL, SRBCT RMA GA [18] SVM 95,86%
AML, ALL, Breast, Colon, DLBCL, Lung,

Medulloblastoma, Prostate MRMR [19] CART, Naive Bayes, Random Forest 83,41%
SRBCT Gene Masking [20] Nearest Shrunken Centroid Classifier,

Nearest Centroid Classifier 100%
Leukemia, Colon, DLBCL, Prostate, Wang Breast,

Lung Adenocarcinoma, Medulloblastoma Multi-objective heuristic algorithm [21] SVM 87,71%
Ovary, Lung, SRBCT, CNS, DLBCL, Prostate, Leukemia Evolutionary Operators [22] Wilcoxon 73,60%

Colon, Prostate, Lung PCA [23] ANN, GAHI 86,33%
Leukemia, Colon, Lung, Ovarian Hybrid GA + PSO [24] ANN 98,63%

Colon, Adenocarcinoma, SRBRT, NCI60 DPCAForest [25] SVM, Recursive Feature Elimination 90,25%

C
ah

yan
in
gru

m
et

a
l.
[23]

p
rop

osed
a
tech

n
iq
u
e
b
ased

on
P
rin

cip
al

C
om

p
on

en
ts

A
n
aly

sis
(P

C
A
)
to

select
th
e
m
ost

relevan
t
featu

res.
M
oreover,

th
ey

p
rop

osed
th
e



Frasca et al. Page 8 of 20

use of ANN and e GA Hybrid Intelligence (GAHI) for cancer detection. Although

ANN is recognized as one of the methods to classify microarray data, GA is used

in this case to optimize the ANN architecture.

Wu et al. [24] proposed an ANN classifier. To initialize the structure, an algorithm

was used to choose input variables on layered links and different activation functions

for different nodes. Then, a hybrid method integrating GA and particle swarm

optimization (PSO) algorithms were used to identify an optimal structure with the

parameters encoded in the classifier.

Deng et al. [25] proposed DPCAForest, a deep forest-based model that integrates

the deep forest and the component analysis of the dynamic principle. DPCAFor-

est adaptively generates minority samples based on sample distribution and then

performs principal component analysis dynamically synchronized with the growth

of the deep forest to reveal the important features with the highest variance. With

dynamic PCA, the model can perform feature extraction in a data-driven manner

based on cross-validation and obtain information on the merging between layers.

Various lines of research use the evolutionary calculus to develop solutions to

selection problems. Recently, metaheuristic algorithms have been used to perform

genetic selection and their implementation has been studied. However, despite the

various methods proposed for genetic selection, they suffer from local and optimal

stagnation problems and high computational costs, which therefore cannot guaran-

tee the optimal and reasonable use of metaheuristic algorithms in a wide range of

research of identified genes [26].

In our approach, unlike others we use a Bayesian inference method to perform

the feature selection on the dataset and autoencoders to perform a second feature

selection applied on the genes differentially expressed.

4 Dataset

The examined dataset was extracted by the GEO platform public database con-

taining genomic data, available on the NCBI website[5]. It consists of biomedical

data of 556 patients, where 233 were affected by AML and 323 by ALL. Specifically,

for each patient, the dataset contains the detected CpG probes described by their

methylation value. These data are related to the Infinium Human Methylation 450k

BeadChip microarray, a popular technology to explore DNA methylomes [27].

5 The analysis process based on Bayesian and Autoencoders

techniques

To perform feature selection we applied two different approaches: (i) Bayesian and

autoencoders and (ii) GA. In this section, we describe the former that adopts sta-

tistical and artificial intelligence techniques.

Analysis of microarray data is based on the hypothesis that the measured fluores-

cence intensities are representative of the actual level of expression. The complexity

of the microarray experimental protocols makes this technology very variable and

sometimes subject to significant systematic distortions. For this reason, some ma-

nipulations and transformations are necessary before comparing expression levels

to attenuate values affected by random aberrations or systematic variations and

[5]https://www.ncbi.nlm.nih.gov/gds
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Figure 3 The data analysis process based on Bayesian and Autoencoders feature selection.

maintain all the data on comparable levels. Figure 3 depicts this analysis process

consisting of the following six steps.

5.1 Step 1 - Data Cleaning

The considered samples were extracted from the GEO database and were related

to the Illumina Human 450k microarray; they are methylation data related to the

GPL13534 platform series. Our initial dataset consisted of 556 samples coming from

several microarray experiments. The number of probes among the samples is differ-

ent; to make the samples uniform and to be able to analyze them we standardized

the number of probes among the samples by difference, obtaining 451,308 CpG

probes per sample. Then, we performed on our dataset a preprocessing phase by

removing the cross-reactive probes, the SNPs probes, and the probes related to sex

chromosomes.

Cross-reactive probes target repetitive sequences or co-hybridize alternative se-

quences that are highly homologous to desired targets and therefore spurious signals

can be detected. The cross-reactive sites could reflect CpGs of different methylation

status or non-CpGs that are detected as fully methylated or unmethylated loci [6].

Equally important is our search for probes that target CpG sites that overlap with

SNPs (single nucleotide polymorphism). SNPs are a variation of the genetic mate-

rial of a single nucleotide, such that the polymorphic allele is present in the popu-

lation in a proportion greater than 1%. These portions of the genome can interfere

with the methylation analyzes and have to be eliminated. We also remove all the

probes related to the X and Y chromosomes because we will focus our analysis

only on autosomal genes (not related to sex); this is because there is an imbalance

of methylation on sex chromosomes. In particular, the X chromosome, inactive in

women, is hypermethylated and this would bring noise into the analysis. In this way,

the analysis of genes differentially expressed in the two leukemia types is conducted

only on autosomal genes. At this point, we obtained a dataset composed of 556

samples and 434,917 CpG probes. The numerical data within the dataset represent

the fluorescent intensities of the probes in double-channel microarray experiments.

For the ith probe the estimation of the methylation level βi ∈ [0, 1] is defined as

follows [28]:

βi =
max(yi,methy, 0)

max(yi,nmethy, 0) +max(yi,methy, 0) + α

where yi is the fluorescent intensity of the probe, methy, and unmethy are, respec-

tively, the strength of a methylated and unmethylated signal, and α is an arbitrary

value (usually 100) used to stabilize βi values. On these values we performed a gene

sets enrichment analysis operation to obtain the related genes: the resulting dataset

was composed of 556 samples and 19,340 genes. A further cleanup eliminated the

missing values, as they could generate errors in the measurement and understanding

of the relationships between the variables, reducing the genes to 17,996.
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5.2 Step 2 - Batch Effect Removal

The batch effect is a source of variability that has been added to the samples

during manipulation, consisting in the introduction of non-biological variability in

an experiment [29]. Many factors contribute to the generation of batch effects,

some of these include the type of chip, the platform being analyzed, the laboratory,

storage conditions, protocols (sample, amplification, labeling and hybridization),

cRNA/cDNA synthesis and conditions of washing. In any case, the batch effects

often seriously influence the large-scale automatic processing of genomic data sets.

In this step, the batch effect is identified and removed. First, we identified and

evaluated the Genomic Spatial Event (GSE) batch variables, i.e., the type of exper-

iment to which each sample refers, through the correlation between the variables.

Batch GSEs were identified by statistical analysis of batch medians. This method

compares the distribution of each GSE in a single lot to its distribution in all the

other lots using the Kolmogorov-Smirnov (KS) non-parametric test that verifies the

form of the distributions [30]. The p-values returned by the KS test have been cor-

rected by the False Discovery Rate (FDR). This method considers only the biolog-

ically relevant differences in the methylation levels through the absolute difference

between the median of all the βi values within a lot for a specific GSE and the

respective median of the same GSE in all the other lots. GSEs that had a p-value of

significance corrected for FDR lower than 0.01 and had a median difference greater

than 0.05 were considered as GSE ”batch”. After identifying the individual GSE

batches, we evaluated the importance of the batch effect in individual batches by

considering the number of batch GSEs in the batch and the extent of the deviation

of the batch GSE medians in a lot compared to all other lots. We deleted the batch

effect on the GSE by using an empirical Bayesian framework and then we validated

the results: no further effect was detected.

5.3 Step 3 - Normalization

The sample data have been normalized to remove systematic variation in a mi-

croarray experiment that affects the measured gene expression levels. One of the

objectives of DNA microarray analysis is to compare the levels of gene expression in

two or more pathological conditions to identify their peculiarities. For our dataset,

we have adopted quantile normalization, whose aim is to make equal the empirical

intensity distributions of all arrays.

The quantile normalization transforms the intensity distributions of each specific

array. In particular, it assigns to each intensity the same value to the quantile

to which it belongs. Thus, each intensity has the same distribution in all arrays.

This method is based on the consideration that a quantile-quantile graph is a line

perfectly coinciding with the diagonal if and only if the distribution of the two data

vectors is the same [31].

This means that it is possible to give all arrays the same distribution by replacing

the values of the original dataset with the average quantile by applying the following

normalization algorithm.

Let M be a matrix of ng genes (rows) and n arrays (columns) representing the

number of patients:

1. Sort each column of M , obtaining Msort;
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2. to each element of the kth row in Xsort assign the average value of that row,

obtaining M ′

sort;

3. calculate Mnormalized by reordering each column of M ′

sort according to the

original order.

A negative aspect of this method is that it forces the quantile values to be all the

same. This could be a problem in the distribution queues, where it is possible for a

gene to have the same value on all arrays, even if this situation rarely occurs [31].

5.4 Step 4 - Bayesian Feature Selection

In this step, we identified the differentially expressed genes between the two patho-

logical classes AML and ALL by using a Bayesian feature selection technique.

Bayesian methods are suitable to study multidimensional inference problems, so

it naturally applies to microarray data [32]. Unlike the methods that apply classical

inference separately for each gene, the Bayesian analysis exploits information shar-

ing between the genes. We adopted Limma (Linear Models for MicroArray data)[6]

to identify these differentially expressed genes through the use of the empirical

Bayesian method.

In the following, we describe the adopted feature selection procedure.

Two matrices are obtained from the dataset: the design matrix, containing the

samples in the array, and the contrast matrix, which specifies the comparisons to

be performed on the samples. The design matrix is specified as follows:

1. the rows represent samples;

2. the columns represent groups. In our case, there exist two columns represent-

ing ALL and AML samples, respectively;

3. for each sample, the column corresponding to its group has a coefficient equal

to 1, otherwise 0.

The contrast matrix represents the difference between the columns.

A first fitting function is applied to the design matrix and data from an experiment

involving a series of microarrays with the same set of probes. The function adopts

multiple linear models for weighted or generalized minimum squares. Thus, the

linear model is adapted to the expression data (by gene) for each probe. A second

fitting function is applied to the output of the first regression and the contrast

matrix. Given the linear model previously computed, the fitting function calculates

the estimated coefficients and standard errors for a given set of contrasts. The

function re-orientates the adapted model from the original matrix design to any

set of contrasts of the original coefficients. We then applied an empirical Bayesian

model for linear data regression, which dynamically borrows information between

genes. This function is used to classify genes in order of evidence based on their

differential expression; the fact that the same linear model is adapted to each gene

allows us to borrow the relationships between genes to moderate residual variances.

Bayesian inference is an approach to statistical inference in which probabilities

are not interpreted as frequencies, proportions or similar concepts, but rather as

levels of confidence in the occurrence of a given event. The Bayesian model has

been very successfully applied in gene expression analyses to moderate the variance

[6]https://bioconductor.org/packages/release/bioc/html/limma.html
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estimators gene-wise, and furthermore, in Limma the estimate of global variance

can incorporate a tendency to average variance.

We get an estimate of the prior distribution from the marginal distribution of the

observed data [33].

The degrees of freedom for the individual variances have increased to reflect the

extra information obtained from Bayes’ empirical moderation, resulting in an in-

crease in statistical power to detect differential expression [34].

A table of top-ranked genes from the adapted linear model is extracted. This

table contains various summary statistics for the top-ranked genes and the selected

contrast. In particular, it contains the variables logFC and adj.P.Val, adopted to

perform the feature selection. logFC provides the value of the contrast; usually, this

represents a change of log2 times between two or more experimental conditions,

while adj.P.Val is the distribution of p-values adjusted by Benjamini-Hochberg

correction [35], which introduced FDR, i.e., the expected proportion of the number

of false-positive results on the total of all the positive results, and represents the

number of null hypotheses wrongly refused on the total of those rejected. For this

reason, we initially extracted the genes with a value of adj.P.V al < 0.01 and with

a |logFC| > 2, thus obtaining 1,118 genes for 556 samples.

5.5 Step 5 - Feature Selection with Autoencoders

To further reduce our features we used autoencoders. An autoencoder is an unsu-

pervised artificial feed-forward neural network. Conceptually, it is similar to PCA

and can be used to reduce the dimensional space.

The autoencoders compress the input data by forcing the network to use a low-

dimensional representation of data. They can to reconstruct the original input. An

autoencoder consists of 3 layers: an input layer, a hidden layer and an output layer.

The number n of input nodes of this type of network is equal to the number of output

nodes (the number of genes). In our case, the hidden layer is composed of two nodes

as shown in Fig. 5.5. An autoencoder is divided into two parts: the encoder that

learns the mapping between the unlabeled high-dimensional I[1 : n] input data

and the low-dimensional representations (in the bottleneck layer), and the decoder

that learns the mapping from the intermediate layer representation to the output

reconstructed in a high dimension O[1 : n]. Autoencoder-based approaches learn

to reconstruct input samples by optimizing the Root Mean Squared Error (RMSE)

objective function [36].

RMSE =

√

∑n

i=1 (I [i]−O [i])
2

n
(1)

For autoencoders, we have chosen the batch size equal to the number of genes in

our dataset (1,118 genes), Adam’s optimization type, an algorithm for the optimiza-

tion of the gradient of the first order of the stochastic objective functions, based

on adaptive estimates of moments of lower order [37]. As activation functions we

used ”tanh”, ”linear”, ”tanh”, respectively for the three layers. At the end of the

process we obtained 28 abnormal genes that we removed, obtaining a final dataset

composed of 1,090 genes.
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Figure 4 The DNN architecture, where n represents the number of genes.

5.6 Step 6 - Classification

For the classification, we experimented two different techniques: a deep neural net-

work (DNN) and support vector machines (SVM), as described in the following.

5.6.1 DNN

We adopted the DNN shown in Fig. 4. The size of the input is equal to the number of

genes. The input layer is composed of 30 units with the ”relu” activation function.

The 4 hidden layers transform the representation of the previous layer into a more

abstract form. They are composed of 22, 15, 9, 5 respectively, with ”relu” activation

function. The final classification is performed by the last layer (the output layer),

composed of 2 units with the ”softmax” activation function. To classify the class

of patients (i.e., AML or ALL) we adopted the ”categorical cross entropy” loss

function. To set up the hyperparameters we selected the ”adam” optimizer. We

adopted the k-fold cross-validation, with k = 5.

Figure 5 shows the average loss and average accuracy results on the training and

validation sets (blue line and green line, respectively). For the test set we achieved

0,2499 of loss and 91.89% of accuracy.

5.6.2 SVM

We also experimented the use of a support vector machine (SVM) [38] as a classifier.

SVM are supervised learning models and a powerful technique for classification and

regression, with associated learning algorithms. Given a set of training examples,

each one belonging to one of two different categories, a training algorithm creates

a model that assigns new examples to one or the other category; the model is then

used to make predictions for a set of test examples. We got an accuracy of 87,39%

by using the same training and test sets adopted with the DNN.

6 The analysis process based on a Genetic Algorithm

In this section, we present the second feature selection process we experimented

with, based on a genetic algorithm (GA), widely used for this purpose in the liter-

ature (e.g., [39, 40]). In particular, we followed the analysis process shown in Fig. 6

that differs from the one in Fig. 3 for the red step. Therefore, in the following, we de-

scribe only the Feature Selection Genetic Algorithm step and the final classification

results.

GAs are heuristic adaptive search algorithms for solving research and optimiza-

tion problems. They follow a heuristic process (depicted in Fig. 7) inspired by the

Figure 5 Loss and accuracy results of the applied neural network on the feature selection
implemented with Limma and autoencoders, where ”val”/”loss” represents the average
accuracy/loss of the training set, and ”val acc”/”val loss” represents the average accuracy/loss
of the validation set, respectively.
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Figure 6 The data analysis process based on Genetic Algorithm feature selection.

genetics and the principle of natural selection by Charles Darwin. GAs use a set of

solutions that evolves at intervals called generations. The evolution is guided by the

search for the optimal solution using comparison. In particular, a fitness function

is adopted for selecting the best individuals of the current generation that will be

used to create the next generation [41]. GA involves a cyclical operation that sim-

ulates the evolutionary process of a population. Each cycle represents a generation

and consists of operations carried out to generate a new population made up of

increasingly better individuals.

Our dataset consists of 16,408 individuals (i.e., genes). We adopted a GA for

feature selection starting from a binary array that represents a chromosome, where

genes are the array elements. A chromosome is generally encoded with a bit or

character vector. In our case, each element is set to 1 if the biological gene is not

expressed (i.e., its value is less equal than 0,5), 0 otherwise. The population is a set

of solutions (chromosomes) related to the considered problem.

In the following, we describe the adopted GA, instantiated with the parameters

in Table 2.

The first step of this algorithm creates the initial population (i.e., 100 individuals)

randomly setting the binary values of genes, while the next phases are repeated with

each generation and are associated with the principle of natural selection or genetics.

In GAs, individuals have also named chromosomes because of their structure and

operations defined on them. Each solution is described by a set of characteris-

tics very similar to the genes and new solutions are created by applying the same

mutation and crossover operators present in genetics [42]. The selection of the best

individuals is performed by combining or modifying the characteristics that identify

an individual. From genetics, the new chromosomes are obtained by recombining

their genetic heritage or by changing the genes with the mutation and crossover

operators. For each combination of genes, it is possible to calculate a value called

fitness which indicates the ability with which the chromosome or solution can solve

the problem. In natural selection, this value measures the individual’s adaptation

to the environment. So, a better fitness is linked to a greater probability of survival,

Figure 7 Steps of the GA for feature selection.

Table 2 GA parameters.

Parameter Value

Population size 100
Number of generations 100
Fold for cross validation 5
Crossover probability 0.8
Probability of mutation 0.1
Independent probability of crossover 0.8
Independent probability of mutation 0.08
Tournament size 3
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Table 3 Comparison with the adopted features selection approaches.

Dataset size Approach Obtained dataset size Classifier Accuracy

17.996× 556 Limma + autoencoders 1.090× 556
DNN 91.86%
SVM 87,39%

17.996× 556 Genetic Agorithm 770× 556
DNN 60,36%
SVM 30,63%

while within the genetic algorithm to a greater probability of selection. Genetic algo-

rithms are stochastic algorithms in which randomness plays an essential role: both

phases of selection and reproduction need procedures involving randomness [43].

Concerning the third step (selection), which favors the selection of better individ-

uals of a population to influence the next generation, we adopted a tournament

mechanism. A small number of individuals (i.e., tournament size = 3 ) is choose

randomly with replacement. We keep the fittest one. This is done again and again

until you have got 100 individuals.

The fitness function resolves an optimization problem by maximizing the cross-

validation accuracy score with the minimum number of selected genes. The score

is the accuracy of training data using only the values of the selected genes. In

particular, we divided every dataset into 5 equal parts to calculate the fitness value.

Then, we selected one of the mentioned parts as a test set and the rest as a training

set. We repeated this action five times for every separate part.

In the Crossover phase, the generation of offspring occurs starting from the parents

previously selected in the selection phase. The Crossover operator randomly selects

a pair of individuals from the pool of solutions for reproduction, with crossover

probability (i.e., 0.8); the values of the two solutions are exchanged to generate

two new solutions (i.e., the offspring). Crossover aims to generate two new solu-

tions starting from the combination of two previous ones. The crossover probability

determines if crossover will happen. A randomly generated floating-point value is

compared to this probability, and crossover is performed if the value is less than

that probability; otherwise, the offspring is identical to the parents. Moreover, the

independent Crossover probability (set to 0,8) concerns the possibility to select a

specific gene to perform the exchange between two parents.

The Mutation phase creates a new population starting from the solutions iden-

tified in the previous step. Mutation aims to prevent the locking up at a local

minimum and to explore the entire research space when each individual in the pop-

ulation reaches a level of fitness close to the average. It mainly maintains genetic

diversity within the population. This operator randomly flips (i.e., one becomes

zero or vice-versa) some elements of the offspring. Like crossover, there is a muta-

tion probability (set to 0,1). If a randomly selected floating-point value is less than

the mutation probability, the mutation is performed on the offspring; otherwise, no

mutation occurs. The mutation is performed by randomly selecting (with an inde-

pendent mutation probability set to 0,08) a gene in the offspring’s chromosome and

generating a new value uncorrelated to the previous one.

The GA algorithms repeat the process from step 2 until the number of generations

(i.e., 100) is reached.

As output, we tried to obtain a better set of individuals that, with the advance-

ment of generations, contains the subsets of genes involved in both AML and ALL.
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Figure 8 The ”RNA degradation” pathway [44].

In particular, we selected the genes set to 1. We obtained a reduced dataset con-

taining 6,240 features (genes).

It is worth mentioning the limitations of genetic algorithms. Like most stochastic

methods, they do not guarantee success in finding the overall optimal solution to

a problem but are often ”acceptable” solutions. GAs differ from traditional opti-

mization techniques for several reasons. One of them is that traditional algorithms

perform the search starting from a single point while genetic algorithms operate

on an entire population of points, and therefore of solutions. This helps in terms

of algorithm robustness as it increases the chances of reaching the global optimum

and reduces the chances of getting stuck at certain points. For the classification, we

used the DNN and the SVM as we did previously for the first process. By applying

the DNN to the GA results we obtained 60,36% in accuracy and loss of 0,671. While

applying the SVM on the same data we obtained an accuracy of 19,96%.

7 Results and implications

In this section, we compare the results of the processes described in Section 5, we

examine the relevance of the selected genes by applying the pathway analysis, and

further validate the results.

7.1 Comparison

The obtained classification results are summarized in Table 3, where we reported

for each adopted feature selection process (Limma and the autoencoders vs. GA),

the number of selected genes and the classification results obtained with both DNN

and SVM classifiers. Results show that feature selection using Limma and the au-

toencoders performs better with both the classifiers, but the deep neural network

(DNN) reached higher accuracy (91,86%) than SVM (87,39%).

7.2 Applying pathways analysis

Pathways analysis provides a mean to map key biological processes into important

clinical features in disease [45]. It is mainly adopted for predicting cancer outcomes

through genome-wide characterizations. In this section, we describe the pathway

analysis conducted on the results of the feature selection process based on Limma

and autoencoders that reached the best accuracy results and reduced the gene num-

bers from 19,340 to 1,090. For confirming the relevance at biological level of these

results we performed the Gene Sets Enrichment Analysis (GSEA) for the interpreta-

tion of gene expression data, which highlights groups of genes that share biological

functions (i.e., pathway), chromosomal position or common regulation [46]. In this

analysis, we referred to the Kyoto Encyclopedia of Genomes (KEGG)[7], one of

the most used databases for pathway knowledge. It links genomic information with

functional information of a higher order, computerizing current knowledge on cellu-

lar processes and standardizing the genetic annotations [47]. The procedure[8] takes

[7]https://www.genome.jp/kegg
[8]https://bioconductor.org/packages/release/bioc/html/missMethyl.html
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Figure 9 Results of PCA: components ?? and scores ??.

Figure 10 Gene enriched from ”RNA degradation” pathway.

a character vector of significant CpG sites, maps the CpG sites to Entrez Gene

IDs to test for GO or KEGG pathway enriched using a hypergeometric test, tak-

ing into account the number of CpG sites for gene on EPIC array. In particular,

statistical approaches to identify significantly overexpressed CpG groups, by ex-

amining p-value and FDR are used. Finally, we have extracted only the pathways

with FDR < 0.05 [48]. As a result, the analysis detected the ”RNA degradation”

pathway (see Fig. 8) from 20 genes of the 1,090 differentially methylated genes in-

dividuated by the feature selection process based on autoencoders. Fig. 10 lists the

pathway’s detected genes.

RNA degradation in eukaryotic cells plays a very important role in gene expres-

sion, as it balances the transcription rate and also serves to rapidly eliminate tran-

scriptions that are no longer needed. Furthermore, RNA degradation plays a con-

trolling role by eliminating RNA molecules that are considered non-functional or

abnormal if they lack sequences or characteristic changes necessary for their func-

tions.

The detected pathway denotes the deregulation of transcription, which is an im-

portant factor in the development of leukemia. In particular, in T-cell acute lym-

phoblastic leukemia (T-ALL) it identifies mutations in the RNA decay factors,

including mutations in the CNOT3 gene, which is part of the CCR4-NOT complex

that regulates gene expression transcriptionally and post-transcriptionally [49]. This

gene is included in the 1,090 we detected and that seems to be involved in mRNA

deadenylation. When errors occur in this process, there are quality control mecha-

nisms that detect and eliminate defective transcripts that can lead to dysfunctional

or toxic protein. However, these mechanisms do not only ensure the fidelity of RNA

transcripts but also perform important regulatory tasks by allowing rapid mod-

ulation of steady-state RNA levels in response to changes in the intracellular or

extracellular environment [50]. However, it remains unclear how mutations in RNA

processing may contribute to the development of leukemia [51].

7.3 Further Validation

To further validate the process with best results, e.g. that in Fig. 3, we experimented

with the use of Principal Component Analysis (PCA) [52, 53] in substitution of the

Feature Selection with Autoencoders step. In particular, PCA aims at replacing p

(more or less correlated) variables with k ≤ p uncorrelated linear combinations

(projections) of the original variables. These k principal components are ranked in

order of importance by their explained variance, and each variable contributes to

each component to varying degrees. The criterion of greatest variance may be similar

to feature extraction, where the principal components are used as new features

instead of the original variables [52].
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Main components and related scores are shown in Fig. 9?? and Fig. 9??, respec-

tively. As it is easy to note, Component 1 was the most characterizing (see Fig. 9??).

Thus, we isolated this component. Considering the score values of Component 1,

we built the graph depicted in Fig. 9?? obtaining the significance degree for each

gene. Then, we removed from the dataset all the genes with a score value in the

range [−6,+6], as suggested by the graph, thus reducing the dataset to 1,094 genes

for 556 samples. The selected genes in Component 1 had a score greater equal than

0,50 (e.g., genes with strong or moderate loading factor) [54]. Let us note that the

genes selected by using PCA are not the same as the ones obtained by the approach

based on Limma and autoencoders: the genes in common are 1,068. Thus, the two

approaches differ only in 26 genes.

The same procedure previously adopted for the pathway analysis was also applied

to the dataset obtained with PCA. We analyzed the list of the genes in the ”RNA

degradation” pathway and the genes selected by the PCA. We observed that PCA

retrieves only 3 genes belonging to the considered pathway. Moreover, PCA requires

that information is standardized before its application. Despite the adopted dataset

was standardized as described in Section 5 by cleaning the data and by eliminating

the batch effect the pathway was not detected. This may be because PCA considers

only linear relationships and it does not take into account the potential multivariate

nature of biological data.

8 Conclusion

In this paper, we presented a process to detect a set of differentially expressed genes

and a pathway in leukemia by adopting feature selection techniques and classifier

methods. The analysis has been performed on a dataset consisting of samples from

people belonging to ALL and AML classes of leukemia. The classification models

have been implemented by using a neural network obtaining a classification accu-

racy of approximately 92%. We have also detected a set of genes that seems to

be involved in leukemia onset. This result is important because pathways analysis

provides a means to map key biological processes into important clinical features in

disease. We also experimented with the use of a genetic algorithm but with worst

results. Another method largely adopted for feature selection, PCA, was also as-

sessed. Results revealed that PCA failed in detecting genes useful for predicting

leukemia onset.
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Figures

Figure 1

Acute Lymphoblastic Leukemia and Acute Myeloid Leukemia .

Figure 2



Visualization of the process in microarray analysis [11].

Figure 3

The data analysis process based on Bayesian and Autoencoders feature selection.

Figure 4

The DNN architecture, where n represents the number of genes.



Figure 5

Loss and accuracy results of the applied neural network on the feature selection

implemented with Limma and autoencoders, where ”val”/”loss” represents the average accuracy/loss of
the training set, and ”val acc”/”val loss” represents the average accuracy/loss of the validation set,
respectively.



Figure 6

The data analysis process based on Genetic Algorithm feature selection.



Figure 7

Steps of the GA for feature selection.



Figure 8

The ”RNA degradation” pathway [44].

Figure 9

Results of PCA: components ?? and scores ??.



Figure 10

Gene enriched from ”RNA degradation” pathway.


