CENTER FOR
MACHINE PERCEPTION

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Two-view Matching with View Synthesis Revisited

Dmytro Mishkin, Michal Perdoch, Jiri Matas

ducha.aiki\{at\}gmail.com,perdom1,matas \{at\}(cmp.felk.cvut.cz)

CTU-CMP-2013-15
October 29, 2018

The authors were supported by The Czech Science Foundation Project GACR P103/12/G084 and by the Technology Agency of the Czech Republic research program TE01020415 (V3C - Visual Computing Competence Center).

Research Reports of CMP, Czech Technical University in Prague, No. 15, 2013 Published by
Center for Machine Perception, Department of Cybernetics Faculty of Electrical Engineering, Czech Technical University Technická 2, 16627 Prague 6, Czech Republic fax +420 224357385 , phone +420 22435 7637, www: http://cmp.felk.cvut.cz

Two-view Matching with View Synthesis Revisited

Dmytro Mishkin, Michal Perdoch, Jiri Matas

October 29, 2018

Abstract

Wide-baseline matching focussing on problems with extreme viewpoint change is considered. We introduce the use of view synthesis with affine-covariant detectors to solve such problems and show that matching with the Hessian-Affine or MSER detectors outperforms the state-of-the-art ASIFT [18].

To minimise the loss of speed caused by view synthesis, we propose the Matching On Demand with view Synthesis algorithm (MODS) that uses progressively more synthesized images and more (timeconsuming) detectors until reliable estimation of geometry is possible. We show experimentally that the MODS algorithm solves problems beyond the state-of-the-art and yet is comparable in speed to standard wide-baseline matchers on simpler problems.

Minor contributions include an improved method for tentative correspondence selection, applicable both with and without view synthesis and a view synthesis setup greatly improving MSER robustness to blur and scale change that increase its running time by 10% only.

1 Introduction

The standard method for wide baseline matching involves detection of local features, calculation of descriptors, generation of tentative correspondences and their geometric verification using the homography or epipolar constraint.

It is well known [17, 8, 7] that performance of the pipeline decreases in the presence of viewpoint and scale changes, blur, compression artefacts, etc. Lepetit and Fua [12] showed that matching robustness is improved by synthesis of additional views given a single, fronto-parallel view of an object. Morel and Yu [18] combined viewpoint synthesis with the similarity-covariant Difference-of-Gaussians detector (DoG) and SIFT matching [14]. The resulting image matching method, called ASIFT, successfully matched challenging image pairs with significantly different viewing angles.

We develop the idea of view synthesis for wide baseline matching and propose a number of novelties that improve several stages of the matching pipeline. Some of the improvements are also applicable to two-view matching without synthesis. The proposed MODS wide-baseline matcher outperforms ASIFT in terms of speed, the number and percentage of correct matches generated as well as in the precision of the estimated geometry. Performance was tested mainly on image pairs with extreme viewpoint changes, but viewpoint synthesis also improves matching results in the presence of phenomena like blur, occlusion and scale change. The following contributions are made: first, we show that the seemingly counter-intuitive synthesis of affine views for "affine-covariant" detectors greatly improves their performance in wide baseline matching. With suitable detector-specific configurations of synthesized viewpoints, found through extensive experimentation, both the Hessian-Affine [16] and MSER [15] detectors clearly outperform DoG [14].

Second, we generalize the "first-to-second-closest SIFT distance ratio" criterion for the selection of tentative correspondences. Depending on the image, the new criterion gives $5-20 \%$ more true matches than the standard at no extra computation cost. The proposed criterion improves even matching performance without synthesis, especially in images with local symmetries.

Third, we propose an adaptive algorithm for matching very challenging image pairs which follows the "do only as much as needed" principle. The MODS algorithm (Matching On Demand with view Synthesis)

[^0]

Figure 1. Homography estimation with extreme viewpoint change. The proposed MODS algorithm produces 32 matches, 25 are correct. The state-of-the-art ASIFT [18] outputs 41 matches, 3 are correct. Blue dots: centers of detected regions. Green dots: reprojected centers of corresponding regions showing good alignment.
uses progressively more detector types and more synthesized images until enough correspondences for reliable estimation of two-view geometry are found. MODS is fast on easy image pairs without compromising performance on the hardest problems.

1.1 Related work

The use of view synthesis for image matching is a recent development and the literature is limited and includes mainly modifications of the ASIFT algorithm. Liu et al. [13] synthesised perspective warps rather than affine. Pang et al. [20] replaced SIFT by SURF [3] in the ASIFT algorithm to reduce the computation time. Sadek et al. [22] present a new affine covariant descriptor based on SIFT which can be used with or without view synthesis. Detection of the MSERs on the scale space pyramid was proposed by Forssén and Lowe [9].

The rest of the paper is organised in a top-down manner. In Section 2 , we introduce the adaptive MODS two-view matching algorithm. Section 3 studies view synthesis for affine-covariant detectors. Experiments are presented in Section 4 . Full experimental data is in Appendix.

2 Matching with On Demand View Synthesis

The iterative MODS algorithm (see Alg. 1] repeats a sequences of two-view matching procedures, until a required minimum number of geometrically verified correspondences is found. In each iteration, a different detector is used and a different set of views generated. The adopted sequence is an outcome of extensive experimentation with the objective of solving the most challenging problems while keeping speed comparable to standard single-detector wide-baseline matchers for simple problems. For instance, the first iteration of the MODS algorithm runs the MSER detector with only a very coarse scale space pyramid which is 10% slower than standard MSER. Subsequent iterations run complementary detectors with a higher number of synthesized views. Details on the chose configuration and the selection process are given in Section 3 . The rest of the section describes the steps employed in the iterations of the MODS algorithm.

```
Algorithm 1 MODS: Matching with On-Demand view Synthesis
Input: \(I_{1}, I_{2}\) - two images; \(\theta_{m}\) - minimum required number of matches; \(S_{\max }\) - maximum number of iterations.
Output: Fundamental of homography matrix F or H;
    list of corresponding points.
Variables: \(N_{\text {matches }}\) - detected correspondences, Iter - currect iteration.
while \(\left(N_{\text {matches }}<\theta_{m}\right)\) and (Iter \(\left.<S_{\text {max }}\right)\) do
for \(I_{1}\) and \(I_{2}\) separately do
            1 Generate synthetic views according to the
                scale-tilt-rotation-detector setup for the Iter.
            2 Detect and describe local features.
            3 Reproject local features to original image.
                Add described features to general list.
    end for
    4 Generate tentative correspondences
            using the first geom. inconsistent rule.
        5 Filter duplicate matches.
        6 Geometrically verify tentative correspondences
            while estimating F or H .
end while
```


2.1 Synthetic views generation

It is well known that a homography H can be approximated by an affine transformation A at a point using the first order Taylor expansion. Further, an affine transformation can be uniquely decomposed by SVD into a rotation, skew, scale and rotation around the optical axis [10]. Morel and Yu [18] proposed to decompose the affine transformation A as

$$
\begin{align*}
A & =H_{\lambda} R_{1}(\psi) T_{t} R_{2}(\phi)= \\
& =\lambda\left(\begin{array}{cc}
\cos \psi & -\sin \psi \\
\sin \psi & \cos \psi
\end{array}\right)\left(\begin{array}{ll}
t & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \tag{1}
\end{align*}
$$

where $\lambda>0, R_{1}$ and R_{2} are rotations, and T_{t} is a diagonal matrix with $t>1$. Parameter t is called the absolute tilt, $\phi \in\langle 0, \pi)$ is the optical axis longitude and $\psi \in\langle 0,2 \pi)$ is the rotation of the camera around the optical axis. Each synthesised view is parametrised by the tilt, longitude and optionally the scale and represents a sample of the view-sphere resp. view-volume around the original image.

The view synthesis proceeds in the following steps: at first, scale synthesis is performed by building a Gaussian scale-space with Gaussian $\sigma=\sigma_{\text {base }} \cdot S$ and downsampling factor $S(S<1)$. Second, each image in the scale-space is in-plane rotated by longitude ϕ with step $\Delta \phi=\Delta \phi_{\text {base }} / t$. In the third step, all rotated images are convolved with a Gaussian filter with $\sigma=\sigma_{\text {base }}$ along vertical direction and $\sigma=t \cdot \sigma_{\text {base }}$ along horizontal direction to eliminate aliasing in the final tilting step. The tilt is applied by shrinking the image along the horizontal direction by factor t. The parameters of the synthesis are: the set of scales $\{\mathrm{S}\}, \Delta \phi_{\text {base }}$ - the step of longitude samples at tilt $t=1$, and a set of simulated tilts $\{\mathrm{t}\}$.

2.2 Local feature detection and description

The goal of the view synthesis procedure is to provide detectors with a sufficiently similar subset of all artificial views on the view-sphere that allows matching. For affine-covariant detectors, unlike the similaritycovariant DoG of ASIFT, the number of necessary view samples is significantly decreased while the performance for the most difficult image pairs gets improved. Moreover, it is known that different detectors are suitable for different types of images [17] and that some detectors are complementary in the feature points they detect [1]. Our experiments show (c.f. Section 44) that combining detectors improves the overall robustness and speed of the matching procedure.

MODS uses the state-of-the-art affine covariant detectors MSER and Hessian-Affine. The normalised patches are described by the recent modification of SIFT [14] - the RootSIFT [2]. The local feature frames

Figure 2. Comparison of the proposed first to 1st inc. ratio matching strategy and the standard first to second closest ratio matching strategy. Red regions are the second closest descriptors, yellow regions correspond to the closest geometrically inconsistent descriptors, green are the true corresponding regions. Upper pair - rotationally symmetric DoG regions, lower pair - affine covariant MSER regions.
computed on the synthesised views are backprojected to the coordinate system of the original image by a known affine matrix A and associated with the descriptor and the originating synthetic view.

2.3 Tentative correspondence generation

Different strategies for computation of the tentative correspondences in wide-baseline matching have been proposed. The standard method for matching SIFT(-like) descriptors is based on the distance ratio of the closest to the second closest descriptors in the other image [14]. Performance of this test in general very efficient method degrades when multiple observations of the same feature are present. In this case, the similar descriptors will lead to the first to second SIFT ratio to be close to 1 and the correspondences will "annihilate" each other, despite the fact they all represent the same geometric constraints and are therefore not mutually contradictory (see Figure 2). The problem of multiple detections is amplified in the matching by view synthesis since covariantly detected local features have often a response in multiple synthetic views. We propose to use, instead of comparing the first to the second closest descriptor distance, the distance of the first descriptor and the closest descriptor that is geometrically inconsistent with the first one (denoted 1st inc. in the following). We call descriptors in one image geometrically inconsistent if the Euclidean distance between centers of the regions is ≥ 10 pixels. The difference of the first-to-second closest ratio strategy and the closest-to-1st inc. strategy is illustrated in Figure 2.

The kd-tree algorithm from FLANN library [19] effectively finds the N-closest descriptors in the other image. The distance ratio thresholds of the closest to 1 st inc. were experimentally selected based on the CDFs of matching and non-matching descriptors (see Appendix A). We recommend to use the same values for SIFT and RootSIFT descriptors, but different thresholds for the different local feature detectors: $R_{\mathrm{MSER}}=0.85, R_{\mathrm{DoG}}=0.85$ and $R_{\mathrm{HA}}=0.8$.

2.4 Duplicate filtering

The redetection of covariant features in synthetic views results in duplicates in tentative correspondences. The duplicate filtering is an optional step and prunes correspondences with close spatial distance of local features in both images. The number of pruned correspondences can be however used later for evaluating the quality (probability of being correct) in PROSAC-like [4] geometric verification.

2.5 Geometric verification

The LO-RANSAC [11] algorithm searches for the maximal set of geometrically consistent tentative correspondences. The model of the transformation is set either to homography or epipolar geometry, or automatically determined by a DegenSAC [5] procedure.

3 View synthesis for affine covariant detectors

Figure 3. Comparison of view synthesis configurations on the synthetic dataset. First row: the number of correct SIFT matches a robust minimum (value 4% quantile) over 100 random images from [21]). Second row: the ratio of the number of correct matches to the number of detected regions; the mean over 100 random images. Only selected configurations are shown, full version in Appendix.

Configurations. The first two parameters of the view synthesis, tilt $\{\mathrm{t}\}$ sampling and latitude step $\Delta \phi_{\text {base }}$, were explored in the following synthetic experiment. For each of 100 random images from Oxford Building Datase 1^{2} [21], a set of simulated views with latitudes angles $\theta=(0,20,40,60,65,70,75,80,85)^{\circ}$, corresponding to tilt series $t=(1.00,1.06,1.30,2.00,2.36,2.92,3.86,5.75,11.47)^{3}$ was generated. The ground truth affine matrix A was computed for each synthetic view using equation (1) and used in the final

[^1]

Figure 4. Estimation of the suitable scale synthesis configurations on the synthetic dataset. Ratio of the number of correct matches to the number of detected regions, mean over 100 random images from [21].

Table 1. View synthesis configurations based on the analysis of the algorithm on the synthetic dataset

	Configurations	
Detector	SPARSE	DENSE
MSER	$\{S\}=\{1 ; 0.25 ; 0.125\},\{t\}=\{1 ; 5 ; 9\}$, $\Delta \phi=360^{\circ} / t$	$\{S\}=\{1 ; 0.25 ; 0.125\},\{t\}=\{1 ; 2 ; 4 ; 6 ; 8\}$, $\Delta \phi=72^{\circ} / t$
HessAff	$\{S\}=\{1\},\{t\}=\{1 ; \sqrt{2} ; 2 ; 2 \sqrt{2} ; 4 ; 4 \sqrt{2} ; 8\}$, $\Delta \phi=360^{\circ} / t$	$\{S\}=\{1\},\{t\}=\{1 ; 2 ; 4 ; 6 ; 8\}, \Delta \phi=72^{\circ} / t$
DoG	$\{S\}=\{1\},\{t\}=\{1 ; 2 ; 4 ; 6 ; 8\}, \Delta \phi=120^{\circ} / t$	$\{S\}=\{1\},\{t\}=\{1 ; \sqrt{2} ; 2 ; 2 \sqrt{2} ; 4 ; 4 \sqrt{2} ; 8\}$, $\Delta \phi=72^{\circ} / t$

verification step of the MODS algorithm. The various configurations of the view synthesis were tested and results for the selected configurations are shown in Figure 3 . Note that the view synthesis significantly increases the matching performance, however after reaching some density of the view-sphere sampling additional views does not bring more correspondences. MSER and Hessian-Affine need sparser viewsphere sampling than DoG.

A similar experiment was performed to find the scale sampling set $\{\mathrm{S}\}$ of the view synthesis. Instead of tilting and rotating the images, a synthetic downsampling of the image by a factor $\lambda=1$ to 9 was employed (see Figure 4). It shows that MSER detector is prone to scale changes while the Hessian-Affine and DoG detectors perform well even without view synthesis with scale sampling. Consequently, the benefit of the scale sampling is higher for MSER than for Hessian-Affine and DoG detectors. Tilting and rotation parameters were not used in this experiment i.e. fixed to $\{\mathrm{t}\}=\{1\}$ and $\Delta \phi_{\text {base }}=180$.

Two configurations, SPARSE and DENSE, were chosen for each detector (see Table 1) using the following criteria: efficiency - the ratio of correct matches per detected region, matching performance - the number of unique (non-duplicated) matches on the synthetic image pairs with 85° out of plane rotation. The SPARSE configuration is fast but still able to solve synthetic image pairs with up to 85° out of plane rotation. The DENSE configuration generates sufficient number of correspondences for the most image pairs in the EVD dataset for each detector.

Image pre-smoothing. Parameter $\sigma_{\text {base }}$, the amount of image smoothing prior to view synthesis was set experimentally; it affects matching performance significantly. Values too small fail to prevent aliasing, values too high oversmooth the image reducing the number of detected regions. Unlike MSER, the scale-space based detectors like DoG, Hessian-Affine apply pre-smoothing as an initial step. This leads to different optimal values for different detectors. We set $\sigma_{\text {base }}=0.8,0.2$, and 0.4 for the MSER, Hessian-Affine and DoG detectors, respectively.

Figure 5. The ratio of the number of correct matches obtained by the 1 st inconsistent and 2 nd nearest method, without (left) and with (right) view synthesis. The black dashed line denotes the widely used distance ratio threshold $=0.8$.

4 Experiments

4.1 1st geometrically inconsistent vs. 2nd nearest neighbour correspondence selection strategy

The first to first geometrically inconsistent strategy was evaluated on 50 image pairs of the publicly available datasets [17] and [6]. The cumulative distributions of the number of correct tentative correspondences as functions of the descriptor distance ratio are used for comparison. The new matching strategy improves the performance by up to 5% for the matching without view synthesis and up to 30% (see Figure 5) for matching with view synthesis at almost no additional computational costs.

4.2 Results on the Extreme Viewpoint Dataset

We introduce a two-view matching evaluation datase $\left.\right|^{4}$ with extreme viewpoint changes, see Table 2 . The dataset includes image pairs from publicly available datasets: ADAM and MAG [18], GRAF [17] and THERE [6]. The ground truth homography matrices were estimated by LO-RANSAC using correspondences from all three detectors in view synthesis configuration $\{t\}=\{1 ; \sqrt{2} ; 2 ; 2 \sqrt{2} ; 4 ; 4 \sqrt{2} ; 8\}, \Delta \phi=72^{\circ} / t$. The number of inliers for each image pair was ≥ 50 and the homographies were manually inspected. For the image pairs GRAF and THERE precise homographies are provided by Cordes et al. [6]. Transition tilts τ were computed using equation (1) with SVD decomposition of the linearised homography at center of the first image of the pair (see Table 2).

The configurations evaluated are specified in Table 1. For comparison, ASIFT ${ }^{5}$ results are added. Computations were performed on Intel i5 CPU @ 2.6 GHz with 4 Gb RAM; results for computation on one core are provided. Based on results of the different configuration, we have chosen the following configuration for MODS w.r.t increasing computation time and performance of the configurations - see Table 3. Please note that only views complementary to the previous iterations are synthesised.

The MODS algorithm allows to set the minimum desired number of inliers as a stopping criterion. The recommended value - 15 inliers to the homography, have a very low probability to be a random result, but are few enough to show the time gain from the algorithm. To maximize the number of inliers for each of the detectors, we recommend to use DENSE configuration as a single step. Figure 6 and Table 4 compare the different view synthesis configurations and the "affine-covariant" detectors - they generate more correct matches in a shorter time than the DoG detector. The DoG based matching and ASIFT matching cannot

[^2]Table 2. The Extreme View Dataset - EVD. Image sources: C - Cordes et al. [6], Ox - Mikolajczyk et al. [17], M Morel and Yu [18].

Table 3. Configurations for MODS steps

Iter.	Setup
1	MSER, $\{S\}=\{1 ; 0.25 ; 0.125\},\{t\}=\{1\}, \Delta \phi=360^{\circ} / t$
2	MSER, $\{S\}=\{1 ; 0.25 ; 0.125\},\{t\}=\{1 ; 5 ; 9\}, \Delta \phi=360^{\circ} / t$
3	HessAff, $\{S\}=\{1\},\{t\}=\{1 ; \sqrt{2} ; 2 ; 2 \sqrt{2} ; 4 ; 4 \sqrt{2} ; 8\}, \Delta \phi=360^{\circ} / t$
4	HessAff, $\{S\}=\{1\},\{t\}=\{1 ; 2 ; 4 ; 6 ; 8\}, \Delta \phi=72^{\circ} / t$

solve 3 resp. 9 out of the 15 image pairs. The ASIFT algorithm generates a lower number of correct inliers and works slower than our DoG DENSE configuration (which has the same tilt-rotation set). The main causes are elimination of "one-to-many", including correct, correspondences, the inferiority of the standard 2nd closest ratio and a simple bruteforce algorithm of matching used in ASIFT.

No single detector solved all image pairs. The Hessian-Affine with Dense configuration successfully solved 14 out of 15 image pairs and outperformed other detectors and configurations in the number of inliers, however, at the expense of the highest computational cost. MSER with no synthesis and in the SPARSE configuration is the fastest and could solve 10 out of 15 image pairs. The MODS algorithm solves all image pairs and saves computational time on processing of the easy pairs at the cost of a small matching overhead on the hard cases. Also, MODS is the fastest algorithm in 7 cases, and in another 2 cases it is just $\sim 10 \%$ slower than the fastest configuration. The difference results of MODS step 2 and MSER Sparse are caused by randomization in RANSAC and kd-tree building.

Fig. 7 shows the breakdown of the computational time. SIFT description with the dominant orientation estimation take 50% of the time. Note that the whole process is almost linear in the area of the synthesised views. The only super-linear part, matching, takes only 10% of the time.

4.3 MSER vs. blur and scale change

We have tested performance of recommended scale synthesis configuration for MSER on the image pairs most distorted by blur and scale change from the Oxford [17] dataset. To allow comparison with [17], the standard SIFT was used instead of RootSIFT in this experiment. Note that the results are not fully compatible as we use NN-distance ratio matching threshold $=0.8$ (In [17] no ratio threshold has been

Figure 6．Performance of the selected view synthesis configurations defined in Table 1．MODS set to find ≥ 15 inliers． Left－the number of correct RANSAC inliers．The black dashed line marks the level of 10 correct inlier－a minimum for a reliable estimate of two－view geometry．Right－runtime（ 1 core）．

Figure 7．Percentage of time spent in the main stages of the matching with view synthesis process on a single core， DENSE configuration．SIFT description，i．e．the dominant gradient estimation and the descriptor computation is the most time－consuming part．

Table 4．A comparison of different view synthesis and detector configurations（with RootSIFT）．Best results are highlighted by a grey background．MODS set to find ≥ 15 inliers．Results with less than 8 correct inliers are in red．

Image	Correct inliers						Time， 1 core［ s ］						Correct inliers／sec					
	$\begin{aligned} & n \\ & 11 \\ & 0 \\ & 0 \\ & \hat{n} \\ & \hat{0} \\ & \sum \end{aligned}$	䨗				$\begin{aligned} & \text { w } \\ & \sum_{1}^{2} \\ & \text { an } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & 11 \\ & 0 \\ & 0 \\ & \hat{n} \\ & \hat{0} \\ & \sum \end{aligned}$	$\frac{\sqrt{4}}{\boxed{4}}$					$\begin{aligned} & n \\ & 11 \\ & 0 \\ & 0 \\ & \hat{n} \\ & \hat{0} \\ & \sum \end{aligned}$	$\begin{aligned} & \text { 㡙 } \\ & \text { 年 } \end{aligned}$				
graf	82	322	165	375	1235	653	1.0	81.8	3.0	11.0	45.2	25.5	83.9	3.9	55	34.1	27.3	25.6
index	18	23	24	34	264	143	0.5	54.1	2.2	5.4	20.8	18.3	38.1	0.4	11.1	6.3	12.7	7.8
shop	29	17	73	133	311	130	0.8	79.5	2.5	10.1	36.2	24	35.2	0.2	28.7	13.2	8.6	5.4
adam	20	24	18	86	214	125	0.8	17.8	0.7	1.6	6.0	6.3	26.7	1.3	24.3	54.1	35.6	19.8
there	14	20	12	49	189	94	4.5	150.0	4.5	10.1	43.4	36.9	3.1	0.1	2.7	4.9	4.4	2.5
mag	31	11	28	54	72	59	0.8	16.1	0.8	1.6	5.3	5.4	37.3	0.7	34.4	33.5	13.5	10.9
dum	25	3	0	10	66	28	29.4	158.0	4.8	20.1	60.2	42.5	0.9	0.0	0.0	0.5	1.1	0.7
grand	14	0	9	0	42	28	21.9	131.0	4.2	14.8	50.8	34.6	0.6	0.0	2.1	0.0	0.8	0.8
fox	19	0	19	22	74	25	2.1	47.4	2.1	5.8	18.6	18.2	9.0	0.0	9.3	3.8	4	1.4
cafe	17	4	14	0	45	22	1.8	39.2	1.7	4.5	17.2	15.2	9.3	0.1	8.2	0.0	2.6	1.4
girl	34	0	0	14	59	18	13.1	110.0	2.7	10.0	36.7	27.5	2.6	0.0	0.0	1.4	1.6	0.7
pkk	27	0	6	12	41	10	9.5	75.9	2.4	6.8	24.1	25.5	2.8	0.0	2.5	1.8	1.7	0.4
cat	25	3	0	21	18	6	3.9	36.2	1.4	2.2	7.8	11.7	6.3	0.1	0.0	9.6	2.3	0.5
face	39	0	9	17	24	0	15.6	138.0	3.4	11.3	38.8	32.0	2.5	0.0	2.7	1.5	0.6	0.0
vin	19	0	0	0	6	0	30.3	66.9	2.3	6.3	22.8	21.7	0.6	0.0	0.0	0.0	0.3	0.0

used，so the absolute number of the matches differs a lot．But relative ratio between detectors performance remains the same）．We have also performed the duplicate filtering procedure，which reduces the number of correspondences（c．f．Section 2）．

Figure 8 shows that scale synthesis with 1 st geom．inconsistent rule improves MSER performance by 60% to 1000% ，solving the most common MSER problems－sensitivity to blur and scale change． The quality of tentative correspondences also increases with the proposed scale synthesis configuration （Figure 8，right）．Table 6shows the computation time．

Table 5. MODS $\left(\theta_{m}=15\right)$ performance on the EVD dataset. The k-th iteration includes regions from all previous steps.

Image	MODS (SIFT) 4 steps. 1. MSER Scale only. 2. MSER Sparse. 3. HessAff Sparse. 4. HessAff Max			
	Time	RANSAC	Tentatives quality	Regions
	$\begin{array}{ccc} \approx & \infty & \infty \\ 0 & \infty & 0 \\ 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ -0 & N & \ddots \end{array}$			$\begin{array}{ll} \overline{0} & \text { N } \\ \text { on } & 0 \\ \tilde{\Xi} & \tilde{\Xi} \end{array}$
graf	$\begin{array}{llll}1 & 1 & 0.8 & 0.8\end{array}$	8185	$82 \quad 16051.2$	10181674
index	$\begin{array}{lllll}1 & 0.5 & 0.4 & 0.4\end{array}$	$19 \quad 20$	$19 \quad 5633.9$	411246
shop	$\begin{array}{lllll}1 & 0.8 & 0.7 & 0.7\end{array}$	$28 \quad 30$	$28 \quad 8433.3$	1321711
adam	$\begin{array}{lllll}2 & 0.8 & 0.5 & 0.3\end{array}$	1922	$21 \quad 4843.8$	357164
there	$\begin{array}{llll}2 & 4.5 & 2.8 & 2\end{array}$	$10 \quad 18$	$15 \quad 6622.7$	5712833
mag	$\begin{array}{lllll}2 & 0.8 & 0.5 & 0.4\end{array}$	$30 \quad 31$	$30 \quad 5257.7$	393509
dum	329.418 .915 .5	$24 \quad 29$	3011362.6	3334223711
grand	321.913 .711 .3	$17 \quad 25$	$\begin{array}{llll}21 & 754 & 2.8\end{array}$	2473120297
fox	$\begin{array}{llll}2 & 2.1 & 1.4 & 1.1\end{array}$	$16 \quad 19$	$19 \quad 7625$	17171011
cafe	$\begin{array}{llll}2 & 1.8 & 1.2 & 0.9\end{array}$	$18 \quad 20$	$18 \quad 142 \quad 12.7$	14021319
girl	$\begin{array}{lllll}3 & 13.1 & 7.4 & 5.3\end{array}$	$35 \quad 46$	$38 \quad 549 \quad 6.9$	1046016105
pkk	$\begin{array}{lllll}2 & 2.5 & 1.6 & 1.3\end{array}$	$7 \quad 15$	$10 \quad 8112.3$	12291267
cat	$\begin{array}{lllll}3 & 3.9 & 2 & 1.4\end{array}$	$35 \quad 38$	$35 \quad 14324.5$	12623279
face	$\begin{array}{llll}2 & 3.6 & 2.4 & 2\end{array}$	$9 \quad 15$	111118	34112371
vin	430.317 .812 .5	$18 \quad 38$	$22 \quad 657 \quad 3.4$	1895631984

Image	MODS (RootSIFT), 4 steps. 1. MSER Scale only. 2. MSER Sparse. 3. HessAff Sparse. 4. HessAff Max			
	Time	RANSAC	Tentatives quality	Regions
	$\begin{array}{ccc} \pi & \infty & \infty \\ 0 & \infty & 0 \\ 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ -i & N & \ddots \end{array}$			
graf	$\begin{array}{lllll}1 & 1 & 0.8 & 0.8\end{array}$	$82 \quad 87$	8315453.9	10181674
index	$\begin{array}{lllll}1 & 0.5 & 0.4 & 0.4\end{array}$	$18 \quad 20$	$18 \quad 4242.9$	411246
shop	$\begin{array}{lllll}1 & 0.8 & 0.7 & 0.7\end{array}$	$29 \quad 31$	296147.5	$1321 \quad 711$
adam	$\begin{array}{lllll}2 & 0.8 & 0.5 & 0.4\end{array}$	$20 \quad 23$	$22 \quad 4746.8$	357164
there	$\begin{array}{lllll}2 & 4.5 & 2.8 & 2\end{array}$	$14 \quad 17$	$16 \quad 6026.7$	5712833
mag	$\begin{array}{lllll}2 & 0.9 & 0.5 & 0.4\end{array}$	$31 \quad 31$	314470.5	393509
dum	327.216 .913 .5	$25 \quad 32$	298503.4	3334223711
grand	320.912 .510	$14 \quad 24$	194684.1	2473120297
fox	$\begin{array}{llll}2 & 2.1 & 1.4 & 1.1\end{array}$	1920	$20 \quad 6232.3$	17171011
cafe	$\begin{array}{llll}2 & 1.8 & 1.2 & 0.9\end{array}$	$17 \quad 21$	1811715.4	14021319
girl	$\begin{array}{llllll}3 & 13.1 & 7.3 & 5.2\end{array}$	$34 \quad 44$	384368.7	1046016105
pkk	$\begin{array}{lllll}3 & 9.5 & 5.3 & 4\end{array}$	$27 \quad 37$	333449.6	106867085
cat	$\begin{array}{lllll}3 & 3.6 & 2.1 & 1.5\end{array}$	$25 \quad 34$	3014920.1	12623279
face	$\begin{array}{llllllllllll}3 & 15.6 & 8.9 & 7.1\end{array}$	$39 \quad 44$	425347.9	1885713271
vin	429.717 .111 .8	1932	214554.6	1895631984

Figure 8. MSER performance with and w/o scale synthesis on the most distorted pairs (1-6) with scale change and blur from [17]. Left - the number of correct SIFT matches. Right - the proportion of correct matches within tentative correspondences. The best detectors from [17]: BARK, BOAT, TREES - Hessian-Affine, BIKES - IBR are shown for comparison.

5 Conclusions

We have introduced view synthesis to two-view wide-baseline matching with affine-covariant detectors and shown that matching with the Hessian-Affine or MSER detectors outperforms the state-of-the-art ASIFT.

Table 6. MSER matcher runtime on Oxford [17] dataset

scale synthesis setup	time $[\mathrm{s}]$
$\{S\}=\{1\}$	56.6
$\{S\}=\{1 ; 0.25 ; 0.125\}$	61.5

To address the robustness vs. speed trade-off, we have proposed the Matching On Demand with view Synthesis algorithm (MODS) that uses progressively more synthesized images and more (time-consuming) detectors until a reliable estimate of geometry is obtained. We show experimentally that the MODS algorithm solves matching problems beyond the state-of-the-art and yet is comparable in speed to standard wide-baseline matchers on simpler problems.

Minor contributions include an improved method for tentative correspondence selection, applicable both with and without view synthesis. A modification of the standard first to second nearest SIFT distance rule increases the number of correct matches by $5-20 \%$ at no additional computational cost. Finally, we found a simple view synthesis set up costing less than 10% of time that greatly improves MSER robustness to blur and scale change.

References

[1] H. Aanaes, A. Dahl, and K. Steenstrup Pedersen. Interesting interest points. IJCV, 97(1):18-35, 2012.
[2] R. Arandjelović and A. Zisserman. Three things everyone should know to improve object retrieval. In CVPR, 2012.
[3] H. Bay, T. Tuytelaars, and L. V. Gool. SURF: Speeded up robust features. In ECCV, 2006.
[4] O. Chum and J. Matas. Matching with PROSAC - progressive sample consensus. In CVPR, 2005.
[5] O. Chum, T. Werner and J. Matas. Two-view geometry estimation unaffected by a dominant plane. In CVPR, 2005.
[6] K. Cordes, B. Rosenhahn, and J. Ostermann. Increasing the accuracy of feature evaluation benchmarks using differential evolution. In SSCI-Symposium on Differential Evolution, 2011.
[7] A. L. Dahl, H. Aanaes, and K. S. Pedersen. Finding the best feature detector-descriptor combination. 3DIMPVT, 2011.
[8] F. Fraundorfer and H. Bischof. A novel performance evaluation method of local detectors on non-planar scenes. In CVPR'05 Workshops, 2005.
[9] P.-E. Forssén and D. Lowe. Shape Descriptors for Maximally Stable Extremal Regions. In ICCV, 2007.
[10] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision, 2004.
[11] K. Lebeda, J. Matas, and O. Chum. Fixing the Locally Optimized RANSAC. In BMVC, 2012.
[12] V. Lepetit and P. Fua. Keypoint recognition using randomized trees. PAMI, 28(9):1465-1479,2006.
[13] W. Liu, Y. Wang, J. Chen, J. Guo, and Y. Lu. A completely affine invariant image-matching method based on perspective projection. MVA, 23(2):231-242, 2012.
[14] D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
[15] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo from maximally stable extremal regions. In BMVC, 2002.
[16] K. Mikolajczyk and C. Schmid. Scale \& affine invariant interest point detectors. IJCV, 60(1):63-86,2004.
[17] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. V. Gool. A comparison of affine region detectors. IJCV, 65(1-2):43-72, 2005.
[18] J.-M. Morel and G. Yu. ASIFT: A new framework for fully affine invariant image comparison. SIIMS, 2(2):438-469, 2009.
[19] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm configuration. In VISSAPP'09), 2009.
[20] Y. Pang, W. Li, Y. Yuan, and J. Pan. Fully affine invariant SURF for image matching. Neurocomputing, 85(0):6-10, 2012.
[21] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In CVPR, 2007.
[22] R. Sadek, C. Constantinopoulos, E. Meinhardt, C. Ballester, and V. Caselles. On affine invariant descriptors related to SIFT. SIIMS, 5(2):652-687,2012.

Appendix

A Tuning view synthesis parameters

Estimating threshold on the distance ratio. The well known [14] matching strategy for SIFT descriptors is based on the distance ratio of the first to the second closest descriptor. The aim of this experiment is to set the threshold of the proposed modification - first to first geometrically inconsistent matching strategy.

To estimate the threshold we used 50 image pairs of the publicly available datasets [17] and [6], all pairs are provided with known homography transformation. The detectors - MSER, Hessian-Affine, DoG - were run on all pairs of images and distances between all descriptors in each pair computed. Then the closest, second closest and closest geometrically inconsistent descriptors were identified. The cumulative distributions of the number of correct and incorrect tentative correspondences as a function of the distance ratio were computed for both strategies using the ground truth homographies.

The results for both SIFT and RootSIFT descriptors are shown in Figure 9 . We see that the DoG and MSER features are slightly less discriminative than Hessian-Affine. It is also clear from comparing the left and right columns in Figure 9 , that the features detected using view synthesis are less distinctive. However, the distribution of incorrect matches does not change significantly, thus the thresholds for the new strategy with view synthesis can be kept on the value similar to the threshold without view synthesis. The results for the SIFT and RootSIFT descriptors are also very similar. Therefore, we propose to set the threshold of the first to first geometrically inconsistent distance ratio R for the local feature detectors as follows: $R_{\mathrm{MSER}}=0.85, R_{\mathrm{DoG}}=0.85$ and $R_{\mathrm{HA}}=0.8$.
Tilt set and latitude sampling step. The first two parameters of the view synthesis, tilt $\{\mathrm{t}\}$ sampling and latitude step $\Delta \phi_{\text {base }}$, were explored in the following synthetic experiment. For each of 100 random images from Oxford Building Dataset ${ }^{6}$ [21], a set of simulated views with latitudes angles $\theta=(0,20,40$, $60,65,70,75,80,85)^{\circ}$, corresponding to tilt series $t=(1.00,1.06,1.30,2.00,2.36,2.92,3.86,5.75$, $11.47)^{7}$ was generated. The reference image have been convolved with a Gaussian filter with $\sigma_{H}=0.8$ along horizontal direction and $\sigma_{V}=0.8 t$ along vertical direction and finally shrunk in vertical direction by t. The ground truth affine matrix A was computed for each synthetic view using equation (1) and used in the final verification step of the MODS algorithm. The various configurations of the view synthesis were tested and results for the selected configurations are shown in Figures 10-12. Note that the view synthesis significantly increases the matching performance, however after reaching some density of the view-sphere sampling additional views does not bring more correspondences. MSER and Hessian-Affine need sparser view-sphere sampling than DoG.

Two configurations, Sparse and Dense, were chosen for each detector (see Table 1) using the following criteria: efficiency - the ratio of correct matches per detected region, matching performance - the number of unique (non-duplicated) matches on the synthetic image pairs with 85° out of plane rotation. The SpARSE configuration is fast but still able to solve synthetic image pairs with up to 85° out of plane rotation. The DENSE configuration generates sufficient number of correspondences for the most image pairs in the EVD dataset for each detector.
Image pre-smoothing. The early experiments with view synthesis, have shown that the amount of image smoothing $\sigma_{\text {base }}$ prior to view synthesis affects matching performance significantly. Values too small fail to prevent aliasing, values too high oversmooth the image reducing the number of detected regions. Unlike MSER, the scale-space based detectors - DoG, Hessian-Affine apply pre-smoothing as the initial step of the scale-space pyramid.

This experiment measures the effect of the pre-smoothing parameter $\sigma_{\text {base }}$ on the matching performance of different detectors. The range of values of the $\sigma_{\text {base }}$ were used in matching of 35 image pairs of the publicly available datasets [17] and [6]. We have divided all pairs into two sets "Structured images" - scenes GRAF, GRACE, POSTERS, THERE, UNDERGROUND (25 image pairs in total) from [6] and "Images with repeated textures" - scenes wall, colors (10 image pairs in total) [6], [17]. The DEnSE configurations

[^3]

Figure 9. CDF. Columns: left - no view synthesis, right - with view synthesis. Rows: upper - SIFT, lower - RootSIFT. Average over 50 image pairs from Mikolajczyk et al. [17] and Cordes et al. [6] datasets. Black dashed line displays standard threshold $=0.8$.
of the view synthesis were chosen for each of the detectors (see Table 1). Based on this experiment (see Figure (13), we have set following parameters for image pre-smoothing in the MODS algorithm: $\sigma_{\text {base }}=$ $0.8,0.2$, and 0.4 for the MSER, Hessian-Affine and DoG detectors, respectively.

B Full version of the experiments on the EVD dataset

The full version of experimental evaluation of the matching with view synthesis algorithm on EVD dataset is presented in this section. For this very challenging dataset it is hard to obtain ground truth homographies from the manually selected correspondences. Therefore, the ground truth homography matrices were estimated by running LO-RANSAC on correspondences of all three detectors with the view synthesis con-
figuration $\{t\}=\{1 ; \sqrt{2} ; 2 ; 2 \sqrt{2} ; 4 ; 4 \sqrt{2} ; 8\}, \Delta \phi=72^{\circ} / t$. The number of inliers for each image pair was \geq 50 and the homographies were manually inspected. For the image pairs GRAF and THERE precise homographies were provided by Cordes et al. [6]. The transition tilts were computed using equation (1) with SVD decomposition of the linearised homography at the center of the first image of the pair. The configurations of detectors evaluated are listed in Table 1, additionally, the performance of the MODS and MSER detector with scale synthesis were compared. The configuration for MODS algorithm is shown in Table 3. The MODS algorithm allows to set the minimum desired number of inliers as a stopping criterion. We set the threshold to 15 inliers, since fifteen inliers to a homography (with duplicate matches removed) have very low probability of being accidental and yet allow to demonstrate the speed gain of the algorithm.

The results for all configurations for all detectors are shown in Tables $7-19$. For comparison, ASIFT ${ }^{8}$ results were added. The timing measurements are reported for single, two and four cores of the Intel i5 CPU @ 2.6 GHz processor with 4GB RAM.

[^4]

Figure 10. Comparison of MSER view synthesis configurations on the synthetic dataset. Upper graph - the number of correct SIFT matches a robust minimum (value 4% quantile) over 100 random images from [21]. Lower graph the ratio of the number of correct matches to the number of detected regions; the mean over 100 random images.

Figure 11. Comparison of Hessian-Affine view synthesis configurations on the synthetic dataset. Upper graph - the number of correct SIFT matches a robust minimum (value 4% quantile) over 100 random images from [21]. Lower graph - the ratio of the number of correct matches to the number of detected regions; the mean over 100 random images.

Figure 12. Comparison of DoG view synthesis configurations on the synthetic dataset. Upper graph - the number of correct SIFT matches a robust minimum (value 4% quantile) over 100 random images from [21]. Lower graph - the ratio of the number of correct matches to the number of detected regions; the mean over 100 random images.

Figure 13. Matching with view synthesis (DENSE configuration) using different image pre-smoothing factor $\sigma_{\text {base }}$. Rows: upper - ratio of correct SIFT matches to number of detected regions, lower - number of correct SIFT matches - robust minimum (value 4% quantile). Columns: left - structured images, right - images with repeated patterns.

Figure 14. Running time of the different view synthesis configurations (Table 1). Left - 1 core, right - 4 cores.

Table 7. Performance on the EVD dataset. MSER, no view synthesis. Results with less than 8 correct inliers are in red.

Image	MSER, no synths.						
		Time	LO-RA	NSAC	Tentat	quality	Regions
	0 0 0 0 0	∞ ∞ ∞ ∞ 0 0 0 0 \sim \ddots					$\begin{array}{ll} \overline{0} & \text { N } \\ 0 & 0 \\ \ddot{0} & 0 \\ \Xi & \tilde{\Xi} \end{array}$
f	0.8	0.8 0.8	656895.6	6770	$65 \quad 12153.7$	$\begin{array}{llll}67 & 110 & 60.9\end{array}$	8041432
index	0.4	$0.4 \begin{array}{ll}0.4\end{array}$	$\begin{array}{llll}18 & 19 & 94.7\end{array}$	17 1818	$\begin{array}{llll}18 & 44 & 40.9\end{array}$	$17 \quad 3647.2$	291172
shop	0.7	0.70 .7	$\begin{array}{llll}18 & 19 & 94.7\end{array}$	$\begin{array}{llll}18 & 18 & 100\end{array}$	$\begin{array}{llll}18 & 65 & 27.7\end{array}$	$18 \quad 4045$	1131646
adam	0.1	0.10 .1	0 0 0	$\begin{array}{lll}0 & 0 & 0\end{array}$	$6 \quad 1540$	$\begin{array}{llll}7 & 16 & 43.8\end{array}$	11848
there	0.7	0.70 .8	$\begin{array}{lll}0 & 0 & 0\end{array}$	$\begin{array}{lll}0 & 0 & 0\end{array}$	$3 \begin{array}{lll}3 & 11 & 27.3\end{array}$	$3 \quad 1030$	97689
mag	0.2	0.20 .2	$\begin{array}{llll}11 & 11 & 100\end{array}$	11111100	$11 \quad 2055$	$11 \quad 20 \quad 55$	203306
dum	1.9	1.81 .8	00	$\begin{array}{lll}0 & 0 & 0\end{array}$	$\begin{array}{llll}8 & 121 & 6.6\end{array}$	$\begin{array}{lll}7 & 110 & 6.4\end{array}$	31081970
grand	1.6	1.51 .5	0 0 0	0 0 0	$\begin{array}{llll}4 & 51 & 7.8\end{array}$	$\begin{array}{llll}5 & 36 & 13.9\end{array}$	20992598
fox	0.6	$0.6 \quad 0.6$	0 0 0	$00^{0} 0$	$\begin{array}{llll}2 & 15 & 13.3\end{array}$	$2 \begin{array}{llll}2 & 17 & 11.8\end{array}$	893558
cafe	0.5	$0.4 \quad 0.5$	$7 \quad 10 \quad 70$	$\begin{array}{lll}7 & 9 & 77.8\end{array}$	$8 \quad 6312.7$	$8 \quad 4318.6$	621472
girl	0.6	$0.6 \quad 0.6$	000	000	$3 \begin{array}{llll}3 & 21 & 14.3\end{array}$	$\begin{array}{lll}2 & 22 & 9.1\end{array}$	566816
pkk	0.6	0.60 .6	0 0 0	0 0 0	$36 \quad 2.8$	$1 \quad 254$	661343
cat	0.2	0.20 .2	000	00	425	$1 \quad 616.7$	4893
face	1.3	1.21 .2	000	000	056	$0 \quad 410$	$2323 \quad 747$
vin	0.6	$0.6 \quad 0.6$	0 0 0	0	$0 \quad 11 \quad 0$	$0 \quad 8 \quad 0$	597899

Table 8. Performance on the EVD dataset. MSER, scale view synthesis only. Results with less than 8 correct inliers are in red.

Image	MSER, 2 scale synths. Total image area $A_{\text {total }}=1.08 A_{\text {orig }}$						
		Time	LO-RA	ANSAC	Tentative	es quality	Regions
	∞ 0 0 0 0	$\begin{array}{cc} \infty & \infty \\ \ddot{\sim} & \ddot{0} \\ 0 & 0 \\ \sim & \ddots \\ \sim & \square \end{array}$					
graf	1	0.8 0.8	$\begin{array}{lll}81 & 85 & 95.3\end{array}$	$\begin{array}{llll}82 & 87 & 94.3\end{array}$	$82 \quad 16051.2$	$83 \quad 154 \quad 53.9$	10181674
index	0.5	0.410 .4	$19 \quad 2095$	$18 \quad 20 \quad 90$	$\begin{array}{llll}19 & 56 & 33.9\end{array}$	$\begin{array}{llll}18 & 42 & 42.9\end{array}$	411246
shop	0.8	0.710 .7	$28 \quad 30$	293193.5	$28 \quad 8433.3$	$29 \quad 6147.5$	1321711
adam	0.2	0.10 .1	$\begin{array}{lll}0 & 0 & 0\end{array}$	$8 \quad 8100$	$\begin{array}{llll}8 & 18 & 44.4\end{array}$	$9 \quad 1947.4$	13562
there	0.9	0.70 .8	$\begin{array}{lll}0 & 0 & 0\end{array}$	0 0 0	$\begin{array}{llll}6 & 19 & 31.6\end{array}$	$\begin{array}{llll}6 & 17 & 35.3\end{array}$	160947
mag	0.2	0.20 .2	$\begin{array}{llll}13 & 13 & 100\end{array}$	1212100	$13 \quad 2259.1$	$12 \quad 18 \quad 66.7$	223330
dum	2.1	1.91 .9	0 0 0	000	81346	$\begin{array}{llll}9 & 129 & 7\end{array}$	33672247
grand	1.9	1.71 .7	000	0 0 0	$\begin{array}{lll}4 & 70 & 5.7\end{array}$	$\begin{array}{lll}4 & 46 & 8.7\end{array}$	23622763
fox	0.7	$0.6 \quad 0.6$	000	0 0 0	$2 \quad 1910.5$	$2 \begin{array}{llll}2 & 12 & 16.7\end{array}$	967605
cafe	0.6	0.50 .5	000	$8 \quad 8100$	$\begin{array}{llll}8 & 65 & 12.3\end{array}$	$\begin{array}{llll}8 & 54 & 14.8\end{array}$	715561
girl	0.8	$\begin{array}{ll}0.6 & 0.7\end{array}$	0 0 0	0 0 0	$\begin{array}{llll}6 & 32 & 18.8\end{array}$	$5 \quad 24 \quad 20.8$	675949
pkk	0.7	$0.6 \quad 0.6$	000	000	$2 \begin{array}{lll}2 & 44 & 4.6\end{array}$	$4 \quad 2913.8$	729437
cat	0.3	$0.2 \quad 0.2$	000	$0 \quad 0 \quad 0$	1520	$1 \begin{array}{lll}1 & 6 & 16.7\end{array}$	59138
face	1.4	$1.2 \quad 1.2$	000	000	$\begin{array}{lll}2 & 57 & 3.5\end{array}$	$2 \begin{array}{lll}2 & 43 & 4.7\end{array}$	2442911
vin	0.7	$0.6 \quad 0.6$	$0 \quad 0$	$0 \quad 0 \quad 0$	$\begin{array}{llll}0 & 12 & 0\end{array}$	$\begin{array}{lll}0 & 12 & 0\end{array}$	6421012

Table 9. Performance on the EVD dataset.Hessian-Affine, no view synthesis. Results with less than 8 correct inliers are in red.

Image	HessAff, no synths.															
	Time			LO-RANSAC					Tentatives quality						Regions	
	∞ 0 0 0 0	$\begin{aligned} & \infty \\ & \stackrel{\pi}{0} \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	$\begin{aligned} & \infty \\ & \substack{0 \\ 0 \\ 0 \\ \dot{U} \\ \hline} \end{aligned}$			R 0 0 \vdots \vdots 0 0 0 0	ootSI $\frac{\tilde{U}}{\Xi}$			SIF 			ootS			$\begin{aligned} & \text { N } \\ & \text { O. } \\ & \text { Ï } \\ & \text { In } \end{aligned}$
graf	3.4	3.3	3.3	14	1782.4	16	19	84.2	15	141	10.6	19	97	19.6	3630	4614
index	1.6	1.6	1.6	0	$0 \quad 0$	0	0	0	0	114	0		79	1.3	2188	874
shop	3.7	3.6	3.5	0	$0 \quad 0$	0	0	0	0	78	0		39	0	5675	2657
adam	0.5	0.6	0.5	0	00	0	0	0	2	24	8.3		19	10.5	812	208
there	2.7	2.7	2.7	0	00	0	0	0	0	8	0		9	0	467	3659
mag	0.5	0.5	0.5	0	$0 \quad 0$	0	0	0	0	12	0		7	0	502	784
dum	6.6	6.5	6.3	0	00	0	8	0	6	147	4.1		76	4	9248	6666
grand	5	4.8	4.8	0	$0 \quad 0$	0	0	0	3	62	4.8	3	34	8.8	6364	6555
fox	2	1.9	1.9	0	$0 \quad 0$	0	0	0	0	17	0		8	0	3324	1393
cafe	1.2	1.2	1.2		$10 \quad 0$	0	11	0	2	58	3.5		42	2.4	1510	1184
girl	3.1	3.1	3	0	00	0	0	0	0	29	0		20	0	2808	4306
pkk	2.5	2.4	2.4	0	$0 \quad 0$	0	0	0	0	39	0		16	0	3832	1568
cat	0.7	0.7	0.7		$0 \quad 0$	0	0	0	1	18	5.6		13	0	388	581
face	4.2	4	4		$0 \quad 0$	0	0	0	0	21	0		21	0	6283	3638
vin	2	1.9	2	0	$0 \quad 0$	0	0	0	0	25	0		20	0	1759	2913

Table 10. Performance on the EVD dataset. DoG, no view synthesis. Results with less than 8 correct inliers are in red.

Image	DoG, no synths.							
		Time	LO-R	NSAC		Tentativ	quality	Regions
	∞ 0 0.0 0 0	$\begin{array}{cc} \infty & \infty \\ 0 & \ddot{0} \\ 0 & 0 \\ 0 & 0 \\ \sim & \ddots \end{array}$						$\begin{array}{ll} \overline{0} & \text { N } \\ \text { En } & 0 \\ \text { En } & \stackrel{0}{\Xi} \end{array}$
graf	2.5	$2.5 \quad 2.5$	$0 \begin{array}{lll}0 & 0\end{array}$	000	3	$120 \quad 2.5$	4834.8	16822419
index	0.9	0.900 .9	$0 \quad 0 \quad 0$	000	0	1060	080	1171516
shop	1.6	1.61 .6	$0 \quad 0 \quad 0$	0 0 0	0	930	0830	25701238
adam	0.3	0.30 .3	$0 \quad 0 \quad 0$	0 0 0	0	310	0290	495132
there	1.8	1.91 .8	$0 \quad 0 \quad 0$	000	0	490	030	5412476
mag	0.3	0.30 .3	$0 \quad 0 \quad 0$	000	0	17 0	0150	252370
dum	3.6	$3.5 \quad 3.5$	0	000	0	1440	0890	42422791
grand	2	2	0	000	0	660	1472.1	27542956
fo	1.1	1.11	$0 \quad 0 \quad 0$	000	0	420	0220	1764817
cafe	0.7	0.70 .7	010	080	1	$60 \quad 1.7$	0460	847813
girl	1.5	1.51 .5	0	000	0	$60 \quad 0$	0390	12172190
pkk	1.5	1.51 .5	0	000	0	40 0	0260	20911487
cat	0.5	0.50 .6	0	000	0	300	0190	262519
face	1.8	1.81 .7	0	0 0 0	0	340	0390	24062457
vin	1.1	1.21 .1	$\begin{array}{llll}0 & 0 & 0\end{array}$	$0 \quad 0 \quad 0$	0	480	0320	8761661

Table 11. Performance on the EVD dataset.MSER, SPARSE configuration. Results with less than 8 correct inliers are in red.

Image	MSER, 6 tilt synths x ($1+2$ scale synth). $\Delta \phi=360^{\circ} / t$, $\mathrm{t}=\{1 ; 5 ; 9\}$. Total image area $A_{\text {total }}=2.8 A_{\text {orig }}$					
	Time	LO-R	ANSAC	Tentative	es quality	Regions
	$\left\lvert\, \begin{array}{ccc} \infty & \infty & \infty \\ \hdashline & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sim & N & \ddots \end{array}\right.$					
graf	3101.61 .1	$167 \quad 17396.5$	$165169 \quad 97.6$	17534051.5	17033950.1	27803782
index	$\begin{array}{lll}2.2 & 1.2 & 0.8\end{array}$	$23 \quad 3271.9$	$\begin{array}{llll}24 & 35 & 68.6\end{array}$	2510623.6	$\begin{array}{lllll}27 & 103 & 26.2\end{array}$	1204736
shop	$\begin{array}{lll}2.5 & 1.4 & 0.9\end{array}$	$\begin{array}{llll}67 & 69 & 97.1\end{array}$	$\begin{array}{lll}73 & 74 & 98.6\end{array}$	$\begin{array}{llll}67 & 172 & 39\end{array}$	$\begin{array}{lllll}73 & 163 & 44.8\end{array}$	28991474
adam	$\begin{array}{lll}0.7 & 0.4 & 0.3\end{array}$	$18 \quad 2090$	$\begin{array}{lll}18 & 21 & 85.7\end{array}$	$\begin{array}{lll}20 & 48 & 41.7\end{array}$	$20 \quad 4247.6$	357164
there	$\begin{array}{lll}4.5 & 2.5 & 1.6\end{array}$	$12 \quad 1963.2$	$\begin{array}{lll}12 & 18 & 66.7\end{array}$	$\begin{array}{llll}15 & 65 & 23.1\end{array}$	$\begin{array}{llll}17 & 61 & 27.9\end{array}$	5712833
mag	$\begin{array}{lll}0.8 & 0.5 & 0.3\end{array}$	$25 \quad 2792.6$	$28 \quad 28100$	$\begin{array}{llll}26 & 47 & 55.3\end{array}$	$28 \quad 4070$	393509
dum	$\begin{array}{lll}4.8 & 2.7 & 2.1\end{array}$	000	$0 \quad 00$	$\begin{array}{lll}12 & 229 & 5.2\end{array}$	141738.1	62764579
grand	$\begin{array}{lll}4.2 & 2.4 & 1.9\end{array}$	$0 \quad 0$	$\begin{array}{lll}9 & 14 & 64.3\end{array}$	$\begin{array}{llll}10 & 163 & 6.1\end{array}$	91058.6	48404346
fox	$\begin{array}{lll}2.1 & 1.1 & 0.7\end{array}$	$\begin{array}{lll}12 & 17 & 70.6\end{array}$	$\begin{array}{lll}19 & 20 & 95\end{array}$	$16 \quad 68 \quad 23.5$	$20 \quad 6132.8$	17171011
cafe	$\begin{array}{lll}1.7 & 1 & 0.6\end{array}$	$13 \quad 2065$	$14 \quad 20 \quad 70$	$\begin{array}{llll}15 & 117 & 12.8\end{array}$	1610415.4	14021319
girl	$\begin{array}{lll}2.7 & 1.5 & 1\end{array}$	$\begin{array}{llll}10 & 15 & 66.7\end{array}$	$0 \quad 0 \quad 0$	$\begin{array}{llll}11 & 82 & 13.4\end{array}$	$\begin{array}{llll}10 & 61 & 16.4\end{array}$	14792208
pkk	$\begin{array}{lll}2.4 & 1.3 & 0.9\end{array}$	$4 \quad 14 \quad 28.6$	$6 \quad 10 \quad 60$	$\begin{array}{llll}7 & 68 & 10.3\end{array}$	$8 \quad 4517.8$	12291267
cat	$\begin{array}{lll}1.4 & 0.8 & 0.5\end{array}$	000	$0 \quad 0 \quad 0$	$2 \begin{array}{lll}2 & 13 & 15.4\end{array}$	$2 \begin{array}{llll}2 & 13 & 15.4\end{array}$	144440
face	$\begin{array}{lll}3.4 & 1.9 & 1.4\end{array}$	000	$\begin{array}{lll}9 & 14 & 64.3\end{array}$	1119311.8	$10 \quad 8611.6$	34112371
vin	$\begin{array}{lll}2.3 & 1.3 & 0.8\end{array}$	$0 \quad 0$	$0 \quad 0$	$\begin{array}{llll}4 & 24 & 16.7\end{array}$	$\begin{array}{lll}4 & 21 & 19\end{array}$	11061881

Table 12. Performance on the EVD dataset.Hessian-Affine, SPARSE configuration. Results with less than 8 correct inliers are in red.

Image	HessAff, 10 synths. $\Delta \phi=360^{\circ} / t$, $\mathrm{t}=\{1 ; \sqrt{2} ; 2 ; 2 \sqrt{2} ; 4 ; 4 \sqrt{2} ; 8\}$. Total image area $A_{\text {total }}=4 A_{\text {orig }}$					
	Time	LO-RANSAC		Tentatives quality		Regions
	$\begin{array}{ccc} \infty & \infty & \infty \\ \hdashline & 0 & \pi \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ - & N & \tau \end{array}$					
	$\begin{array}{lll}11 & 5.9 & 3.9\end{array}$	37137997.9	$\begin{array}{llll}375 & 383 & 97.9\end{array}$	37579946.9	$384765 \quad 50.2$	1251914144
index	$\begin{array}{lll}5.4 & 3 & 2\end{array}$	$23 \quad 4057.5$	$\begin{array}{llll}34 & 52 & 65.4\end{array}$	$\begin{array}{llll}34 & 412 & 8.3\end{array}$	$44 \quad 28415.5$	79673139
shop	10.1 5.4 3.9	134143193.7	$1 \begin{array}{llll}133 & 141 & 94.3\end{array}$	13834140.5	$135 \quad 25752.5$	163268549
adam	$\begin{array}{lll}1.6 & 0.8 & 0.6\end{array}$	$86 \quad 9392.5$	86	$\begin{array}{llll}88 & 157 & 56.1\end{array}$	$\begin{array}{llll}88 & 151 & 58.3\end{array}$	2486635
there	$\begin{array}{llll}10.1 & 5.3 & 3.3\end{array}$	$\begin{array}{llll}58 & 66 & 87.9\end{array}$	$49 \quad 5687.5$	$\begin{array}{llll}64 & 223 & 28.7\end{array}$	$\begin{array}{llll}52 & 163 & 31.9\end{array}$	270215991
mag	$\begin{array}{lll}1.6 & 0.9 & 0.6\end{array}$	$55 \quad 6091.7$	$54 \quad 5991.5$	$\begin{array}{lll}57 & 95 & 60\end{array}$	$\begin{array}{llll}57 & 93 & 61.3\end{array}$	16642162
dum	$\begin{array}{lll}20.1 & 11.7 & 9.1\end{array}$	00	$\begin{array}{llll}10 & 12 & 83.3\end{array}$	$\begin{array}{lll}10 & 254 & 3.9\end{array}$	$\begin{array}{llll}11 & 150 & 7.3\end{array}$	2706619132
grand	14.8 8.1 6.2	0 0	000	$\begin{array}{llll}8 & 152 & 5.3\end{array}$	$65 \quad 7.7$	1989115951
fox	$\begin{array}{lll}5.8 & 3.1 & 2.2\end{array}$	$27 \quad 34 \quad 79.4$	$22 \quad 3268.8$	$30 \quad 9930.3$	$27 \quad 72 \quad 37.5$	102273798
cafe	$\begin{array}{lll}4.5 & 2.4 & 1.6\end{array}$	$0 \quad 14$	$\begin{array}{lll}0 & 14 & 0\end{array}$	$\begin{array}{llll}9 & 135 & 6.7\end{array}$	$\begin{array}{lll}7 & 112 & 6.3\end{array}$	46425349
girl	$\begin{array}{lll}10 & 5.3 & 3.7\end{array}$	$16 \quad 2564$	$\begin{array}{llll}14 & 23 & 60.9\end{array}$	1817010.6	$\begin{array}{llll}17 & 120 & 14.2\end{array}$	898113897
pkk	$\begin{array}{lll}6.8 & 3.7 & 2.7\end{array}$	$21 \quad 2584$	$12 \quad 1963.2$	$\begin{array}{llll}25 & 105 & 23.8\end{array}$	$17 \begin{array}{lll}17 & 84 & 20.2\end{array}$	94575818
cat	$\begin{array}{lll}2.2 & 1.2 & 0.8\end{array}$	$24 \quad 2692.3$	$\begin{array}{llll}21 & 29 & 72.4\end{array}$	$\begin{array}{llll}24 & 75 & 32\end{array}$	$23 \quad 6734.3$	11182839
face	$\begin{array}{ccc}11.3 & 6 & 4.6\end{array}$	$\begin{array}{llll}35 & 39 & 89.7\end{array}$	$17 \quad 2085$	$\begin{array}{llll}38 & 139 & 27.3\end{array}$	$\begin{array}{llll}18 & 93 & 19.4\end{array}$	1544610900
vin	$\begin{array}{llll}6.3 & 3.4 & 2.4\end{array}$	$0 \quad 0$	$0 \quad 0$	$0 \quad 460$	$0 \quad 310$	56568401

Table 13. Performance on the EVD dataset.DoG, Sparse configuration. Results with less than 8 correct inliers are in red.

Table 14. Performance on the EVD dataset. MSER,DENSE configuration. Results with less than 8 correct inliers are in red.

Image	MSER, 14 tilt synths $x\left(1+2\right.$ scale synth). $\Delta \phi=180^{\circ} / t$, $\mathrm{t}=\{1 ; 5 ; 9\}$. Total image area $A_{\text {total }}=4.2 A_{\text {orig }}$								
	Time	LO-RA	ANSAC		Tentativ	qua			ons
	$\begin{array}{ccc} \infty & \infty & \infty \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ - & \sim & \ddots \end{array}$			$\begin{aligned} & \text { U } \\ & \text { U } \\ & \text { U } \\ & \ddot{\Xi} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					$\begin{aligned} & \text { N } \\ & \text { 品 } \\ & \text { Ï } \\ & \equiv \end{aligned}$
	$\begin{array}{llll}22.2 & 11.7 & 6.9\end{array}$	33036191.4	33235394.1	339	106132	342	101433.7	2045	26177
index	$\begin{array}{llll}16.6 & 8.8 & 5.1\end{array}$	$\begin{array}{llll}51 & 65 & 78.5\end{array}$	$\begin{array}{llll}56 & 76 & 73.7\end{array}$	60	39015.4	66	39116.9	9087	5733
shop	$\begin{array}{lll}18.5 & 9.7 & 5.7\end{array}$	13915291.4	14716191.3	145	53027.4	150	44633.6	1956	9905
adam	$\begin{array}{lll}5.4 & 2.8 & 1.7\end{array}$	$\begin{array}{llll}36 & 41 & 87.8\end{array}$	$\begin{array}{llll}26 & 38 & 68.4\end{array}$	38	11433.3	34	10432.7	2161	1201
there	$\begin{array}{llll}34.1 & 18 & 10.4\end{array}$	$43 \quad 68 \quad 63.2$	46	59	24324.3	61	24724.7	4405	20824
mag	$\begin{array}{llll}5.7 & 3 & 1.8\end{array}$	30	$\begin{array}{llll}32 & 39 & 82.1\end{array}$	35	11430.7	35	10533.3	2123	2836
dum	$\begin{array}{lllll}33.9 & 18.7 & 11.8\end{array}$	$42 \quad 4789.4$	$34 \quad 3987.2$	43	8675	38	6535.8	38881	29687
grand	$\begin{array}{lllll}29.1 & 16.5 & 10.6\end{array}$	000	$0 \quad 0$	15	$540 \quad 2.8$	12	$349 \quad 3.4$	29894	23431
fox	$\begin{array}{llll}14.6 & 7.6 & 4.5\end{array}$	$37 \quad 4190.2$	$\begin{array}{llll}39 & 43 & 90.7\end{array}$	42	24117.4	41	20919.6	10731	5960
cafe	$\begin{array}{lll}12.3 & 6.5 & 3.9\end{array}$	$17 \quad 3056.7$	$\begin{array}{llll}19 & 32 & 59.4\end{array}$	20	287	22	2638.4	8932	8805
girl	$\begin{array}{llll}19.6 & 10.4 & 6.1\end{array}$	$\begin{array}{llll}9 & 25 & 36\end{array}$	$\begin{array}{llll}11 & 21 & 52.4\end{array}$	23	$237 \quad 9.7$	16	1928.3	9313	15567
pkk	$\begin{array}{lll}17.1 & 9.1 & 5.3\end{array}$	$2 \quad 258$	$7 \quad 2924.1$	12	1826.6	18	1949.3	6922	9210
cat	$\begin{array}{llll}11.1 & 5.9 & 3.4\end{array}$	000	$0 \quad 0$	4	3112.9	3	417.3	1084	3333
face	$\begin{array}{llll}21.5 & 11.3 & 6.6\end{array}$	$\begin{array}{llll}52 & 68 & 76.5\end{array}$	$\begin{array}{llll}55 & 70 & 78.6\end{array}$	56	43812.8	64	35817.9	13733	17135
vin	$\begin{array}{llll}16.3 & 8.6 & 5.1\end{array}$	$\begin{array}{llll}10 & 15 & 66.7\end{array}$	$11 \quad 17 \quad 64.7$	10	125	11	10110.9	6423	10539

Table 15. Performance on the EVD dataset. Hessian-Affine, DENSE configuration. Results with less than 8 correct inliers are in red.

Image	HessAff, 50 synths. $\Delta \phi=72^{\circ} / t$, $\mathrm{t}=\{1 ; 2 ; 4 ; 6 ; 8\}$. Total image area $A_{\text {total }}=11 A_{\text {orig }}$					
	Time	LO-RA	NSAC	Tentative	quality	Regions
	$\left\lvert\, \begin{array}{ccc} \infty & \infty & \infty \\ \hdashline & \infty & \infty \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ - & N & \ddots \end{array}\right.$					
gra	$\begin{array}{llll}45.2 & 23.8 & 14.2\end{array}$	1214126096.3	$12351274 \quad 96.9$	1249295842.2	1267288743.9	4699758020
index	$\begin{array}{llll}20.8 & 10.9 & 6.5\end{array}$	$270 \quad 29790.9$	$\begin{array}{llll}264 & 302 & 87.4\end{array}$	$\begin{array}{llll}312 & 1698 & 18.4\end{array}$	$\begin{array}{lllllllllllllll}326 & 1297 & 25.1\end{array}$	2791011497
shop	$\begin{array}{llll}36.2 & 19.2 & 11.3\end{array}$	$303 \quad 31596.2$	$\begin{array}{llll}311 & 322 & 96.6\end{array}$	$\begin{array}{llll}311 & 847 & 36.7\end{array}$	$\begin{array}{llllllllllllll}326 & 676\end{array}$	5550825538
adam	3.11 .9	$205 \quad 23985.8$	$214 \quad 23192.6$	$242 \quad 525 \quad 46.1$	23949748.1	76162310
there	$\begin{array}{llll}43.4 & 23 & 13.6\end{array}$	$\begin{array}{lll}211 & 274 & 77\end{array}$	$\begin{array}{llll}189 & 234 & 80.8\end{array}$	$\begin{array}{llll}240 & 905 & 26.5\end{array}$	$\begin{array}{lllll}212 & 680 & 31.2\end{array}$	1178461930
mag	$\begin{array}{lll}5.3 & 2.8 & 1.7\end{array}$	$\begin{array}{llll}71 & 79 & 89.9\end{array}$	$72 \quad 7694.7$	$\begin{array}{llll}74 & 184 & 40.2\end{array}$	$\begin{array}{llll}73 & 151 & 48.3\end{array}$	43626296
dum	$\begin{array}{llll}60.2 & 31.6 & 18.7\end{array}$	$\begin{array}{llll}61 & 68 & 89.7\end{array}$	$66 \quad 7489.2$	$\begin{array}{llll}63 & 617 & 10.2\end{array}$	$\begin{array}{llll}68 & 419 & 16.2\end{array}$	7949964321
grand	$\begin{array}{lllllllllll}50.8 & 26.6 & 15.8\end{array}$	$\begin{array}{llll}54 & 61 & 88.5\end{array}$	$42 \quad 5477.8$	$\begin{array}{llll}56 & 525 & 10.7\end{array}$	$46 \quad 27616.7$	6396252899
fox	$\begin{array}{lll}18.6 & 9.7 & 5.8\end{array}$	$\begin{array}{llll}75 & 86 & 87.2\end{array}$	$74 \quad 8488.1$	$79 \quad 25830.6$	$76 \quad 20537.1$	2694612327
cafe	$\begin{array}{lll}17.2 & 9.2 & 5.4\end{array}$	$34 \quad 4575.6$	$45 \quad 5384.9$	$\begin{array}{lll}39 & 437 & 8.9\end{array}$	$48 \quad 40911.7$	1653818329
girl	$\begin{array}{llll}36.7 & 19.3 & 11.4\end{array}$	$55 \quad 6584.6$	$59 \quad 6985.5$	$\begin{array}{llll}64 & 452 & 14.2\end{array}$	$65 \quad 291 \quad 22.3$	2677649353
pkk	$\begin{array}{llll}24.1 & 12.7 & 7.5\end{array}$	$40 \quad 73 \quad 54.8$	$41 \quad 7356.2$	$\begin{array}{llll}52 & 349 & 14.9\end{array}$	$52 \quad 24721.1$	2526622414
cat	$\begin{array}{lll}7.8 & 4.2 & 2.5\end{array}$	$21 \quad 3855.3$	$18 \quad 34 \quad 52.9$	$37 \quad 147 \quad 25.2$	$\begin{array}{llll}29 & 115 & 25.2\end{array}$	36457267
face	$\begin{array}{llll}38.8 & 20.5 & 12\end{array}$	$52 \quad 5594.5$	$24 \quad 2596$	$\begin{array}{llll}56 & 417 & 13.4\end{array}$	$26 \quad 277 \quad 9.4$	4268938507
vin	$\begin{array}{llll}22.8 & 12.2 & 7.2\end{array}$	$8 \quad 1650$	$6 \quad 12 \quad 50$	$\begin{array}{lll}10 & 147 & 6.8\end{array}$	$7 \quad 94$	1660828275

Table 16. Performance on the EVD dataset. DoG,DENSE configuration. Results with less than 8 correct inliers are in red.

Image	DoG, 59 synths. $\Delta \phi=72^{\circ} / t$, $\mathrm{t}=\{1 ; \sqrt{2} ; 2 ; 2 \sqrt{2} ; 4 ; 4 \sqrt{2} ; 8\}$. Total image area $A_{\text {total }}=16 A_{\text {orig }}$					
	Time	LO-RA	NSAC	Tentative	es quality	Regions
	$\left\lvert\, \begin{array}{ccc} \infty & \infty & \infty \\ \hdashline & \infty & \infty \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sim & N & \ddots \end{array}\right.$					$\begin{array}{ll} \overrightarrow{0} & \text { N } \\ \text { on } & \text { ® } \\ \ddot{\Xi} & \Xi \end{array}$
	$\begin{array}{llll}25.5 & 13.9 & 8.1\end{array}$	63765996.7	65367596.7	665228429.1	675204133.1	2883638361
index	18.3 9.9 6.1	$\begin{array}{lllll}138 & 167 & 82.6\end{array}$	14316487.2	$\begin{array}{llll}161 & 1901 & 8.5\end{array}$	157138511.3	1847710549
shop	24 12.8 7.7	$\begin{array}{lllll}118 & 122 & 96.7\end{array}$	$\begin{array}{llll}130 & 134 & 97\end{array}$	$\begin{array}{llll}124 & 1238 & 10\end{array}$	$\begin{array}{llll}132 & 845 & 15.6\end{array}$	3720518541
adam	$\begin{array}{lll}6.3 & 3.3 & 1.9\end{array}$	12913595.6	$\begin{array}{lllll}125 & 138 & 90.6\end{array}$	$136 \quad 54924.8$	145434333.4	74622062
there	36.919 .611 .6	$\begin{array}{llll}98 & 125 & 78.4\end{array}$	$\begin{array}{llll}94 & 112 & 83.9\end{array}$	119112910.5	$\begin{array}{llll}108 & 817 & 13.2\end{array}$	1204147887
mag	$\begin{array}{lll}5.4 & 2.8 & 1.7\end{array}$	$\begin{array}{lllll}52 & 57 & 91.2\end{array}$	$\begin{array}{llll}59 & 62 & 95.2\end{array}$	$\begin{array}{llll}54 & 209 & 25.8\end{array}$	$\begin{array}{llll}59 & 178 & 33.1\end{array}$	35223952
dum	$\begin{array}{llll}42.5 & 24.9 & 16.9\end{array}$	3136686.1	$\begin{array}{llll}28 & 35 & 80\end{array}$	$\begin{array}{lll}36 & 1440 & 2.5\end{array}$	$\begin{array}{lll}31 & 966 & 3.2\end{array}$	5470043809
grand	$\begin{array}{lll}34.6 & 20 & 13.3\end{array}$	$\begin{array}{llll}26 & 34 & 76.5\end{array}$	$28 \quad 3873.7$	309433	$\begin{array}{lll}32 & 595 & 5.4\end{array}$	4203235904
fox	$18.210 \quad 6.1$	$27 \quad 4067.5$	$25 \quad 3964.1$	$\begin{array}{lll}33 & 614 & 5.4\end{array}$	$\begin{array}{lll}28 & 370 & 7.6\end{array}$	2403911336
cafe	$\begin{array}{lll}15.2 & 9 & 6.1\end{array}$		$22 \quad 28 \quad 78.6$	$25 \quad 558$	$\begin{array}{llll}23 & 415 & 5.5\end{array}$	1231014829
girl	$\begin{array}{llll}27.5 & 16 & 10.9\end{array}$	$11 \quad 20 \quad 55$	$18 \quad 24 \quad 75$	$\begin{array}{lll}18 & 759 & 2.4\end{array}$	214964.2	1786733840
pkk	$\begin{array}{llll}25.5 & 14.8 & 9.5\end{array}$	$13 \quad 4131.7$	$\begin{array}{llll}10 & 28 & 35.7\end{array}$	$23 \quad 763$	$\begin{array}{lll}22 & 473 & 4.7\end{array}$	2347024826
cat	$\begin{array}{lll}11.7 & 6.5 & 4.1\end{array}$	000	$\begin{array}{llll}6 & 16 & 37.5\end{array}$	$\begin{array}{llll}5 & 215 & 2.3\end{array}$	$\begin{array}{lll}11 & 153 & 7.2\end{array}$	42668714
face	$\begin{array}{llll}32 & 17.8 & 11.3\end{array}$	000	000	$\begin{array}{lll}33 & 1205 & 2.7\end{array}$	$\begin{array}{llll}6 & 980 & 0.6\end{array}$	3833432892
vin	$21.7 \quad 12.618 .4$	$0 \quad 0$	$0 \quad 0$	7491	$5 \quad 270 \quad 1.9$	1422323069

Table 17. Performance on the EVD dataset.ASIFT. Results with less than 8 correct inliers are in red.

Image	ASIFT, 59 synths. $\Delta \phi=72^{\circ} / t$, $\mathrm{t}=\{1 ; \sqrt{2} ; 2 ; 2 \sqrt{2} ; 4 ; 4 \sqrt{2} ; 8\}$. Total image area $A_{\text {total }}=16 A_{\text {orig }}$					
	Time	ORSA	Tentatives quality		Regions	
	$\begin{array}{ccc} \infty & \infty & \infty \\ \hdashline & \mathscr{\infty} & \ddot{0} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sim & N & \ddots \end{array}$					$\begin{aligned} & \text { N } \\ & 0 \\ & \text { O} \\ & \text { B } \end{aligned}$
	$81.8 \quad 26.514 .8$	$322531 \quad 60.6$	325582	55.8	31	38677
index	$\begin{array}{lllll}54.1 & 18.3 & 10.9\end{array}$	$23 \quad 94 \begin{array}{lll}24.5\end{array}$	23178	12.9	20349	10115
shop	$\begin{array}{llll}79.5 & 25 & 14.1\end{array}$	$17 \quad 3450$	1876	23.6	41984	25270
adam	$\begin{array}{lll}17.8 & 6 & 4.3\end{array}$	$\begin{array}{llll}24 & 63 & 38.1\end{array}$	2592	27.1	7572	3295
there	$150 \quad 48.4 \quad 27.8$	$\begin{array}{llll}20 & 72 & 27.8\end{array}$	21365	5.8	26901	52334
mag	$\begin{array}{lll}16.1 & 5.5 & 3.8\end{array}$	$11 \quad 2544$	1254	22.2	4204	6399
dum	$158 \quad 50.8 \quad 48.3$	$\begin{array}{lll}3 & 39 & 7.7\end{array}$	364	4.7	66380	48622
grand	13141.840 .4	00	81	1.2	54350	43713
fox	$\begin{array}{llll}47.4 & 15.7 & 9.5\end{array}$	00	432	12.5	22300	13502
cafe	$\begin{array}{llll}39.2 & 12.9 & 8\end{array}$	$\begin{array}{lll}4 & 74 & 5.4\end{array}$	4109	3.6	16088	16245
girl	$110 \quad 35.6 \quad 20.8$	000	12199	6	35834	46892
pkk	$\begin{array}{llll}75.9 & 25.1 & 14.9\end{array}$	$0 \quad 0 \quad 0$	6107	5.6	33229	22352
cat	$\begin{array}{llll}36.2 & 12.6 & 7.8\end{array}$	$37 \quad 8.1$	642	14.3	4979	10142
face	$138 \quad 44.1 \quad 25.4$	000	6136	4.4	59278	41859
vin	$66.9 \quad 21.3 \quad 20.6$	$0 \quad 0$	$0 \quad 49$	0	17127	31329

Table 18. Performance on the EVD dataset. MODS $\left(\theta_{m}=15\right)$, SIFT. Results with less than 8 correct inliers are in red.

Image	MODS, 4 steps. 1. MSER Scale only. 2. MSER Sparse. 3. HessAff Sparse. 4. HessAff Dense											
	Time				LO-RANSAC			Tentatives quality			Regions	
		∞ 0 0 0 0 0	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & N \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & : \ddot{0} \\ & . \Xi \\ & . \ddot{0} \\ & 0.0 \\ & 0 \end{aligned}$	SIF $\frac{0}{E}$			$$		$\begin{aligned} & \overline{0} \\ & \text { ت口 } \\ & \text { In } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 品 } \\ & \text { E } \end{aligned}$
	1	1	0.8	0.8	81	85	95.3	82	160	51.2	1018	1674
index	1	0.5	0.4	0.4	19	20	95	19	56	33.9	411	246
shop	1	0.8	0.7	0.7	28	30	93.3	28	84	33.3	1321	711
adam	2	0.8	0.5	0.3	19	22	86.4	21	48	43.8	357	164
there	2	4.5	2.8	2	10	18	55.6	15	66	22.7	571	2833
mag	2	0.8	0.5	0.4	30	31	96.8	30	52	57.7	393	509
dum	3	29.4	18.9	15.5		29	82.8	30	1136	2.6	33342	23711
grand	3	21.9	13.7	11.3	17	25	68	21	754	2.8	24731	20297
fox	2	2.1	1.4	1.1	16	19	84.2	19	76	25	1717	1011
cafe	2	1.8	1.2	0.9	18	20	90	18	142	12.7	1402	1319
girl	3	13.1	7.4	5.3	35	46	76.1	38	549	6.9	10460	16105
pkk	2	2.5	1.6	1.3	7	15	46.7	10	81	12.3	1229	1267
cat	3	3.9	2	1.4	35	38	92.1	35	143	24.5	1262	3279
face	2	3.6	2.4	2		15	60	11	118	9.3	3411	2371
vin	4	30.3	17.8	12.5	18	38	47.4	22	657	3.4	18956	31984

Table 19. Performance on the EVD dataset.MODS $\left(\theta_{m}=15\right)$, RootSIFT. Results with less than 8 correct inliers are in red.

Image	MODS, 4 steps. 1. MSER Scale only. 2. MSER Sparse. 3. HessAff Sparse. 4. HessAff Dense						
	Time	LO-RAI	NSAC	Tentativ	uality		ons
	$\begin{array}{ccc} & \infty & \infty \\ & \infty & \infty \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \dot{0} & - & 0 \\ 0 & \ddots \end{array}$				$\begin{aligned} & \overline{0} \\ & \bar{\sigma} \\ & \overline{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \text { © } \\ & \text { ت̈ } \end{aligned}$	
gr	0.8 0.8	8287	94.3	83154	53.9	101	1674
index	$\begin{array}{llll}1 & 0.5 & 0.4 & 0.4\end{array}$	$18 \quad 20$	90	$18 \quad 42$	42.9	411	246
shop	$\begin{array}{llll}1 & 0.8 & 0.7 & 0.7\end{array}$	2931	93.5	$29 \quad 61$	47.5	1321	711
adam	$\begin{array}{llll}2 & 0.8 & 0.5 & 0.4\end{array}$	2023	87	2247	46.8	357	164
there	$\begin{array}{llll}2 & 4.5 & 2.8 & 2\end{array}$	1417	82.4	$16 \quad 60$	26.7	571	2833
mag	$\begin{array}{llll}2 & 0.9 & 0.5 & 0.4\end{array}$	3131	100	3144	70.5	393	509
dum	$\begin{array}{llllllllll}3 & 27.2 & 16.9 & 13.5\end{array}$	2532	78.1	29850	3.4	33342	23711
grand	$\begin{array}{lllll}3 & 20.9 & 12.5 & 10\end{array}$	1424	58.3	19468	4.1	24731	20297
fox	$\begin{array}{llll}2 & 2.1 & 1.4 & 1.1\end{array}$	1920	95	$20 \quad 62$	32.3	1717	1011
cafe	$\begin{array}{llll}2 & 1.8 & 1.2 & 0.9\end{array}$	1721	81	18117	15.4	1402	1319
girl	$\begin{array}{lllll}3 & 13.1 & 7.3 & 5.2\end{array}$	3444	77.3	38436	8.7	10460	16105
pkk	$\begin{array}{lll}3 & 9.5 & 5.3\end{array}$	2737	73	33344	9.6	10686	7085
cat	$\begin{array}{llll}3 & 3.6 & 2.1 & 1.5\end{array}$	2534	73.5	30149	20.1	1262	3279
face	$\begin{array}{lllll}3 & 15.6 & 8.9 & 7.1\end{array}$	3944	88.6	42534	7.9	18857	13271
vin	$4 \begin{array}{lllll}4 & 29.7 & 17.1 & 11.8\end{array}$	1932	59.4	21455	4.6	18956	31984

[^0]: ${ }^{1}$ Available at http://cmp.felk.cvut.cz/wbs/index.html

[^1]: ${ }^{2}$ available at http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
 ${ }^{3}$ assuming that the original image is in the fronto-parallel view

[^2]: ${ }^{4}$ Available at http://cmp.felk.cvut.cz/wbs/index.html
 ${ }^{5}$ Reference code from http://demo.ipol.im/demo/my_affine_sift

[^3]: ${ }^{6}$ available at http://www.robots.ox.ac.uk/ $\sim v g g /$ data/oxbuildings/
 ${ }^{7}$ assuming that the original image is in the fronto-parallel view

[^4]: ${ }^{8}$ Reference code from http://demo.ipol.im/demo/my_affine_sift

