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Abstract

Wide-baseline matching focussing on problems with extreme viewpoint change is considered. We
introduce the use of view synthesis with affine-covariant detectors to solve such problems and show that
matching with the Hessian-Affine or MSER detectors outperforms the state-of-the-art ASIFT [18].

To minimise the loss of speed caused by view synthesis, we propose the Matching On Demand with
view Synthesis algorithm (MODS) that uses progressively more synthesized images and more (time-
consuming) detectors until reliable estimation of geometry is possible. We show experimentally that the
MODS algorithm solves problems beyond the state-of-the-art and yet is comparable in speed to standard
wide-baseline matchers on simpler problems.

Minor contributions include an improved method for tentative correspondence selection, applicable
both with and without view synthesis and a view synthesis setup greatly improving MSER robustness to
blur and scale change that increase its running time by 10% only.

1 Introduction
The standard method for wide baseline matching involves detection of local features, calculation of de-
scriptors, generation of tentative correspondences and their geometric verification using the homography or
epipolar constraint.

It is well known [17, 8, 7] that performance of the pipeline decreases in the presence of viewpoint
and scale changes, blur, compression artefacts, etc. Lepetit and Fua [12] showed that matching robust-
ness is improved by synthesis of additional views given a single, fronto-parallel view of an object. Morel
and Yu [18] combined viewpoint synthesis with the similarity-covariant Difference-of-Gaussians detector
(DoG) and SIFT matching [14]. The resulting image matching method, called ASIFT, successfully matched
challenging image pairs with significantly different viewing angles.

We develop the idea of view synthesis for wide baseline matching and propose a number of novelties
that improve several stages of the matching pipeline. Some of the improvements are also applicable to
two-view matching without synthesis. The proposed MODS wide-baseline matcher1 outperforms ASIFT in
terms of speed, the number and percentage of correct matches generated as well as in the precision of the
estimated geometry. Performance was tested mainly on image pairs with extreme viewpoint changes, but
viewpoint synthesis also improves matching results in the presence of phenomena like blur, occlusion and
scale change. The following contributions are made: first, we show that the seemingly counter-intuitive syn-
thesis of affine views for ”affine-covariant” detectors greatly improves their performance in wide baseline
matching. With suitable detector-specific configurations of synthesized viewpoints, found through exten-
sive experimentation, both the Hessian-Affine [16] and MSER [15] detectors clearly outperform DoG [14].

Second, we generalize the ”first-to-second-closest SIFT distance ratio” criterion for the selection of
tentative correspondences. Depending on the image, the new criterion gives 5-20% more true matches than
the standard at no extra computation cost. The proposed criterion improves even matching performance
without synthesis, especially in images with local symmetries.

Third, we propose an adaptive algorithm for matching very challenging image pairs which follows the
”do only as much as needed” principle. The MODS algorithm (Matching On Demand with view Synthesis)

1Available at http://cmp.felk.cvut.cz/wbs/index.html
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Figure 1. Homography estimation with extreme viewpoint change. The proposed MODS algorithm produces 32
matches, 25 are correct. The state-of-the-art ASIFT [18] outputs 41 matches, 3 are correct. Blue dots: centers of
detected regions. Green dots: reprojected centers of corresponding regions showing good alignment.

uses progressively more detector types and more synthesized images until enough correspondences for reli-
able estimation of two-view geometry are found. MODS is fast on easy image pairs without compromising
performance on the hardest problems.

1.1 Related work

The use of view synthesis for image matching is a recent development and the literature is limited and
includes mainly modifications of the ASIFT algorithm. Liu et al. [13] synthesised perspective warps rather
than affine. Pang et al. [20] replaced SIFT by SURF [3] in the ASIFT algorithm to reduce the computation
time. Sadek et al. [22] present a new affine covariant descriptor based on SIFT which can be used with or
without view synthesis. Detection of the MSERs on the scale space pyramid was proposed by Forssén and
Lowe [9].

The rest of the paper is organised in a top-down manner. In Section 2, we introduce the adaptive MODS
two-view matching algorithm. Section 3 studies view synthesis for affine-covariant detectors. Experiments
are presented in Section 4. Full experimental data is in Appendix.

2 Matching with On Demand View Synthesis

The iterative MODS algorithm (see Alg. 1) repeats a sequences of two-view matching procedures, until a
required minimum number of geometrically verified correspondences is found. In each iteration, a different
detector is used and a different set of views generated. The adopted sequence is an outcome of extensive
experimentation with the objective of solving the most challenging problems while keeping speed compara-
ble to standard single-detector wide-baseline matchers for simple problems. For instance, the first iteration
of the MODS algorithm runs the MSER detector with only a very coarse scale space pyramid which is 10%
slower than standard MSER. Subsequent iterations run complementary detectors with a higher number of
synthesized views. Details on the chose configuration and the selection process are given in Section 3. The
rest of the section describes the steps employed in the iterations of the MODS algorithm.
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Algorithm 1 MODS: Matching with On-Demand view Synthesis
Input: I1, I2 – two images; θm – minimum required number of matches; Smax – maximum number of iterations.
Output: Fundamental of homography matrix F or H;

list of corresponding points.
Variables:Nmatches – detected correspondences, Iter – currect iteration.

while (Nmatches < θm) and (Iter < Smax) do
for I1 and I2 separately do

1 Generate synthetic views according to the
scale-tilt-rotation-detector setup for the Iter.

2 Detect and describe local features.
3 Reproject local features to original image.

Add described features to general list.
end for
4 Generate tentative correspondences

using the first geom. inconsistent rule.
5 Filter duplicate matches.
6 Geometrically verify tentative correspondences

while estimating F or H.
end while

2.1 Synthetic views generation
It is well known that a homography H can be approximated by an affine transformation A at a point using
the first order Taylor expansion. Further, an affine transformation can be uniquely decomposed by SVD into
a rotation, skew, scale and rotation around the optical axis [10]. Morel and Yu [18] proposed to decompose
the affine transformation A as

A = HλR1(ψ)TtR2(φ) =

= λ

(
cosψ − sinψ
sinψ cosψ

)(
t 0
0 1

)(
cosφ − sinφ
sinφ cosφ

)
(1)

where λ > 0, R1 and R2 are rotations, and Tt is a diagonal matrix with t > 1. Parameter t is called the
absolute tilt, φ ∈ 〈0, π) is the optical axis longitude and ψ ∈ 〈0, 2π) is the rotation of the camera around
the optical axis. Each synthesised view is parametrised by the tilt, longitude and optionally the scale and
represents a sample of the view-sphere resp. view-volume around the original image.

The view synthesis proceeds in the following steps: at first, scale synthesis is performed by building a
Gaussian scale-space with Gaussian σ = σbase ·S and downsampling factor S (S < 1). Second, each image
in the scale-space is in-plane rotated by longitude φ with step ∆φ = ∆φbase/t. In the third step, all rotated
images are convolved with a Gaussian filter with σ = σbase along vertical direction and σ = t · σbase along
horizontal direction to eliminate aliasing in the final tilting step. The tilt is applied by shrinking the image
along the horizontal direction by factor t. The parameters of the synthesis are: the set of scales {S}, ∆φbase

– the step of longitude samples at tilt t = 1, and a set of simulated tilts {t}.

2.2 Local feature detection and description
The goal of the view synthesis procedure is to provide detectors with a sufficiently similar subset of all ar-
tificial views on the view-sphere that allows matching. For affine-covariant detectors, unlike the similarity-
covariant DoG of ASIFT, the number of necessary view samples is significantly decreased while the per-
formance for the most difficult image pairs gets improved. Moreover, it is known that different detectors
are suitable for different types of images [17] and that some detectors are complementary in the feature
points they detect [1]. Our experiments show (c.f . Section 4) that combining detectors improves the overall
robustness and speed of the matching procedure.

MODS uses the state-of-the-art affine covariant detectors MSER and Hessian-Affine. The normalised
patches are described by the recent modification of SIFT [14] – the RootSIFT [2]. The local feature frames
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Figure 2. Comparison of the proposed first to 1st inc. ratio matching strategy and the standard first to second closest
ratio matching strategy. Red regions are the second closest descriptors, yellow regions correspond to the closest
geometrically inconsistent descriptors, green are the true corresponding regions. Upper pair – rotationally symmetric
DoG regions, lower pair – affine covariant MSER regions.

computed on the synthesised views are backprojected to the coordinate system of the original image by a
known affine matrix A and associated with the descriptor and the originating synthetic view.

2.3 Tentative correspondence generation

Different strategies for computation of the tentative correspondences in wide-baseline matching have been
proposed. The standard method for matching SIFT(-like) descriptors is based on the distance ratio of the
closest to the second closest descriptors in the other image [14]. Performance of this test in general very
efficient method degrades when multiple observations of the same feature are present. In this case, the
similar descriptors will lead to the first to second SIFT ratio to be close to 1 and the correspondences will
”annihilate” each other, despite the fact they all represent the same geometric constraints and are therefore
not mutually contradictory (see Figure 2). The problem of multiple detections is amplified in the matching
by view synthesis since covariantly detected local features have often a response in multiple synthetic views.
We propose to use, instead of comparing the first to the second closest descriptor distance, the distance of
the first descriptor and the closest descriptor that is geometrically inconsistent with the first one (denoted 1st
inc. in the following). We call descriptors in one image geometrically inconsistent if the Euclidean distance
between centers of the regions is≥ 10 pixels. The difference of the first-to-second closest ratio strategy and
the closest-to-1st inc. strategy is illustrated in Figure 2.

The kd-tree algorithm from FLANN library [19] effectively finds the N-closest descriptors in the other
image. The distance ratio thresholds of the closest to 1st inc. were experimentally selected based on
the CDFs of matching and non-matching descriptors (see Appendix A). We recommend to use the same
values for SIFT and RootSIFT descriptors, but different thresholds for the different local feature detectors:
RMSER = 0.85, RDoG = 0.85 and RHA = 0.8.
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2.4 Duplicate filtering
The redetection of covariant features in synthetic views results in duplicates in tentative correspondences.
The duplicate filtering is an optional step and prunes correspondences with close spatial distance of local
features in both images. The number of pruned correspondences can be however used later for evaluating
the quality (probability of being correct) in PROSAC-like [4] geometric verification.

2.5 Geometric verification
The LO-RANSAC [11] algorithm searches for the maximal set of geometrically consistent tentative corre-
spondences. The model of the transformation is set either to homography or epipolar geometry, or automat-
ically determined by a DegenSAC [5] procedure.

3 View synthesis for affine covariant detectors
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Figure 3. Comparison of view synthesis configurations on the synthetic dataset. First row: the number of correct
SIFT matches a robust minimum (value 4% quantile) over 100 random images from [21]). Second row: the ratio of
the number of correct matches to the number of detected regions; the mean over 100 random images. Only selected
configurations are shown, full version in Appendix.

Configurations. The first two parameters of the view synthesis, tilt {t} sampling and latitude step ∆φbase,
were explored in the following synthetic experiment. For each of 100 random images from Oxford Building
Dataset2 [21], a set of simulated views with latitudes angles θ = (0, 20, 40, 60, 65, 70, 75, 80, 85)◦,
corresponding to tilt series t = (1.00, 1.06, 1.30, 2.00, 2.36, 2.92, 3.86, 5.75, 11.47)3 was generated. The
ground truth affine matrix A was computed for each synthetic view using equation (1) and used in the final

2available at http://www.robots.ox.ac.uk/∼vgg/data/oxbuildings/
3assuming that the original image is in the fronto-parallel view
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Figure 4. Estimation of the suitable scale synthesis configurations on the synthetic dataset. Ratio of the number of
correct matches to the number of detected regions, mean over 100 random images from [21].

Table 1. View synthesis configurations based on the analysis of the algorithm on the synthetic dataset
Configurations

Detector SPARSE DENSE

MSER
{S} = {1; 0.25; 0.125}, {t} = {1; 5; 9},
∆φ = 360◦/t

{S} = {1; 0.25; 0.125}, {t} = {1; 2; 4; 6; 8},
∆φ = 72◦/t

HessAff
{S} = {1}, {t} = {1;

√
2; 2; 2

√
2; 4; 4

√
2; 8},

∆φ = 360◦/t
{S} = {1}, {t} = {1; 2; 4; 6; 8}, ∆φ = 72◦/t

DoG {S} = {1}, {t} = {1; 2; 4; 6; 8}, ∆φ = 120◦/t
{S} = {1}, {t} = {1;

√
2; 2; 2

√
2; 4; 4

√
2; 8},

∆φ = 72◦/t

verification step of the MODS algorithm. The various configurations of the view synthesis were tested and
results for the selected configurations are shown in Figure 3. Note that the view synthesis significantly
increases the matching performance, however after reaching some density of the view-sphere sampling
additional views does not bring more correspondences. MSER and Hessian-Affine need sparser view-
sphere sampling than DoG.

A similar experiment was performed to find the scale sampling set {S} of the view synthesis. Instead
of tilting and rotating the images, a synthetic downsampling of the image by a factor λ = 1 to 9 was
employed (see Figure 4). It shows that MSER detector is prone to scale changes while the Hessian-Affine
and DoG detectors perform well even without view synthesis with scale sampling. Consequently, the benefit
of the scale sampling is higher for MSER than for Hessian-Affine and DoG detectors. Tilting and rotation
parameters were not used in this experiment i.e. fixed to {t} = {1} and ∆φbase = 180.

Two configurations, SPARSE and DENSE, were chosen for each detector (see Table 1) using the fol-
lowing criteria: efficiency – the ratio of correct matches per detected region, matching performance – the
number of unique (non-duplicated) matches on the synthetic image pairs with 85◦ out of plane rotation. The
SPARSE configuration is fast but still able to solve synthetic image pairs with up to 85◦ out of plane rotation.
The DENSE configuration generates sufficient number of correspondences for the most image pairs in the
EVD dataset for each detector.

Image pre-smoothing. Parameter σbase, the amount of image smoothing prior to view synthesis was set
experimentally; it affects matching performance significantly. Values too small fail to prevent aliasing, val-
ues too high oversmooth the image reducing the number of detected regions. Unlike MSER, the scale-space
based detectors like DoG, Hessian-Affine apply pre-smoothing as an initial step. This leads to different op-
timal values for different detectors. We set σbase = 0.8, 0.2, and 0.4 for the MSER, Hessian-Affine and DoG
detectors, respectively.
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Figure 5. The ratio of the number of correct matches obtained by the 1st inconsistent and 2nd nearest method, without
(left) and with (right) view synthesis. The black dashed line denotes the widely used distance ratio threshold = 0.8.

4 Experiments

4.1 1st geometrically inconsistent vs. 2nd nearest neighbour correspondence selec-
tion strategy

The first to first geometrically inconsistent strategy was evaluated on 50 image pairs of the publicly available
datasets [17] and [6]. The cumulative distributions of the number of correct tentative correspondences as
functions of the descriptor distance ratio are used for comparison. The new matching strategy improves
the performance by up to 5% for the matching without view synthesis and up to 30% (see Figure 5) for
matching with view synthesis at almost no additional computational costs.

4.2 Results on the Extreme Viewpoint Dataset
We introduce a two-view matching evaluation dataset4 with extreme viewpoint changes, see Table 2. The
dataset includes image pairs from publicly available datasets: ADAM and MAG [18], GRAF [17] and THERE [6].
The ground truth homography matrices were estimated by LO-RANSAC using correspondences from all
three detectors in view synthesis configuration {t} = {1;

√
2; 2; 2

√
2; 4; 4

√
2; 8}, ∆φ = 72◦/t. The number

of inliers for each image pair was≥ 50 and the homographies were manually inspected. For the image pairs
GRAF and THERE precise homographies are provided by Cordes et al. [6]. Transition tilts τ were computed
using equation (1) with SVD decomposition of the linearised homography at center of the first image of the
pair (see Table 2).

The configurations evaluated are specified in Table 1. For comparison, ASIFT5 results are added. Com-
putations were performed on Intel i5 CPU @ 2.6GHz with 4Gb RAM; results for computation on one core
are provided. Based on results of the different configuration, we have chosen the following configuration
for MODS w.r.t increasing computation time and performance of the configurations – see Table 3. Please
note that only views complementary to the previous iterations are synthesised.

The MODS algorithm allows to set the minimum desired number of inliers as a stopping criterion. The
recommended value – 15 inliers to the homography, have a very low probability to be a random result, but
are few enough to show the time gain from the algorithm. To maximize the number of inliers for each of
the detectors, we recommend to use DENSE configuration as a single step. Figure 6 and Table 4 compare
the different view synthesis configurations and the ”affine-covariant” detectors – they generate more correct
matches in a shorter time than the DoG detector. The DoG based matching and ASIFT matching cannot

4Available at http://cmp.felk.cvut.cz/wbs/index.html
5Reference code from http://demo.ipol.im/demo/my affine sift
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Table 2. The Extreme View Dataset – EVD. Image sources: C – Cordes et al. [6], Ox – Mikolajczyk et al. [17], M –
Morel and Yu [18].

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Name THERE GRAF ADAM MAG GRAND PKK FACE GIRL SHOP DUM INDEX CAFE FOX CAT VIN

Source C Ox M M EVD EVD EVD EVD EVD EVD EVD EVD EVD EVD EVD
τ – transitional tilt 6.3 3.6 4.8 20 2.9 7.1 6.9 8.0 9.1 6.9 8.5 11.9 22.5 47 49.8

Resolution
[pixels]

1536
x

1024

800
x

640

600
x

450

600
x

450

1000
x

667

1000
x

750

1000
x

750

1000
x

750

1000
x

562

1000
x

729

1000
x

750

800
x

533

1000
x

563

1000
x

598

1000
x

715
# Image 1 Image 2 # Image 1 Image 2 # Image 1 Image 2

1 6 11

2 7 12

3 8 13

4 9 14

5 10 15

Table 3. Configurations for MODS steps
Iter. Setup

1 MSER,{S} = {1; 0.25; 0.125}, {t} = {1}, ∆φ = 360◦/t

2 MSER,{S} = {1; 0.25; 0.125}, {t} = {1; 5; 9}, ∆φ = 360◦/t

3 HessAff, {S} = {1}, {t} = {1;
√

2; 2; 2
√

2; 4; 4
√

2; 8}, ∆φ = 360◦/t

4 HessAff , {S} = {1}, {t} = {1; 2; 4; 6; 8}, ∆φ = 72◦/t

solve 3 resp. 9 out of the 15 image pairs. The ASIFT algorithm generates a lower number of correct inliers
and works slower than our DoG DENSE configuration (which has the same tilt-rotation set). The main
causes are elimination of ”one-to-many”, including correct, correspondences, the inferiority of the standard
2nd closest ratio and a simple bruteforce algorithm of matching used in ASIFT.

No single detector solved all image pairs. The Hessian-Affine with DENSE configuration successfully
solved 14 out of 15 image pairs and outperformed other detectors and configurations in the number of
inliers, however, at the expense of the highest computational cost. MSER with no synthesis and in the
SPARSE configuration is the fastest and could solve 10 out of 15 image pairs. The MODS algorithm solves
all image pairs and saves computational time on processing of the easy pairs at the cost of a small matching
overhead on the hard cases. Also, MODS is the fastest algorithm in 7 cases, and in another 2 cases it is just
∼ 10% slower than the fastest configuration. The difference results of MODS step 2 and MSER SPARSE

are caused by randomization in RANSAC and kd-tree building.
Fig. 7 shows the breakdown of the computational time. SIFT description with the dominant orientation

estimation take 50% of the time. Note that the whole process is almost linear in the area of the synthesised
views. The only super-linear part, matching, takes only 10% of the time.

4.3 MSER vs. blur and scale change

We have tested performance of recommended scale synthesis configuration for MSER on the image pairs
most distorted by blur and scale change from the Oxford [17] dataset. To allow comparison with [17],
the standard SIFT was used instead of RootSIFT in this experiment. Note that the results are not fully
compatible as we use NN-distance ratio matching threshold = 0.8 (In [17] no ratio threshold has been

8
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Table 4. A comparison of different view synthesis and detector configurations (with RootSIFT). Best results are
highlighted by a grey background. MODS set to find ≥ 15 inliers. Results with less than 8 correct inliers are in red.
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index 18 23 24 34 264 143 0.5 54.1 2.2 5.4 20.8 18.3 38.1 0.4 11.1 6.3 12.7 7.8
shop 29 17 73 133 311 130 0.8 79.5 2.5 10.1 36.2 24 35.2 0.2 28.7 13.2 8.6 5.4
adam 20 24 18 86 214 125 0.8 17.8 0.7 1.6 6.0 6.3 26.7 1.3 24.3 54.1 35.6 19.8
there 14 20 12 49 189 94 4.5 150.0 4.5 10.1 43.4 36.9 3.1 0.1 2.7 4.9 4.4 2.5
mag 31 11 28 54 72 59 0.8 16.1 0.8 1.6 5.3 5.4 37.3 0.7 34.4 33.5 13.5 10.9
dum 25 3 0 10 66 28 29.4 158.0 4.8 20.1 60.2 42.5 0.9 0.0 0.0 0.5 1.1 0.7
grand 14 0 9 0 42 28 21.9 131.0 4.2 14.8 50.8 34.6 0.6 0.0 2.1 0.0 0.8 0.8
fox 19 0 19 22 74 25 2.1 47.4 2.1 5.8 18.6 18.2 9.0 0.0 9.3 3.8 4 1.4
cafe 17 4 14 0 45 22 1.8 39.2 1.7 4.5 17.2 15.2 9.3 0.1 8.2 0.0 2.6 1.4
girl 34 0 0 14 59 18 13.1 110.0 2.7 10.0 36.7 27.5 2.6 0.0 0.0 1.4 1.6 0.7
pkk 27 0 6 12 41 10 9.5 75.9 2.4 6.8 24.1 25.5 2.8 0.0 2.5 1.8 1.7 0.4
cat 25 3 0 21 18 6 3.9 36.2 1.4 2.2 7.8 11.7 6.3 0.1 0.0 9.6 2.3 0.5
face 39 0 9 17 24 0 15.6 138.0 3.4 11.3 38.8 32.0 2.5 0.0 2.7 1.5 0.6 0.0
vin 19 0 0 0 6 0 30.3 66.9 2.3 6.3 22.8 21.7 0.6 0.0 0.0 0.0 0.3 0.0

used, so the absolute number of the matches differs a lot. But relative ratio between detectors performance
remains the same). We have also performed the duplicate filtering procedure, which reduces the number of
correspondences (c.f . Section 2).

Figure 8 shows that scale synthesis with 1st geom. inconsistent rule improves MSER performance
by 60% to 1000%, solving the most common MSER problems – sensitivity to blur and scale change.
The quality of tentative correspondences also increases with the proposed scale synthesis configuration
(Figure 8, right). Table 6 shows the computation time.
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Table 5. MODS (θm = 15) performance on the EVD dataset. The k-th iteration includes regions from all
previous steps.
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index 1 0.5 0.4 0.4 19 20 19 56 33.9 411 246
shop 1 0.8 0.7 0.7 28 30 28 84 33.3 1321 711
adam 2 0.8 0.5 0.3 19 22 21 48 43.8 357 164
there 2 4.5 2.8 2 10 18 15 66 22.7 571 2833
mag 2 0.8 0.5 0.4 30 31 30 52 57.7 393 509
dum 3 29.4 18.9 15.5 24 29 30 1136 2.6 33342 23711
grand 3 21.9 13.7 11.3 17 25 21 754 2.8 24731 20297
fox 2 2.1 1.4 1.1 16 19 19 76 25 1717 1011
cafe 2 1.8 1.2 0.9 18 20 18 142 12.7 1402 1319
girl 3 13.1 7.4 5.3 35 46 38 549 6.9 10460 16105
pkk 2 2.5 1.6 1.3 7 15 10 81 12.3 1229 1267
cat 3 3.9 2 1.4 35 38 35 143 24.5 1262 3279
face 2 3.6 2.4 2 9 15 11 118 9.3 3411 2371
vin 4 30.3 17.8 12.5 18 38 22 657 3.4 18956 31984

Image

MODS (RootSIFT), 4 steps.
1. MSER Scale only. 2. MSER SPARSE.

3. HessAff SPARSE. 4. HessAff MAX
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graf 1 1 0.8 0.8 82 87 83 154 53.9 1018 1674
index 1 0.5 0.4 0.4 18 20 18 42 42.9 411 246
shop 1 0.8 0.7 0.7 29 31 29 61 47.5 1321 711
adam 2 0.8 0.5 0.4 20 23 22 47 46.8 357 164
there 2 4.5 2.8 2 14 17 16 60 26.7 571 2833
mag 2 0.9 0.5 0.4 31 31 31 44 70.5 393 509
dum 3 27.2 16.9 13.5 25 32 29 850 3.4 33342 23711
grand 3 20.9 12.5 10 14 24 19 468 4.1 24731 20297
fox 2 2.1 1.4 1.1 19 20 20 62 32.3 1717 1011
cafe 2 1.8 1.2 0.9 17 21 18 117 15.4 1402 1319
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Figure 8. MSER performance with and w/o scale synthesis on the most distorted pairs (1-6) with scale change and
blur from [17]. Left – the number of correct SIFT matches. Right – the proportion of correct matches within tentative
correspondences. The best detectors from [17]: BARK, BOAT, TREES – Hessian-Affine, BIKES – IBR are shown for
comparison.

5 Conclusions

We have introduced view synthesis to two-view wide-baseline matching with affine-covariant detectors and
shown that matching with the Hessian-Affine or MSER detectors outperforms the state-of-the-art ASIFT.

Table 6. MSER matcher runtime on Oxford [17] dataset
scale synthesis setup time [s]
{S} = {1} 56.6
{S} = {1; 0.25; 0.125} 61.5
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To address the robustness vs. speed trade-off, we have proposed the Matching On Demand with view
Synthesis algorithm (MODS) that uses progressively more synthesized images and more (time-consuming)
detectors until a reliable estimate of geometry is obtained. We show experimentally that the MODS al-
gorithm solves matching problems beyond the state-of-the-art and yet is comparable in speed to standard
wide-baseline matchers on simpler problems.

Minor contributions include an improved method for tentative correspondence selection, applicable both
with and without view synthesis. A modification of the standard first to second nearest SIFT distance rule
increases the number of correct matches by 5-20% at no additional computational cost. Finally, we found a
simple view synthesis set up costing less than 10% of time that greatly improves MSER robustness to blur
and scale change.
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Appendix
A Tuning view synthesis parameters
Estimating threshold on the distance ratio. The well known [14] matching strategy for SIFT descriptors
is based on the distance ratio of the first to the second closest descriptor. The aim of this experiment is to
set the threshold of the proposed modification – first to first geometrically inconsistent matching strategy.

To estimate the threshold we used 50 image pairs of the publicly available datasets [17] and [6], all
pairs are provided with known homography transformation. The detectors – MSER, Hessian-Affine, DoG
– were run on all pairs of images and distances between all descriptors in each pair computed. Then the
closest, second closest and closest geometrically inconsistent descriptors were identified. The cumulative
distributions of the number of correct and incorrect tentative correspondences as a function of the distance
ratio were computed for both strategies using the ground truth homographies.

The results for both SIFT and RootSIFT descriptors are shown in Figure 9. We see that the DoG and
MSER features are slightly less discriminative than Hessian-Affine. It is also clear from comparing the left
and right columns in Figure 9, that the features detected using view synthesis are less distinctive. However,
the distribution of incorrect matches does not change significantly, thus the thresholds for the new strategy
with view synthesis can be kept on the value similar to the threshold without view synthesis. The results
for the SIFT and RootSIFT descriptors are also very similar. Therefore, we propose to set the threshold
of the first to first geometrically inconsistent distance ratio R for the local feature detectors as follows:
RMSER = 0.85, RDoG = 0.85 and RHA = 0.8.
Tilt set and latitude sampling step. The first two parameters of the view synthesis, tilt {t} sampling
and latitude step ∆φbase, were explored in the following synthetic experiment. For each of 100 random
images from Oxford Building Dataset6 [21], a set of simulated views with latitudes angles θ = (0, 20, 40,
60, 65, 70, 75, 80, 85)◦, corresponding to tilt series t = (1.00, 1.06, 1.30, 2.00, 2.36, 2.92, 3.86, 5.75,
11.47)7 was generated. The reference image have been convolved with a Gaussian filter with σH = 0.8
along horizontal direction and σV = 0.8t along vertical direction and finally shrunk in vertical direction by
t. The ground truth affine matrix A was computed for each synthetic view using equation (1) and used in
the final verification step of the MODS algorithm. The various configurations of the view synthesis were
tested and results for the selected configurations are shown in Figures 10 – 12. Note that the view synthesis
significantly increases the matching performance, however after reaching some density of the view-sphere
sampling additional views does not bring more correspondences. MSER and Hessian-Affine need sparser
view-sphere sampling than DoG.

Two configurations, SPARSE and DENSE, were chosen for each detector (see Table 1) using the fol-
lowing criteria: efficiency – the ratio of correct matches per detected region, matching performance – the
number of unique (non-duplicated) matches on the synthetic image pairs with 85◦ out of plane rotation. The
SPARSE configuration is fast but still able to solve synthetic image pairs with up to 85◦ out of plane rotation.
The DENSE configuration generates sufficient number of correspondences for the most image pairs in the
EVD dataset for each detector.
Image pre-smoothing. The early experiments with view synthesis, have shown that the amount of image
smoothing σbase prior to view synthesis affects matching performance significantly. Values too small fail to
prevent aliasing, values too high oversmooth the image reducing the number of detected regions. Unlike
MSER, the scale-space based detectors – DoG, Hessian-Affine apply pre-smoothing as the initial step of
the scale-space pyramid.

This experiment measures the effect of the pre-smoothing parameter σbase on the matching performance
of different detectors. The range of values of the σbase were used in matching of 35 image pairs of the
publicly available datasets [17] and [6]. We have divided all pairs into two sets ”Structured images” – scenes
GRAF, GRACE, POSTERS, THERE, UNDERGROUND (25 image pairs in total) from [6] and ”Images with
repeated textures” – scenes WALL, COLORS (10 image pairs in total) [6], [17]. The DENSE configurations

6available at http://www.robots.ox.ac.uk/∼vgg/data/oxbuildings/
7assuming that the original image is in the fronto-parallel view
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Figure 9. CDF. Columns: left – no view synthesis, right – with view synthesis. Rows: upper – SIFT, lower – RootSIFT.
Average over 50 image pairs from Mikolajczyk et al. [17] and Cordes et al. [6] datasets. Black dashed line displays
standard threshold = 0.8.

of the view synthesis were chosen for each of the detectors (see Table 1). Based on this experiment (see
Figure 13), we have set following parameters for image pre-smoothing in the MODS algorithm: σbase =
0.8, 0.2, and 0.4 for the MSER, Hessian-Affine and DoG detectors, respectively.

B Full version of the experiments on the EVD dataset

The full version of experimental evaluation of the matching with view synthesis algorithm on EVD dataset
is presented in this section. For this very challenging dataset it is hard to obtain ground truth homogra-
phies from the manually selected correspondences. Therefore, the ground truth homography matrices were
estimated by running LO-RANSAC on correspondences of all three detectors with the view synthesis con-
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figuration {t} = {1;
√

2; 2; 2
√

2; 4; 4
√

2; 8}, ∆φ = 72◦/t. The number of inliers for each image pair was ≥
50 and the homographies were manually inspected. For the image pairs GRAF and THERE precise homogra-
phies were provided by Cordes et al. [6]. The transition tilts were computed using equation (1) with SVD
decomposition of the linearised homography at the center of the first image of the pair. The configurations
of detectors evaluated are listed in Table 1, additionally, the performance of the MODS and MSER detector
with scale synthesis were compared. The configuration for MODS algorithm is shown in Table 3. The
MODS algorithm allows to set the minimum desired number of inliers as a stopping criterion. We set the
threshold to 15 inliers, since fifteen inliers to a homography (with duplicate matches removed) have very
low probability of being accidental and yet allow to demonstrate the speed gain of the algorithm.

The results for all configurations for all detectors are shown in Tables 7 – 19. For comparison, ASIFT8

results were added. The timing measurements are reported for single, two and four cores of the Intel i5
CPU @ 2.6GHz processor with 4GB RAM.

8Reference code from http://demo.ipol.im/demo/my affine sift
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Figure 10. Comparison of MSER view synthesis configurations on the synthetic dataset. Upper graph – the number
of correct SIFT matches a robust minimum (value 4% quantile) over 100 random images from [21]. Lower graph –
the ratio of the number of correct matches to the number of detected regions; the mean over 100 random images.
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Figure 11. Comparison of Hessian-Affine view synthesis configurations on the synthetic dataset. Upper graph – the
number of correct SIFT matches a robust minimum (value 4% quantile) over 100 random images from [21]. Lower
graph – the ratio of the number of correct matches to the number of detected regions; the mean over 100 random
images.
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Figure 12. Comparison of DoG view synthesis configurations on the synthetic dataset. Upper graph – the number of
correct SIFT matches a robust minimum (value 4% quantile) over 100 random images from [21]. Lower graph – the
ratio of the number of correct matches to the number of detected regions; the mean over 100 random images.
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Figure 13. Matching with view synthesis (DENSE configuration) using different image pre-smoothing factor σbase.
Rows: upper – ratio of correct SIFT matches to number of detected regions, lower – number of correct SIFT matches
– robust minimum (value 4% quantile). Columns: left – structured images, right – images with repeated patterns.
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Table 7. Performance on the EVD dataset. MSER, no view synthesis. Results with less
than 8 correct inliers are in red.
Image MSER, no synths.

Time LO-RANSAC Tentatives quality Regions
SIFT RootSIFT SIFT RootSIFT
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graf 0.8 0.8 0.8 65 68 95.6 67 70 95.7 65 121 53.7 67 110 60.9 804 1432
index 0.4 0.4 0.4 18 19 94.7 17 18 94.4 18 44 40.9 17 36 47.2 291 172
shop 0.7 0.7 0.7 18 19 94.7 18 18 100 18 65 27.7 18 40 45 1131 646
adam 0.1 0.1 0.1 0 0 0 0 0 0 6 15 40 7 16 43.8 118 48
there 0.7 0.7 0.8 0 0 0 0 0 0 3 11 27.3 3 10 30 97 689
mag 0.2 0.2 0.2 11 11 100 11 11 100 11 20 55 11 20 55 203 306
dum 1.9 1.8 1.8 0 0 0 0 0 0 8 121 6.6 7 110 6.4 3108 1970
grand 1.6 1.5 1.5 0 0 0 0 0 0 4 51 7.8 5 36 13.9 2099 2598
fox 0.6 0.6 0.6 0 0 0 0 0 0 2 15 13.3 2 17 11.8 893 558
cafe 0.5 0.4 0.5 7 10 70 7 9 77.8 8 63 12.7 8 43 18.6 621 472
girl 0.6 0.6 0.6 0 0 0 0 0 0 3 21 14.3 2 22 9.1 566 816
pkk 0.6 0.6 0.6 0 0 0 0 0 0 1 36 2.8 1 25 4 661 343
cat 0.2 0.2 0.2 0 0 0 0 0 0 1 4 25 1 6 16.7 48 93
face 1.3 1.2 1.2 0 0 0 0 0 0 0 56 0 0 41 0 2323 747
vin 0.6 0.6 0.6 0 0 0 0 0 0 0 11 0 0 8 0 597 899

Table 8. Performance on the EVD dataset. MSER, scale view synthesis only. Results with less
than 8 correct inliers are in red.

Image MSER, 2 scale synths. Total image area Atotal = 1.08Aorig
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SIFT RootSIFT SIFT RootSIFT
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graf 1 0.8 0.8 81 85 95.3 82 87 94.3 82 160 51.2 83 154 53.9 1018 1674
index 0.5 0.4 0.4 19 20 95 18 20 90 19 56 33.9 18 42 42.9 411 246
shop 0.8 0.7 0.7 28 30 93.3 29 31 93.5 28 84 33.3 29 61 47.5 1321 711
adam 0.2 0.1 0.1 0 0 0 8 8 100 8 18 44.4 9 19 47.4 135 62
there 0.9 0.7 0.8 0 0 0 0 0 0 6 19 31.6 6 17 35.3 160 947
mag 0.2 0.2 0.2 13 13 100 12 12 100 13 22 59.1 12 18 66.7 223 330
dum 2.1 1.9 1.9 0 0 0 0 0 0 8 134 6 9 129 7 3367 2247
grand 1.9 1.7 1.7 0 0 0 0 0 0 4 70 5.7 4 46 8.7 2362 2763
fox 0.7 0.6 0.6 0 0 0 0 0 0 2 19 10.5 2 12 16.7 967 605
cafe 0.6 0.5 0.5 0 0 0 8 8 100 8 65 12.3 8 54 14.8 715 561
girl 0.8 0.6 0.7 0 0 0 0 0 0 6 32 18.8 5 24 20.8 675 949
pkk 0.7 0.6 0.6 0 0 0 0 0 0 2 44 4.6 4 29 13.8 729 437
cat 0.3 0.2 0.2 0 0 0 0 0 0 1 5 20 1 6 16.7 59 138
face 1.4 1.2 1.2 0 0 0 0 0 0 2 57 3.5 2 43 4.7 2442 911
vin 0.7 0.6 0.6 0 0 0 0 0 0 0 12 0 0 12 0 642 1012
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Table 9. Performance on the EVD dataset.Hessian-Affine, no view synthesis. Results
with less than 8 correct inliers are in red.
Image HessAff, no synths.

Time LO-RANSAC Tentatives quality Regions
SIFT RootSIFT SIFT RootSIFT
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graf 3.4 3.3 3.3 14 17 82.4 16 19 84.2 15 141 10.6 19 97 19.6 3630 4614
index 1.6 1.6 1.6 0 0 0 0 0 0 0 114 0 1 79 1.3 2188 874
shop 3.7 3.6 3.5 0 0 0 0 0 0 0 78 0 0 39 0 5675 2657
adam 0.5 0.6 0.5 0 0 0 0 0 0 2 24 8.3 2 19 10.5 812 208
there 2.7 2.7 2.7 0 0 0 0 0 0 0 8 0 0 9 0 467 3659
mag 0.5 0.5 0.5 0 0 0 0 0 0 0 12 0 0 7 0 502 784
dum 6.6 6.5 6.3 0 0 0 0 8 0 6 147 4.1 3 76 4 9248 6666
grand 5 4.8 4.8 0 0 0 0 0 0 3 62 4.8 3 34 8.8 6364 6555
fox 2 1.9 1.9 0 0 0 0 0 0 0 17 0 0 8 0 3324 1393
cafe 1.2 1.2 1.2 0 10 0 0 11 0 2 58 3.5 1 42 2.4 1510 1184
girl 3.1 3.1 3 0 0 0 0 0 0 0 29 0 0 20 0 2808 4306
pkk 2.5 2.4 2.4 0 0 0 0 0 0 0 39 0 0 16 0 3832 1568
cat 0.7 0.7 0.7 0 0 0 0 0 0 1 18 5.6 0 13 0 388 581
face 4.2 4 4 0 0 0 0 0 0 0 21 0 0 21 0 6283 3638
vin 2 1.9 2 0 0 0 0 0 0 0 25 0 0 20 0 1759 2913

Table 10. Performance on the EVD dataset. DoG, no view synthesis. Results with
less than 8 correct inliers are in red.
Image DoG, no synths.

Time LO-RANSAC Tentatives quality Regions
SIFT RootSIFT SIFT RootSIFT

1
co

re
[s

]

2
co

re
s

[s
]

4
co

re
s

[s
]

C
or

re
ct

in
lie

rs

In
lie

rs
C

or
re

ct
/a

ll
[%

]

C
or

re
ct

in
lie

rs
In

lie
rs

C
or

re
ct

/a
ll

[%
]

C
or

re
ct

m
at

ch
es

Te
nt

at
iv

es
C

or
re

ct
/a

ll
[%

]

C
or

re
ct

m
at

ch
es

Te
nt

at
iv

es
C

or
re

ct
/a

ll
[%

]

Im
ag

e
1

Im
ag

e
2

graf 2.5 2.5 2.5 0 0 0 0 0 0 3 120 2.5 4 83 4.8 1682 2419
index 0.9 0.9 0.9 0 0 0 0 0 0 0 106 0 0 80 0 1171 516
shop 1.6 1.6 1.6 0 0 0 0 0 0 0 93 0 0 83 0 2570 1238
adam 0.3 0.3 0.3 0 0 0 0 0 0 0 31 0 0 29 0 495 132
there 1.8 1.9 1.8 0 0 0 0 0 0 0 49 0 0 30 0 541 2476
mag 0.3 0.3 0.3 0 0 0 0 0 0 0 17 0 0 15 0 252 370
dum 3.6 3.5 3.5 0 0 0 0 0 0 0 144 0 0 89 0 4242 2791
grand 2 2 2 0 0 0 0 0 0 0 66 0 1 47 2.1 2754 2956
fox 1.1 1.1 1 0 0 0 0 0 0 0 42 0 0 22 0 1764 817
cafe 0.7 0.7 0.7 0 10 0 0 8 0 1 60 1.7 0 46 0 847 813
girl 1.5 1.5 1.5 0 0 0 0 0 0 0 60 0 0 39 0 1217 2190
pkk 1.5 1.5 1.5 0 0 0 0 0 0 0 40 0 0 26 0 2091 1487
cat 0.5 0.5 0.6 0 0 0 0 0 0 0 30 0 0 19 0 262 519
face 1.8 1.8 1.7 0 0 0 0 0 0 0 34 0 0 39 0 2406 2457
vin 1.1 1.2 1.1 0 0 0 0 0 0 0 48 0 0 32 0 876 1661
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Table 11. Performance on the EVD dataset.MSER, SPARSE configuration. Results with less than 8
correct inliers are in red.

Image
MSER, 6 tilt synths x (1+ 2 scale synth). ∆φ = 360◦/t,

t = {1; 5; 9}. Total image area Atotal = 2.8Aorig

Time LO-RANSAC Tentatives quality Regions
SIFT RootSIFT SIFT RootSIFT
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graf 3 1.6 1.1 167 173 96.5 165 169 97.6 175 340 51.5 170 339 50.1 2780 3782
index 2.2 1.2 0.8 23 32 71.9 24 35 68.6 25 106 23.6 27 103 26.2 1204 736
shop 2.5 1.4 0.9 67 69 97.1 73 74 98.6 67 172 39 73 163 44.8 2899 1474
adam 0.7 0.4 0.3 18 20 90 18 21 85.7 20 48 41.7 20 42 47.6 357 164
there 4.5 2.5 1.6 12 19 63.2 12 18 66.7 15 65 23.1 17 61 27.9 571 2833
mag 0.8 0.5 0.3 25 27 92.6 28 28 100 26 47 55.3 28 40 70 393 509
dum 4.8 2.7 2.1 0 0 0 0 0 0 12 229 5.2 14 173 8.1 6276 4579
grand 4.2 2.4 1.9 0 0 0 9 14 64.3 10 163 6.1 9 105 8.6 4840 4346
fox 2.1 1.1 0.7 12 17 70.6 19 20 95 16 68 23.5 20 61 32.8 1717 1011
cafe 1.7 1 0.6 13 20 65 14 20 70 15 117 12.8 16 104 15.4 1402 1319
girl 2.7 1.5 1 10 15 66.7 0 0 0 11 82 13.4 10 61 16.4 1479 2208
pkk 2.4 1.3 0.9 4 14 28.6 6 10 60 7 68 10.3 8 45 17.8 1229 1267
cat 1.4 0.8 0.5 0 0 0 0 0 0 2 13 15.4 2 13 15.4 144 440
face 3.4 1.9 1.4 0 0 0 9 14 64.3 11 93 11.8 10 86 11.6 3411 2371
vin 2.3 1.3 0.8 0 0 0 0 0 0 4 24 16.7 4 21 19 1106 1881

Table 12. Performance on the EVD dataset.Hessian-Affine, SPARSE configuration. Results with less
than 8 correct inliers are in red.

Image
HessAff, 10 synths. ∆φ = 360◦/t,

t ={1;
√

2; 2; 2
√

2; 4; 4
√

2; 8}. Total image area Atotal = 4Aorig
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graf 11 5.9 3.9 371 379 97.9 375 383 97.9 375 799 46.9 384 765 50.2 12519 14144
index 5.4 3 2 23 40 57.5 34 52 65.4 34 412 8.3 44 284 15.5 7967 3139
shop 10.1 5.4 3.9 134 143 93.7 133 141 94.3 138 341 40.5 135 257 52.5 16326 8549
adam 1.6 0.8 0.6 86 93 92.5 86 99 86.9 88 157 56.1 88 151 58.3 2486 635
there 10.1 5.3 3.3 58 66 87.9 49 56 87.5 64 223 28.7 52 163 31.9 2702 15991
mag 1.6 0.9 0.6 55 60 91.7 54 59 91.5 57 95 60 57 93 61.3 1664 2162
dum 20.1 11.7 9.1 0 0 0 10 12 83.3 10 254 3.9 11 150 7.3 27066 19132
grand 14.8 8.1 6.2 0 0 0 0 0 0 8 152 5.3 5 65 7.7 19891 15951
fox 5.8 3.1 2.2 27 34 79.4 22 32 68.8 30 99 30.3 27 72 37.5 10227 3798
cafe 4.5 2.4 1.6 0 14 0 0 14 0 9 135 6.7 7 112 6.3 4642 5349
girl 10 5.3 3.7 16 25 64 14 23 60.9 18 170 10.6 17 120 14.2 8981 13897
pkk 6.8 3.7 2.7 21 25 84 12 19 63.2 25 105 23.8 17 84 20.2 9457 5818
cat 2.2 1.2 0.8 24 26 92.3 21 29 72.4 24 75 32 23 67 34.3 1118 2839
face 11.3 6 4.6 35 39 89.7 17 20 85 38 139 27.3 18 93 19.4 15446 10900
vin 6.3 3.4 2.4 0 0 0 0 0 0 0 46 0 0 31 0 5656 8401
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Table 13. Performance on the EVD dataset.DoG, SPARSE configuration. Results with less than 8
correct inliers are in red.

Image
DoG, 30 synths. ∆φ = 120◦/t,

t = {1; 2; 4; 6; 8}, Total image area Atotal = 7Aorig

Time LO-RANSAC Tentatives quality Regions
SIFT RootSIFT SIFT RootSIFT
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graf 11.2 6 3.7 354 368 96.2 363 376 96.5 368 1121 32.8 379 1019 37.2 12708 17175
index 8.5 4.8 3.1 52 67 77.6 51 73 69.9 63 930 6.8 67 692 9.7 7986 4770
shop 10.3 5.5 3.3 62 65 95.4 66 72 91.7 63 575 11 69 374 18.4 15747 7873
adam 2.8 1.5 0.9 70 72 97.2 69 79 87.3 74 283 26.1 75 241 31.1 3181 899
there 16.6 9 5.5 37 51 72.5 25 42 59.5 43 533 8.1 33 365 9 5389 21491
mag 2.4 1.3 0.8 37 39 94.9 38 38 100 38 110 34.5 40 94 42.6 1467 1678
dum 19.4 12 8.5 13 20 65 16 22 72.7 15 646 2.3 17 455 3.7 23607 19402
grand 16 9.7 6.8 0 0 0 16 19 84.2 11 447 2.5 16 256 6.3 18270 15387
fox 8 4.4 2.7 14 21 66.7 11 21 52.4 15 278 5.4 12 157 7.6 10026 4999
cafe 6.6 3.9 2.7 11 17 64.7 13 19 68.4 12 271 4.4 15 207 7.3 5153 6541
girl 13.1 8.2 5.9 0 0 0 0 0 0 6 370 1.6 7 226 3.1 7745 14677
pkk 10.9 6.1 3.9 0 0 0 0 0 0 8 358 2.2 7 238 2.9 9934 10704
cat 5.1 2.8 1.7 0 0 0 2 9 22.2 2 119 1.7 4 79 5.1 1815 3750
face 16.8 10.6 7.8 0 0 0 0 0 0 11 584 1.9 5 396 1.3 17217 14204
vin 10.6 6.7 4.8 0 0 0 0 0 0 6 250 2.4 2 131 1.5 6470 9861

Table 14. Performance on the EVD dataset. MSER,DENSE configuration. Results with less than 8
correct inliers are in red.

Image
MSER, 14 tilt synths x(1+ 2 scale synth). ∆φ = 180◦/t,

t = {1; 5; 9}. Total image area Atotal = 4.2Aorig

Time LO-RANSAC Tentatives quality Regions
SIFT RootSIFT SIFT RootSIFT
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graf 22.2 11.7 6.9 330 361 91.4 332 353 94.1 339 1061 32 342 1014 33.7 20454 26177
index 16.6 8.8 5.1 51 65 78.5 56 76 73.7 60 390 15.4 66 391 16.9 9087 5733
shop 18.5 9.7 5.7 139 152 91.4 147 161 91.3 145 530 27.4 150 446 33.6 19560 9905
adam 5.4 2.8 1.7 36 41 87.8 26 38 68.4 38 114 33.3 34 104 32.7 2161 1201
there 34.1 18 10.4 43 68 63.2 46 69 66.7 59 243 24.3 61 247 24.7 4405 20824
mag 5.7 3 1.8 30 36 83.3 32 39 82.1 35 114 30.7 35 105 33.3 2123 2836
dum 33.9 18.7 11.8 42 47 89.4 34 39 87.2 43 867 5 38 653 5.8 38881 29687
grand 29.1 16.5 10.6 0 0 0 0 0 0 15 540 2.8 12 349 3.4 29894 23431
fox 14.6 7.6 4.5 37 41 90.2 39 43 90.7 42 241 17.4 41 209 19.6 10731 5960
cafe 12.3 6.5 3.9 17 30 56.7 19 32 59.4 20 287 7 22 263 8.4 8932 8805
girl 19.6 10.4 6.1 9 25 36 11 21 52.4 23 237 9.7 16 192 8.3 9313 15567
pkk 17.1 9.1 5.3 2 25 8 7 29 24.1 12 182 6.6 18 194 9.3 6922 9210
cat 11.1 5.9 3.4 0 0 0 0 0 0 4 31 12.9 3 41 7.3 1084 3333
face 21.5 11.3 6.6 52 68 76.5 55 70 78.6 56 438 12.8 64 358 17.9 13733 17135
vin 16.3 8.6 5.1 10 15 66.7 11 17 64.7 10 125 8 11 101 10.9 6423 10539
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Table 15. Performance on the EVD dataset. Hessian-Affine, DENSE configuration. Results with less than
8 correct inliers are in red.

Image
HessAff, 50 synths. ∆φ = 72◦/t,

t = {1; 2; 4; 6; 8}. Total image area Atotal = 11Aorig

Time LO-RANSAC Tentatives quality Regions
SIFT RootSIFT SIFT RootSIFT
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graf 45.2 23.8 14.2 1214 1260 96.3 1235 1274 96.9 1249 2958 42.2 1267 2887 43.9 46997 58020
index 20.8 10.9 6.5 270 297 90.9 264 302 87.4 312 1698 18.4 326 1297 25.1 27910 11497
shop 36.2 19.2 11.3 303 315 96.2 311 322 96.6 311 847 36.7 326 676 48.2 55508 25538
adam 6 3.1 1.9 205 239 85.8 214 231 92.6 242 525 46.1 239 497 48.1 7616 2310
there 43.4 23 13.6 211 274 77 189 234 80.8 240 905 26.5 212 680 31.2 11784 61930
mag 5.3 2.8 1.7 71 79 89.9 72 76 94.7 74 184 40.2 73 151 48.3 4362 6296
dum 60.2 31.6 18.7 61 68 89.7 66 74 89.2 63 617 10.2 68 419 16.2 79499 64321
grand 50.8 26.6 15.8 54 61 88.5 42 54 77.8 56 525 10.7 46 276 16.7 63962 52899
fox 18.6 9.7 5.8 75 86 87.2 74 84 88.1 79 258 30.6 76 205 37.1 26946 12327
cafe 17.2 9.2 5.4 34 45 75.6 45 53 84.9 39 437 8.9 48 409 11.7 16538 18329
girl 36.7 19.3 11.4 55 65 84.6 59 69 85.5 64 452 14.2 65 291 22.3 26776 49353
pkk 24.1 12.7 7.5 40 73 54.8 41 73 56.2 52 349 14.9 52 247 21.1 25266 22414
cat 7.8 4.2 2.5 21 38 55.3 18 34 52.9 37 147 25.2 29 115 25.2 3645 7267
face 38.8 20.5 12 52 55 94.5 24 25 96 56 417 13.4 26 277 9.4 42689 38507
vin 22.8 12.2 7.2 8 16 50 6 12 50 10 147 6.8 7 94 7.5 16608 28275

Table 16. Performance on the EVD dataset. DoG,DENSE configuration. Results with less than 8 correct
inliers are in red.

Image
DoG, 59 synths. ∆φ = 72◦/t,

t ={1;
√

2; 2; 2
√

2; 4; 4
√

2; 8}. Total image area Atotal = 16Aorig

Time LO-RANSAC Tentatives quality Regions
SIFT RootSIFT SIFT RootSIFT
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graf 25.5 13.9 8.1 637 659 96.7 653 675 96.7 665 2284 29.1 675 2041 33.1 28836 38361
index 18.3 9.9 6.1 138 167 82.6 143 164 87.2 161 1901 8.5 157 1385 11.3 18477 10549
shop 24 12.8 7.7 118 122 96.7 130 134 97 124 1238 10 132 845 15.6 37205 18541
adam 6.3 3.3 1.9 129 135 95.6 125 138 90.6 136 549 24.8 145 434 33.4 7462 2062
there 36.9 19.6 11.6 98 125 78.4 94 112 83.9 119 1129 10.5 108 817 13.2 12041 47887
mag 5.4 2.8 1.7 52 57 91.2 59 62 95.2 54 209 25.8 59 178 33.1 3522 3952
dum 42.5 24.9 16.9 31 36 86.1 28 35 80 36 1440 2.5 31 966 3.2 54700 43809
grand 34.6 20 13.3 26 34 76.5 28 38 73.7 30 943 3.2 32 595 5.4 42032 35904
fox 18.2 10 6.1 27 40 67.5 25 39 64.1 33 614 5.4 28 370 7.6 24039 11336
cafe 15.2 9 6.1 22 28 78.6 22 28 78.6 25 558 4.5 23 415 5.5 12310 14829
girl 27.5 16 10.9 11 20 55 18 24 75 18 759 2.4 21 496 4.2 17867 33840
pkk 25.5 14.8 9.5 13 41 31.7 10 28 35.7 23 763 3 22 473 4.7 23470 24826
cat 11.7 6.5 4.1 0 0 0 6 16 37.5 5 215 2.3 11 153 7.2 4266 8714
face 32 17.8 11.3 0 0 0 0 0 0 33 1205 2.7 6 980 0.6 38334 32892
vin 21.7 12.6 8.4 0 0 0 0 0 0 7 491 1.4 5 270 1.9 14223 23069
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Table 17. Performance on the EVD dataset.ASIFT. Results with less
than 8 correct inliers are in red.

Image
ASIFT, 59 synths. ∆φ = 72◦/t,

t ={1;
√

2; 2; 2
√

2; 4; 4
√

2; 8}. Total image area Atotal = 16Aorig

Time ORSA Tentatives quality Regions
SIFT SIFT
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graf 81.8 26.5 14.8 322 531 60.6 325 582 55.8 31199 38677
index 54.1 18.3 10.9 23 94 24.5 23 178 12.9 20349 10115
shop 79.5 25 14.1 17 34 50 18 76 23.6 41984 25270
adam 17.8 6 4.3 24 63 38.1 25 92 27.1 7572 3295
there 150 48.4 27.8 20 72 27.8 21 365 5.8 26901 52334
mag 16.1 5.5 3.8 11 25 44 12 54 22.2 4204 6399
dum 158 50.8 48.3 3 39 7.7 3 64 4.7 66380 48622
grand 131 41.8 40.4 0 0 0 1 81 1.2 54350 43713
fox 47.4 15.7 9.5 0 0 0 4 32 12.5 22300 13502
cafe 39.2 12.9 8 4 74 5.4 4 109 3.6 16088 16245
girl 110 35.6 20.8 0 0 0 12 199 6 35834 46892
pkk 75.9 25.1 14.9 0 0 0 6 107 5.6 33229 22352
cat 36.2 12.6 7.8 3 37 8.1 6 42 14.3 4979 10142
face 138 44.1 25.4 0 0 0 6 136 4.4 59278 41859
vin 66.9 21.3 20.6 0 0 0 0 49 0 17127 31329

Table 18. Performance on the EVD dataset. MODS (θm = 15), SIFT. Results
with less than 8 correct inliers are in red.

Image

MODS, 4 steps.
1. MSER Scale only. 2. MSER SPARSE.
3. HessAff SPARSE. 4. HessAff DENSE

Time LO-RANSAC Tentatives quality Regions
SIFT SIFT
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graf 1 1 0.8 0.8 81 85 95.3 82 160 51.2 1018 1674
index 1 0.5 0.4 0.4 19 20 95 19 56 33.9 411 246
shop 1 0.8 0.7 0.7 28 30 93.3 28 84 33.3 1321 711
adam 2 0.8 0.5 0.3 19 22 86.4 21 48 43.8 357 164
there 2 4.5 2.8 2 10 18 55.6 15 66 22.7 571 2833
mag 2 0.8 0.5 0.4 30 31 96.8 30 52 57.7 393 509
dum 3 29.4 18.9 15.5 24 29 82.8 30 1136 2.6 33342 23711
grand 3 21.9 13.7 11.3 17 25 68 21 754 2.8 24731 20297
fox 2 2.1 1.4 1.1 16 19 84.2 19 76 25 1717 1011
cafe 2 1.8 1.2 0.9 18 20 90 18 142 12.7 1402 1319
girl 3 13.1 7.4 5.3 35 46 76.1 38 549 6.9 10460 16105
pkk 2 2.5 1.6 1.3 7 15 46.7 10 81 12.3 1229 1267
cat 3 3.9 2 1.4 35 38 92.1 35 143 24.5 1262 3279
face 2 3.6 2.4 2 9 15 60 11 118 9.3 3411 2371
vin 4 30.3 17.8 12.5 18 38 47.4 22 657 3.4 18956 31984
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Table 19. Performance on the EVD dataset.MODS (θm = 15), Root-
SIFT. Results with less than 8 correct inliers are in red.

Image

MODS, 4 steps.
1. MSER Scale only. 2. MSER SPARSE.
3. HessAff SPARSE. 4. HessAff DENSE

Time LO-RANSAC Tentatives quality Regions
RootSIFT RootSIFT
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graf 1 1 0.8 0.8 82 87 94.3 83 154 53.9 1018 1674
index 1 0.5 0.4 0.4 18 20 90 18 42 42.9 411 246
shop 1 0.8 0.7 0.7 29 31 93.5 29 61 47.5 1321 711
adam 2 0.8 0.5 0.4 20 23 87 22 47 46.8 357 164
there 2 4.5 2.8 2 14 17 82.4 16 60 26.7 571 2833
mag 2 0.9 0.5 0.4 31 31 100 31 44 70.5 393 509
dum 3 27.2 16.9 13.5 25 32 78.1 29 850 3.4 33342 23711
grand 3 20.9 12.5 10 14 24 58.3 19 468 4.1 24731 20297
fox 2 2.1 1.4 1.1 19 20 95 20 62 32.3 1717 1011
cafe 2 1.8 1.2 0.9 17 21 81 18 117 15.4 1402 1319
girl 3 13.1 7.3 5.2 34 44 77.3 38 436 8.7 10460 16105
pkk 3 9.5 5.3 4 27 37 73 33 344 9.6 10686 7085
cat 3 3.6 2.1 1.5 25 34 73.5 30 149 20.1 1262 3279
face 3 15.6 8.9 7.1 39 44 88.6 42 534 7.9 18857 13271
vin 4 29.7 17.1 11.8 19 32 59.4 21 455 4.6 18956 31984
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