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Abstract—This paper proposes an approach to the design of
gradient coils for superconducting magnetic resonance imaging
(MRI). The designed method takes use of Fourier series expan-
sions to describe the continuous current density of the coil surface
and then employs stream function method to extract the coil
patterns. During the numerical simulation, a linear equation is
constructed and solved using a Tikhonov regularization scheme.
Using this method, the gradient coils with high level of linearity
are designed. Our contributions in this paper are to expend the
current densities of coils into Fourier series analytically as well
as optimize the parameters of regularization from the plotted
curve.

Index Terms—superconducting magnetic resonance imaging,
stream function, gradient coil, Tikhonov regularization

I. INTRODUCTION

Gradient coils are important components of magnetic res-
onance imaging (MRI) which have been used to get the
information of spatial location of the sample being imaged [1].
Generally, there are three sets of gradient coils to be designed
so as to generate gradient magnetic fields which are parallel to
the magnet’s main field and vary linearly in an imaging space
(usually a diameter of spherical volume, DSV) along the three
axes of a rectangular coordinate system. Assume the direction
of the main magnetic field is aligned with z axis, we will focus
on the design of gradient coils where the z component of the
magnetic flux density, Bz , vary linearly along the x, y and z
axes of the DSV.

Image quality is directly dependent on the performance
of the employed gradient coils. In designing the gradient
coils, the linearity and eddy currents must be taken into
consideration:

• Linearity. The linearity of the gradient magnetic field has
a direct effect on the image resolution. The gradient coils
with poor linearity will result in serious image distortion.
Generally, the nonlinearity of the gradient magnetic field
is required not to be higher than 5%.

• Eddy currents. When gradients are switched rapidly, eddy
currents are induced in conductors surrounding outside
the gradient coils, which will cause additional magnetic
fields in the DSV and worsen the image quality. The
application of active shielding coils, which consist of
primary coil and shielding coil, is an effective way to
get desired gradient fields in the DSV and reduce the
magnetic fields nearly to zero outside the coils [2]. Gen-
erally, the magnetic flux density in the shielded region,

generated by primary and shielding coils, is not in excess
of 5 Gauss (1T=104Gauss).

A classical design method for gradient coils is target field
method proposed by Turner [3]–[5]. It is one of the current
density distribution method. The size of the coil can not be
specified in advance with this method, the Fourier transform
is used with a constraint added and the current density must
vanish outside a specified finite area [6]–[9]. In some cases,
smoothing functions have to be incorporated in the Fourier
transform to guarantee its convergence, which will introduce
unnecessary errors and complications. In order to solve this
problem, many researchers gave an effective design method-
ology of the finite-size gradient coils for superconducting MRI
system [10] [11] and permanent magnet MRI system [12] [13].
Only several sample points in the DSV are adopted, a function
is constructed in terms of stored energy, the z component of
magnetic fields and the constrained current density, so there
is high nonlinearity in their designs.

In previous work, a penalty function was often used to solve
ill-conditioned problem of the equations. Different choices for
the parameter norm can result in different solutions being
preferred. For the optimization design of discrete wires gra-
dient coil, to find the highest gradient field or linearity of the
gradient coil with particular number of turns, a norm of the
magnetic fields in the shielded region is added [14] [15]. The
constraint of stored energy or dissipated power is not easily
added in this method. One of the current density method with
Tikhonov regularization was applied in [16], but the selection
of regularization parameter was not given in detail.

Our contributions in this paper are to expend the current
densities of both primary and shielding coils into Fourier series
analytically in given finite-size coils former as well as optimize
the parameters of regularization from the plotted curve.

In this paper, in Section II we will introduce the related
work, our research method will be detailed in Section III, our
experimental results will be demonstrated in Section IV and
our conclusion will be drawn in Section V, we also will vision
our future work in the section.

II. RELATED WORK

In this paper, a finite-size gradient coils design with
Tikhonov regularization method for superconducting MRI
system is presented. Gradient coils are mounted on the cylin-
drical forms, the current densities of coils are expanded into
Fourier series in a cylindrical coordinate system; the Fourier



Fig. 1. The schematic diagram of gradient coils for superconducting MRI
system

coefficients are variables to be solved. A large number of
sample points are selected in the DSV and the shielded region,
a cost function that relates the computed field to the desired
field is constructed and a Tikhonov regularization function is
added to solve the ill-condition problem. When the current
densities are obtained, a stream function is used to discretize
the current densities [17]. Once this discretization process is
completed, the magnetic fields, yielded from these current-
carrying wires, are calculated using the Biot-Savart law.

A popular Tikhonov regularization method was L-curve
presented by Hansen [18]. In this plot, the log-log scale was
used, the norm of the solution on the ordinate against the norm
of the residual on the abscissa, and regularization parameter
was along the resulting curve. The L-curve will be provided
in this paper.

Because of the characteristic of gradient magnetic fields,
the shape of x-coil is symmetrical related to z = 0 plane and
x = 0 plane. Rotated the x-coil 90◦, the shape of y-coil is
obtained, so only the shielded x-coils are considered in this
design. Z-gradient coil is generally in the form of “Maxwell
pair” and which is symmetrical with regard to z = 0 plane.
Based on the symmetry of the coils and the magnetic fields, the
design is therefore simplified so as to improve the efficiency.

III. OUR METHOD

For the gradient coils of superconducting MRI device, the
currents are distributed on a cylindrical surface, so it is natural
to use cylindrical coordinates to retain the symmetry of this
system. As shown in Fig. 1, the z axis is taken to lie along the
axis of this cylinder, radius and length of the primary coil are
Rp and Lp, respectively; that of the shielding coil is Rs and
Ls, correspondingly. We assume the shielded region’s radius
is R0 and length L0, and note the radius of DSV is rDSV .

Based on Biot-Savar’s law, the magnetic flux density at any
point (x0, y0, z0) in space ~B(x0, y0, z0), generated by a coil

current density, is generally given by

~B(x0, y0, z0) =
µ0

4π

∫ ∫
s

~J × ~r
r3

ds (1)

where µ0 is air permeability, ~J is the current density, ~r is the
displacement vector from the source point of the coil to the
field point (x0, y0, z0). There is no current flow in the radial
direction in the surface of gradient coil; hence, ~J has only
z and θ components, which are related to each other using
current continuity equation ∇ · ~J = 0.

Based on the symmetry of these gradient coils, the current
density can be expanded into Fourier series. For x-gradient
coils, the current density can be expanded as follows,

Jθ(θ, z) = cos(θ)

N∑
n=1

an cos(2nπz/L) (2)

Jz(θ, z) = sin(θ)

N∑
n=1

an · L
2nπR

sin(2nπz/L) (3)

where an is the unknown Fourier coefficient, N represents the
finite term of the Fourier series expansion, R and L are the
radius and length of the coil, respectively.

According to (1), (2) and (3), we can get the z component
of the magnetic flux density of point (x0, y0, z0)

Bz(x0, y0, z0) =

N∑
n=1

an · kn (4)

where

kn =
µ0R

4π

∫ L
2

−L
2

∫ 2π

0

cos
(
2nπz
L

)
(R− y0 sin(θ)− x0 cos(θ))

r3
dθdz

(5)
and

r =
√

(x0 −R cos(θ))2 + (y0 −R sin(θ))2 + (z0 − z)2 (6)

Select M points in the DSV and Q points in the shielded
region, Bz of these points generated by current densities of
primary coil and shielding coil can be obtained

Bz,i =

Np∑
n=1

apnK
p
i,n +

Ns∑
n=1

asnK
s
i,n, i = 1, · · · ,M +Q (7)

where Bz,i is the value of Bz at the i-th constraint point,
Np and Ns are the number of Fourier coefficients for primary
coils and shielding coils, respectively. apn and asn are unknown
Fourier coefficients for these two coils, respectively. The
coefficients Kp

i,n and Ks
i,n are the coefficients from the two

coils, which can be calculated by substituting the parameters
of coils and the location of constraint point into coefficient
kn.

Given the desired magnetic fields in the DSV and shielded
region, we can obtain linear equations in a matrix form by
using least-squares minimization

Ax = b (8)



where x = {x1, x2, · · ·xNp+Ns}τ is the column vector of
Fourier coefficients, xj = apj (j = 1, 2, · · · , Np), xNp+j =
asj (j = 1, 2, · · · , Ns); b = {b1, b2, · · · , bM+Q}τ is the
column vector of desired Bz of the constraint points, bi =
Gx · x̂i (i = 1, 2, · · · ,M), bM+i = 0 (i = 1, 2, · · · , Q),
Gx is the given gradient strength of the x-gradient coil,
x̂i is the x-axis postion of the i-th sample point. For the
matrix A = {αij}(M+Q)×(Np+Ns), the elements of which
are αij = Kp

i,j (i = 1, 2, · · · ,M + Q; j = 1, 2, · · · , Np);
αi(Np+j) = Ks

i,j (i = 1, 2, · · · ,M +Q; j = 1, 2, · · · , Ns).
Equation (8) is ill-conditioned and the little practical value

in its present form. A regularization strategy, well-known
Tikhonov regularization method, was adopted to obtain Fourier
coefficients. The regularization form is

xλ = arg min
x
{‖Ax− b‖22 + λ · ‖Lx‖22} (9)

where λ > 0 is the regularization parameter, L is constraint
matrix deduced from a function F (·).

Assume the penalty function F (·) is defined as

F =

∫ L
2

−L
2

∫ 2π

0

[(
1

R
· ∂Jz
∂θ

)2 + (
∂Jθ
∂z

)2]Rdθdz (10)

here the penalty function is used to reduce the maximum
current density variation and widen the wire spacing. If we
want to get coils with small stored energy or dissipated power,
F (·) can be written as the expression of energy or dissipated
power.

L is deduced from the summation of penalty functions of
primary coil and shielding coil. For x-gradient coils,

Ln =

∫ Lp
2

−
Lp
2

∫ 2π

0
(

L2
p

4n2π2R4
p

+
4n2π2

L2
p

) cos
2
(θ) · sin

2
(
2nzπ

Lp
) · Rpdθdz (11)

where n = 1, 2, · · · , Np

Ln+Np
=

∫ Ls
2

−Ls
2

∫ 2π

0
(

L2
s

4n2π2R4
s

+
4n2π2

L2
s

) cos
2
(θ) · sin

2
(
2nzπ

Ls
) · Rsdθdz (12)

where n = 1, 2, · · · , Ns.
Then, we can get the errors of magnetic fields in the DSV

and shielded region,

ε = (εi)n×1 = Ax− b. (13)

Hence, we have ε1 = max(
∣∣∣ εibi ∣∣∣) ≤ 5%, i = 1, 2, · · · ,M

and ε2 = max(|εi|) ≤ 5.0×10−4, i = M+1,M+2, · · · ,M+
Q.

When the Fourier coefficients are found, the current densi-
ties of the primary coil and shielding coil will be obtained.
An auxiliary stream function ~S is introduced to realize the
required surface current density using a set of discrete wires
carrying a constant current. The stream function can be ob-
tained directly from the current density expression analytically
based on the following equation

~J = O× ~S. (14)

Assume the number of current loop is Nt, then the required
current I in the individual wire is given by

I =
Smax − Smin

Nt
(15)

where Smax and Smin are the maximum and minimum values
of the stream function. The locations of the wires are given
by the contour lines whose values are defined by

S = Smin + (i− 1

2
) · I, i = 1, 2, · · · , Nt. (16)

The magnetic fields are recalculated from the discrete
wire lines using the Biot-Savart law. Denote Bzcal,i is
the value of Bz at the i-th point generated by all wire
lines, ε3 = max(

∣∣∣Bzcal,i−bibi

∣∣∣), i = 1, 2, · · · ,M and ε4 =

max(|Bzcal,i|), i = M + 1,M + 2, · · · ,M + Q. We fin-
ish the design when ε3 ≤ 5% and ε4 ≤ 5.0 × 10−4.
Otherwise, increase the number of current loop and have
another discretization. The corresponding procedure is shown
in Algorithm 1.

For z-gradient coil, there is only current flow in the angular
direction in the coil surface, the current density can be
expanded as

Jθ(z) =

N∑
n=1

an sin

(
2nπ

L
z

)
. (17)

With the similar design as that of x-gradient coils, the
discrete z-gradient coils can be obtained.

IV. RESULTS AND DISCUSSION

We have designed cylindrical shielded x- and z-gradient
coils to test the proposed method. The designed coils are
required to produce a linear magnetic field strength of Gx =
∂Bz
∂x = 30 mT/m and Gz = ∂Bz

∂z = 30 mT/m in a 0.45m DSV
size. The geometry parameters and requirements are specified
in Table I.

In the design, the appropriate λ value was determined by
the L-curve of regularization tool. The L-curve plots for x-and
z-gradient coils are shown in Fig. 2. Usually, the smaller the
value of λ, the better the linearity of gradient field, and the
larger the value of the stream function. There is a balance
between gradient linearity and stream function. The value
of λ is set as that of the inflexion point in the L-curve,
1.8117×10−10 and 8.4731×10−7 for x- and z-gradient coils,
respectively.

Fig. 3 (a)/(b) and (c)/(d) illustrate the three-dimensional
patterns of shielded x- and z-coils separately. We see that the
current of each coil is asymmetrical about the xy-plane; the
current direction of the primary coil is opposite to that of the
shielding coil. Especially, the current is asymmetrical about
the yz-plane for x-coils.

Fig. 4 (a)/(b) and (c)/(d) illustrates the planar discrete
patterns of shielded gradient coils separately. There is one
quadrant for x-coils and other three quadrants can be acquired
in terms of the symmetry of the current distribution.



Input : ΘI=(Rp, Lp, Rs, Ls, rDSV , R0, L0, Gx, M ,
Q)

Output: ΘO=(I , Np
t , Ns

t )
Initialization;
Np = Ns ← 1;
b(1 : M +Q)← 0;
Np
t ← 16;

for i = 1 : M do
bi ← Gx · x̂i;

end
Loop2: for i = 1 : M +Q do

for j = 1 : Np do
αij ← Kp

ij ;
end
for j = 1 : Ns do

αi(j+Np) ← Ks
ij ;

end
end
x∗λ ← arg min

x
{‖Ax− b‖22 + λ · ‖Lx‖22;

ε = (εi)n×1 ← Ax− b;

ε1 ← max(
∣∣∣ εibi ∣∣∣), i = 1 : M ;

ε2 ← max(|εi|), i = M + 1 : M +Q;
if (ε1 ≤ 5%) && (ε2 ≤ 5.0× 10−4) then

Loop1: I ← Spmax−S
p
min

Npt
;

Ns
t ← round(Np

t ·
Ssmax−S

s
min

Spmax−Spmin
);

ε3 ← max(
∣∣∣Bzcal,i−bibi

∣∣∣), i = 1, 2, · · · ,M ;
ε4 ← max(|Bzcal,i|), i = M + 1,M + 2, · · · ,M +Q;
if (ε3 ≤ 5%) && (ε4 ≤ 5.0× 10−4) then

Exit;
else

Np
t ++;

Go to Loop1;
end

else
Np++;
Ns++;
Go to Loop2;

end
Algorithm 1: The algorithm designed

TABLE I
CHARACTERISTICS OF THE SHIELDED X-AND Z- GRADIENT

COILS DESIGNS

Item x-coils z-coils
Coil length(P/S) (m) 1.38/1.48 1.38/1.48
Coil radius(P/S) (m) 0.32/0.37 0.34/0.40
DSV (diameter) (m) 0.45 0.45

Gradient strength (mT/m) 30 30
Number of turns (P/S) 38/26 36/25

Wire current (A) 477.45 427.98

Fig. 2. The L-curve plots for the Tikhonov regularization of (a) x-gradient
coils and (b) z-gradient coils.

Fig. 3. The demonstration of three-dimensional shielded coils (a) primary
x-coil, (b) shielding x-coil, (c) primary z-coil, (d) shielding z-coil.

A gradient power supply device is shared by the primary
and the shielding coils; there is the same current supplied
for shielded coils. In order to get the desired magnetic field
distribution, the turns of current loop for shielded coils should
be balanced.

To validate the results of the numerical methodology pro-
posed in this paper, the magnetic field is calculated from
the wire patterns shown in Fig. 4. The nonlinearities of the
gradient field in the DSV and magnetic field distributions in
the shielded region, generated by using shielded coils, are
shown in Fig. 5. It is seen from Fig. 5 (a)/(b) that the calculated



Fig. 4. The planar discrete patterns of shielded coils (a) primary x-coil(one
quadrant), (b) shielding x-coil(one quadrant), (c) primary z-coil (whole), and
(d) shielding z-coil (whole).

Fig. 5. Gradient field nonlinearity profile in the coronal plane (with 5%
deviation) produced by using (a) x-coils and (b) z-coils. The magnetic field
in the shielded region for the designed (c) x-coils and (d) z-coils.

gradient fields exactly match with the requirements of our
design. Fig. 5 (c)/(d) indicate that the magnetic flux density
inside the shielded region is less than 5 Gauss.

For the design of unshielded gradient coils, we can only
consider the current density of the primary coil, and select
sample points in the DSV.

V. CONCLUSION

The proposed approach for cylinder gradient coils has been
formulated and presented. The current densities of the coil
surfaces are expanded into Fourier series, the problem is
simplified into the solution of Fourier coefficients instead of
current densities. The large number of expansion items can
improve the accuracy of the design, but also lead to an increase
in the complexity of the windings. Actually, the numbers of

Fourier expansion items for shielded coils are adjusted to make
the patterns of coils practically implementable. The penalty
function mentioned in the design can also be other quantity,
such as stored energy and dissipated power etc. to get the
coils with small inductance or resistance. The method in this
paper can also be used to the design and optimization of other
gradient coils.
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