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Abstract—Skin cancer is a common cancer worldwide, with
melanoma being the most deadly form which is treatable when
diagnosed at an early stage. This study develops a novel clas-
sification approach using multi-tree genetic programming (GP),
which not only targets melanoma detection but is also capable of
distinguishing between ten different classes of skin cancer effec-
tively from lesion images. Selecting a suitable feature extraction
method and the way different types of features are combined
are important aspects to achieve performance gains. Existing
approaches remain unable to effectively design a way to combine
various features. Moreover, they have not used multi-channel
multi-resolution spatial/frequency information for effective fea-
ture construction. In this work, wavelet-based texture features
from multiple color channels are employed which preserve all the
local, global, color and texture information concurrently. Local
Binary Pattern, lesion color variation, and geometrical border
shape features are also extracted from various color channels.
The performance of the proposed method is evaluated using
two skin image datasets and compared with an existing multi-
tree GP method, ten single-tree GP methods, and six commonly
used classification algorithms. The results reveal the goodness
of the proposed method which significantly outperformed all
these classification methods and demonstrate the potential to help
dermatologist in making a diagnosis in real-time situations.

I. INTRODUCTION
The incidence of melanoma which is the deadliest type of

skin cancer, has increased rapidly over the past 30 years [1].
Skin cancer is highly curable when detected in its earliest
stages, with a 5-year survival rate of 92% [1]. Recent develop-
ments in computer aided diagnostic (CAD) systems facilitate
earlier diagnosis of various skin cancers. Dermatologists study
several important visual characteristics for making a diagnosis
based on dermoscopy criteria; the Asymmetry, Border defor-
mity, variation in Color, and lesion Diameter (ABCD) rule [2].
These are the basic medical properties that help dermatologists
accurately diagnose different kinds of skin cancers.

Genetic programming (GP) is a nature-inspired method that
genetically breeds a population of computer programs (models
or trees) to solve a particular task [3]. GP applies genetic
operators such as reproduction, crossover, and mutation, iter-
atively to transform a current generation of programs into a
new generation of programs [3]. The automatically evolved
program possess a tree-like framework with terminal nodes
and internal nodes. Features appear at terminal nodes while
functions appear at internal nodes. GP utilizes its inbuilt
feature selection ability by having the most prominent features
as its terminals. The evolved program can be considered as a

newly constructed feature (CF) developed from the selected
features at the terminals, which often has more distinguishing
ability between classes compared to the original features,
which highly impacts on achieving good performance. GP has
not only been used for classification, but has also been studied
widely for feature selection and feature construction [4].

Traditionally, a GP individual consists of only one tree.
However, GP can be designed to generate multiple trees (CFs)
in an individual which is termed as multi-tree GP (MTGP)
[5]. In the literature, MTGP has been explored for multi-
class classification [6], multiple feature construction [7], and
automatically evolving image descriptors [8].

To classify skin cancer images, various discriminative fea-
tures, which include local and global as well as color and
texture properties, must be provided to the classification al-
gorithm to achieve good performance. A study on the human
visual system indicates that the spatial/frequency representa-
tion contains both local and global information which inspired
researchers to develop multi-scale texture models for image
classification [9]. The multi-scale characteristics of wavelets
make them a useful texture analysis technique to construct
informative features [10]. This motivated us to construct
wavelet-based features in this study.

We have utilized MTGP to construct multiple features each
based on a single type of features, and give these CFs to a
classification algorithm. Some existing approaches [10], [11]
extract different types of features from lesion images. These
methods evaluate the potential of these features to detect
melanoma in a binary image classification problem using
machine learning algorithms, but remain unable to combine the
features effectively to achieve performance gains. Moreover,
they limit the use of their method to binary classification
(melanoma detection) only; not testing on the difficult multi-
class skin image classification task. Moreover, most of the ex-
isting approaches are developed for only single image modality
(images captured from one device), this work focuses on
developing a robust classification method which can perform
well across multiple image modalities.

Different from the existing approaches, our proposed
method uses a wrapper approach to construct informative
features, which are then given to a classification algorithm
(such as decision trees) for classification. A wrapper approach
includes a learning algorithm in the CF evaluation whereas a
filter approach is independent of any classification algorithm
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[12]. An embedded approach combines feature construction
and classifier learning into a single process. The feature
construction ability of the proposed method generates highly
informative CFs necessary to achieve performance gains.

Goals: This work develops a new MTGP method for skin
cancer binary and multi-class image classification using a
wrapper approach. Different from the previous methods, the
proposed method aims at utilizing GP to construct features
based on different types of texture, color, border shape and
geometrical information features for skin images taken from
different optical instruments (specialized dermatosocope and
standard camera). Each GP individual consists of multiple
trees each of which is a CF using only one type of features and
all the CFs are collectively used for classification. By doing
so, the proposed method is expected to automatically construct
informative features, using the best type of image features.
This work addresses the following research questions:

• Which type of the features are significant in providing
good performance across different datasets?

• Can addition of the new wavelet-based features improve
the performance of binary and multi-class classification?

• Can MTGP approach provide better discriminating ability
as compared to single-tree GP wrapper and embedded
approaches across different datasets?

• Can the proposed GP method outperform the other non-
GP classification algorithms and the existing GP skin
image classification methods?

II. BACKGROUND

Feature extraction is used to extract the image features,
similar to those visually detected by dermatologists, that can
accurately characterize a type of skin cancer [10]. In this work,
we capture texture information from images using three-level
pyramid-structured wavelet decomposition [9], local informa-
tion using Local Binary Pattern image descriptor [13], global
information using lesion color variation [11], and border shape
features [10], [14]. These different types of features are incor-
porated to: 1) provide necessary discriminative information to
GP for effective feature construction, 2) analyze which type of
features are more prominent to classify which type of images
(dermoscopy and standard camera).

1) Wavelet-based Features: Texture analysis helps identify
the visual characteristics of a lesion which constitutes the basis
of clinical diagnosis (e.g., ABCD rule of dermoscopy) [10].
The pyramid-structured wavelet analysis [9] captures both
the local (detailed structure and internal texture) and global
(overall properties) information of the lesion. We have applied
three-level pyramid-structured wavelet decomposition on red,
green, blue, and luminance color channels of the skin images,
where luminance is represented by Eq. 1.
luminance = (0.3×R) + (0.59×G) + (0.11×B) (1)

Various statistical measures are used to extract informative
features from the wavelet coefficients such as energy, mean,
standard deviation, skewness, kurtosis, norm, entropy, and
average-energy, details can be found in [10]. Fig. 1(a) shows a

(a) (b)
Fig. 1. Three-level pyramid-structured wavelet decomposition.

skin lesion image and Fig. 1(b) shows the pyramid-structured
wavelet decomposition applied on this image. To the best of
our knowledge, this is the first time four color channels with
three-level of pyramid-structured wavelet decomposition has
been reported.

2) Local Binary Patterns (LBP): LBP is an image descrip-
tor widely used for feature extraction, developed by Ojala et
al. [13]. It scans an image in a pixel-by-pixel fashion, using
a sliding window of fixed radius. The central pixel value is
calculated based on the intensity of surrounding pixels values
lying on the radius. It generates a histogram (feature vector),
from the computed values. The size of feature vector can be
reduced from 2p bins to p (p− 1)+3 bins using only uniform
LBP patterns and putting all non-uniform patterns in one bin.
For LBP, a window size of 3×3 pixels and a radius of 1 pixel
(LBP8,1) is used. In skin images, LBP features allow detection
of corners (lesion boundary), streaks (line ends) and blobs (flat
regions) which may add to performance gains.

3) Lesion Color Variation: Color, being a significant com-
ponent of the ABCD rule [2], plays a vital role in classifying
skin lesions. Variation in color triggers high variance in
the RGB color space. Hence, features extracted from RGB
color channels may have good discriminating ability between
classes. To incorporate global color features, the pixels in the
segmented skin lesion of RGB color channels are used. The
mean (µ) and variance (σ2) of each channel is calculated and
represented as µR , µG , µB and σ2R , σ2G , σ2B. To capture
complex non-uniform color distributions within the skin lesion
region, mean ratios of the mean values are calculated, i.e., µR

µG
,

µR

µB
, µG

µB
. Variations in color of the skin lesion with respect to

the surrounding skin is also considered. These features are
calculated as µR

µR
, µG

µG
, µB

µB
, where µ represents the mean value

of surrounding skin. These features are adopted from [11].
4) Geometry-based Features: Border shape and geomet-

rical properties of a lesion provide significant diagnostic
information. We used some standard geometry features such
as area, perimeter, greatest diameter, circularity index, irreg-
ularity index A, irregularity index B, and asymmetry index
adopted from [14], and shortest diameter, irregularity index C,
irregularity index D, and major and minor asymmetry indices
adopted from [10].

III. THE PROPOSED METHOD

The proposed method, 5-tree GP wrapper (WGP-5), for skin
image classification is described in this section. The overall
structure is presented in Fig. 2. Each image in the dataset is
given to different feature extraction methods discussed in Sec-
tion II to get five feature vectors, namely Wavelet, LBPGray,
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Fig. 2. The flowchart of the proposed method.

LBPRGB LesionColor, and LesionShape. These images, i.e.,
feature vectors, of the whole dataset are divided into training
and test sets. The training set is given to GP to evolve five trees
each based on a single type of features in one GP individual.
Using these five trees (CFs), the training and test sets are
transformed to new training and test sets. Then a classification
algorithm (such as decision tree) uses the transformed training
set to evolve a classification model. The learnt classification
model is applied on the transformed test set to obtain the test
classification performance.

A. Representation

A GP individual consists of five trees. The five types
of features (Wavelet, LBPgray, LBPRGB, Lesioncolor, and
Lesionshape) are fed into multi-tree GP method where it is en-
sured that during the evolutionary process, each tree can select
from only one type of features. In other words, an individual
in our multi-tree GP method consists of five CFs; one evolves
using Wavelet features, second using LBPGray features, third
using LBPRGB features, fourth using LesionColor features,
and fifth using LesionShape features, as shown in Fig. 4.

B. Terminal Set and Function Set

The terminal set consists of five types of features, extracted
from the feature extraction methods discussed in Section II.

1) Wavelet: 416 wavelet-based texture features extracted
from RGB and luminance color channels of the images.

2) LBPRGB: 59 LBP features extracted from each of the
RGB channels and concatenated to make 177 (= 59 LBP
features × 3 channels) features.

3) LBPgray: 59 LBP features extracted from gray images.
4) Lesioncolor: Color variation across the lesion area and

skin region is calculated by 12 Lesioncolor features.
5) Lesionshape: Border shape information of the lesion

region is included by extracting 11 Lesionshape features.
The value of the ith feature for the above five feature

types is indicated as Wi, Ci, Gi, Li, and Si, respectively,
as shown by the GP individual in Fig. 4. The function set
consists of seven operators; four arithmetic {+,−,×, /}, two
trigonometric {sin, cos}, and one conditional {if } operator.
Among the arithmetic operators, the first three operators have
the original arithmetic meaning, however, division is protected
that returns 0 when divided by 0. The if operator takes four
inputs and returns the third input if the first input is greater
than the second input; else, it returns the fourth input.

C. Crossover and Mutation

The genetic operators, such as crossover and mutation, are
utilized accordingly to fit the requirements of the proposed

method, which we call same-index-crossover/mutation. Ac-
cording to our initial experiments in this study, using different
types of features to evolve a single tree results in poor feature
construction because it ruins the effectiveness of the original
features selected by the tree. Hence, in order to retain only
one type of features in a single tree, we use same-index-
crossover/mutation [15]. For illustration, the tree evolved from
wavelet features in Parent-1 can only crossover/mutate with
the tree evolved from the same wavelet features in Parent-2,
and it cannot crossover/mutate with the other four trees.

D. Fitness Function

The fitness function is the balanced classification accuracy
defined as

fitness =
1

m

m∑
i=1

TPi

TPi + FNi
(2)

where m shows the number of classes, TP refers to true
positive, FN refers to false negative, and the ratio TPi

TPi+FNi

represents the true positive rate of class i. When there is a class
imbalance problem (different number of instances in different
classes), using standard overall accuracy, which is defined as
the ratio between correctly classified instances and the total
number of instances, may produce results biased towards the
majority class. Hence, it is more suitable to use balanced
accuracy to give equal weights to all the classes in a dataset.
Using this fitness function (Eq. (2)) will help the GP individual
to achieve overall good performance on the different classes
in a dataset.

E. Classification

After completing the GP evolutionary process, we get the
best GP individual with five constructed features on the
training data. These constructed features are used to transform
the original training and the original test data to a new training
and a new test data. The transformed training data is used
to train a classification method (such as decision tree). Then
the transformed test data is given to the trained classification
model to achieve the performance on the test data.

IV. EXPERIMENT DESIGN

For carrying out the experiments, the datasets are split by
10-fold cross validation such that nine folds are used for
training and the remaining one fold for testing. Stratified
random sampling is used to split the data to 10 folds. The
number of GP runs is 30 and the results are reported in terms
of the mean and standard deviation of the fitness values. For
evolving an individual having five trees on the training data (9
folds), the fitness given in Eq. 2 is used, which is the accuracy
of the wrapper classification algorithm. These five CFs are
then used to transform the test data (1-fold). This procedure is
repeated 10 times to get the result for 10-fold cross validation
where each fold is considered for testing only one time. Hence,
the above procedure is repeated 30 times, using 30 different
seed values, to get 30 pairs of training and test accuracies.
The implementation of WGP-5 is done using the Evolutionary
Computing Java-based (ECJ) package [16].
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Fig. 3. Samples of (a) PH2 dataset, and (b) Dermofit dataset.
TABLE I

GP PARAMETER SETTINGS.
Parameter Value Parameter Value

Generations 50 Selection type Tournament
Population Size 1024 Tournament size 7
Crossover Rate 0.80 Tree depth 2–6
Mutation Rate 0.19 Initial Population Ramped half-and-half
Elitism 0.01

A. Datasets

1) PH2 dataset: This dataset [17] consists of 200 der-
moscopy images with a size of roughly 768 × 560 pixels
captured using a specialized device to capture skin images
called dermatoscope. The images belong to three classes:
melanoma, common nevus, and atypical nevus. In derma-
tology, melanoma and common nevus refers to malignant
and non-malignant lesions, respectively. Atypical nevus is a
currently non-malignant lesion, but can develop tumor cells
later. For binary classification experiments, 40 melanoma are
considered as “malignant” class, and 80 common nevus and
80 atypical nevus are together considered as “benign” class.
Samples of this dataset are shown in Fig. 3(a).

2) Dermofit dataset: The Dermofit Image Library [18]
consists of 1300 lesion images taken from a standard camera,
under standardized conditions. The lesions belong to ten
classes, and each image is provided with a gold standard diag-
nosis. For binary classification, we have used two classes; 1)
Melanocytic Nevus as “benign”, and 2) Malignant Melanoma
as “malignant”. Samples of this dataset are shown in Fig. 3(b).

B. GP Parameters
The GP parameters adopted in the proposed method are

shown in Table I. The evolutionary process keeps evolving
until a maximum number of 50 generations is reached or a
perfect individual with 100% accuracy is found.

C. Classification Methods for Comparison
1) Non-GP Methods: To check the effectiveness of WGP-

5 on the test set, six classification methods are used: Naı̈ve
Bayes (NB), Support Vector Machines (SVMs), k-Nearest
Neighbor (k-NN) where k = 1 (the closest neighbor), Decision
Trees (J48), Random Forest (RF), and Multilayer Perceptron
(MLP). For implementation of these methods, the commonly
used Waikato Environment for Knowledge Analysis (WEKA)
package is used [19]. Similar to the previous methods [7], [20],
we adopt a Radial basis Function kernel which has shown
better performance compared to the default linear kernel in
WEKA. For MLP, the momentum, learning rate, training
epochs and the number of units in a single hidden layer are
adopted from the previous methods [7], [20]. To make a valid
comparison in our experiments, the non-GP methods are given
all the five types of features.

2) GP Methods:
• WGP-4: This is similar to WGP-5 with a wrapper ap-

proach. However, it constructs four CFs from four types
of features defined in Section III-B(2-5).

• EGP-4 [20]: This is similar to WGP-4 with same four
types of features used to evolve four trees in a GP
individual. However, it is an embedded approach where
GP is used as a classification method as well. Each
tree in a GP individual is considered a binary classifier.
The best tree (classifier) among the four trees with the
highest accuracy on the training data is used to test the
performance on the test data.

• WGP-1: This is the traditional GP with a single tree
in a GP individual. Only one type of features such as
LBPGray is given to GP to evolve a single CF in a GP
individual which will be given to J48 for classification.

• EGP-1: This is the traditional GP approach which evolves
a single tree in its individual to perform binary classifica-
tion. In one set of experiments, the terminal set consists
of a single type of features to evolve a single tree in a
GP individual.

V. RESULTS AND DISCUSSIONS

The results of our experiments are presented in Tables II and
III. The values of these results represent the mean and standard
deviation among the 30 GP runs, where value of one GP run is
computed as the mean of applying 10-fold cross validation to
the datasets. The deterministic methods are run once, hence,
their results are represented as the mean and standard deviation
of applying 10-fold cross validation to the datasets. In order
to correctly identify the significance of our proposed method,
the results are investigated using Wilcoxon signed-rank test
with a significance level of 5%. This test is applied on the test
results to check which method has better ability to correctly
classify the lesion images. Three symbols “+”, “−” and “=” are
used which represents that the proposed method significantly
outperforms, is significantly worse, and performs similarly in
comparison to the corresponding method.

A. Binary Classification
The results for the task of binary classification for the two

datasets are presented in Table II. Vertically, the table consists
of seven blocks where the first and second blocks give the
results WGP-4 and WGP-5, respectively. The third block gives
the results of the existing embedded method (EGP-4) [20]. The
fourth block shows results of the other non-GP classification
methods, the fifth and the sixth block show results of the
single-tree GP methods (WGP-1 and EGP-1).

Among the four classification algorithms in the WGP-4
and our proposed WGP-5 methods (Table II), it has been
observed that in case of WGP-4, NB and J48 achieved the
highest performances with 85.70± 2.65% and 84.18± 4.11%
on PH2 and Dermofit datasets, respectively. However, there is
a significant increase in performance when using the proposed
WGP-5 method where the CF generated with wavelet features
help improve the distinguishing ability of the classifier. In
our method WGP-5, NB and SVM achieved the highest



TABLE II
RESULTS OF MULTI-TREE GP METHOD FOR BINARY CLASSIFICATION:

ACCURACY (%) ON THE TEST SET OF BOTH DATASETS.

Classification Algorithm PH2 Dermofit

WGP-4

NB 85.70 ± 2.65 + 80.45 ± 2.18 +
SVM 81.52 ± 3.58 + 80.33 ± 2.71 +
k-NN 61.26 ± 4.05 + 69.27 ± 2.89 +
J48 85.18 ± 3.72 + 84.18 ± 4.11 +

WGP-5

NB 89.77 ± 1.84 96.21 ± 1.09
SVM 86.48 ± 2.35 97.26 ± 1.25
k-NN 63.34 ± 2.67 86.04 ± 2.52
J48 87.61 ± 3.08 96.99 ± 0.70

EGP-4 − 78.87 ± 2.92 + 74.57 ± 1.86 +

Non-GP
Methods

NB 77.19 ± 9.06 + 96.99 ± 3.13 =
SVM 62.19 ± 7.96 + 63.84 ± 8.26 +
k-NN 74.06 ± 10.83 + 87.43 ± 5.76 +
J48 72.50 ± 10.99 + 95.42 ± 3.87 +
RF 75.00 ± 8.73 + 93.44 ± 3.94 +
MLP 78.75 ± 10.81 + 95.64 ± 4.63 +

WGP-1

LBPGray 60.19 ± 4.73 + 53.88 ± 3.44 +
LBPRGB 65.70 ± 6.25 + 53.80 ± 3.36 +
LesionColor 61.81 ± 4.56 + 65.79 ± 5.90 +
LesionShape 61.65 ± 4.28 + 64.88 ± 3.69 +
Wavelet 67.75 ± 4.25 + 96.94 ± 1.33 =

EGP-1

LBPGray 65.96 ± 3.96 + 59.91 ± 3.57 +
LBPRGB 73.87 ± 2.34 + 63.26 ± 3.19 +
LesionColor 65.70 ± 3.61 + 74.13 ± 2.67 +
LesionShape 49.89 ± 5.34 + 61.74 ± 7.06 +
Wavelet 72.31 ± 2.75 + 88.13 ± 3.58 +

performances with 89.77±1.84% and 97.26±1.25% on PH2

and Dermofit datasets, respectively.
From the results of the statistical significance test presented

in Table II, it has been seen that the proposed WGP-5
method not only outperformed EGP-1 (single tree) but also
outperformed all the existing WGP-4 and EGP-4 (multi-tree)
classification methods, which proves the effectiveness and
authenticity of our proposed method for melanoma detection.
In comparison with non-GP and WGP-1, WGP-5 has shown
either comparable or better performance.

B. Multi-class Classification
The results for the task of multi-class classification for

the two datasets are presented in Table III. Among the four
classification algorithms in the WGP-4 and WGP-5 methods,
J48 achieved the highest classification performance. In case of
WGP-4, it has achieved 80.64±2.24% and 69.25±1.41% test
performance on the PH2 and Dermofit datasets, respectively,
which increases around 5% while using WGP-5 showing the
effectiveness of the CF evolved with wavelet features. It is
worthwhile to note here that PH2 dataset has 3 classes and
Dermofit has 10 classes (more difficult). For both WGP-4 and
WGP-5, most of these classifiers are performing well for a
3-class problem (PH2 dataset) on the unseen data such as
SVM producing 77.17± 2.00% and 84.92± 2.31% accuracy,
respectively, however, only J48 performed well enough for
the complex 10-class problem (Dermofit dataset) reaching
classification performance as high as 74.05 ± 1.52%. From
the results of the statistical test presented in Table III, clearly
the proposed WGP-4 and WGP-5 methods outperformed all
the non-GP methods as well as the WGP-1 methods on the
easy (PH2) and difficult (Dermofit) datasets, which shows its
effectiveness for skin cancer image classification problems.

TABLE III
RESULTS OF MULTI-TREE GP METHOD FOR MULTI-CLASS

CLASSIFICATION: ACCURACY (%) ON THE TEST SET OF BOTH DATASETS.

Classification Algorithm PH2 Dermofit

Non-GP
Methods

NB 71.00 ± 7.68 + 45.92 ± 3.63 +
SVM 59.50 ± 8.50 + 51.08 ± 4.82 +
k-NN 65.50 ± 10.36 + 43.54 ± 2.46 +
J48 58.00 ± 12.49 + 50.08 ± 3.27 +
RF 71.50 ± 8.67 + 63.85 ± 3.00 +
MLP 68.50 ± 4.50 + 66.85 ± 4.66 +

WGP-1

LBPGray 52.00 ± 6.34 + 35.27 ± 1.02 +
LBPRGB 62.42 ± 4.84 + 41.80 ± 1.94 +
LesionColor 52.17 ± 3.23 + 43.41 ± 0.00 +
LesionShape 51.33 ± 4.37 + 41.28 ± 0.00 +
Wavelet 67.17 ± 4.78 + 43.48 ± 1.12 +

WGP-4

NB 75.01 ± 1.76 + 49.23 ± 1.51 +
SVM 77.17 ± 2.00 + 38.69 ± 1.34 +
k-NN 57.43 ± 2.40 + 41.13 ± 0.91 +
J48 80.64 ± 2.24 + 69.25 ± 1.41 +

WGP-5

NB 80.31 ± 2.03 58.99 ± 1.25
SVM 84.92 ± 2.31 53.05 ± 1.57
k-NN 63.46 ± 2.55 47.46 ± 1.85
J48 85.82 ± 1.60 74.05 ± 1.52

C. Overall Results

It is evident from the results of binary and multi-class
classification that generating the wavelet-based CFs in the
proposed WGP-5 method significantly helps the classification
algorithm to build more accurate classifier compared to the
existing approaches. The WGP-5 has completely outperformed
WGP-4 having around 5% improvement in both the binary
and multi-class classification tasks on both datasets. Though,
these wavelet features significantly help the non-GP and WGP-
1 methods (as well) to acheive performance gains compared to
the proposed WGP-5 for binary classification task, these meth-
ods remain unable to cope well with multi-class classification
task. For illustration, WGP-1 with wavelet features produces
96.94 ± 1.33% accuracy (Table II) for binary classification,
whereas the same method results in 43.48 ± 1.12% accuracy
(Table III) for multi-class classification. This shows that the
proposed WGP-5 method works not only well for the easy
(binary classification) task but also has the potential to produce
good performance for the difficult multi-class classification
task leaving other non-GP and existing GP methods far behind.

Different types of features are effective in classifying images
captured from different devices. For PH2 dataset, LBPRGB

and wavelet features among WGP-1 and EGP-1 have relatively
good performance among the five feature sets as shown in
Table II. However, for Dermofit dataset, LesionColor and
wavelet features among WGP-1 and EGP-1 have relatively
good performance. For the results of multi-class classification
(Table III), similar behavior is shown on PH2 dataset, whereas
such trend is not seen for Dermofit dataset. The difficulty level
when moving from binary to multi-class classification for PH2

dataset is less (2 classes to 3 classes) as compared to Dermofit
dataset (2 classes to 10 classes).

It can be observed that images taken from different in-
struments require different feature extraction methods to get
informative features necessary to distinguish between classes.
Such a trend has been observed while constructing multiple
features using the WGP-4 and WGP-5 methods for binary
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Fig. 4. A good evolved GP individual for Dermofit dataset using the
different types of features producing 98.48% accuracy on the unseen data in
the binary classification task.

and multi-class classification. Among all the five trees, on
both datasets, wavelet features produced the best results most
of the time. However, LBPRGB and Lesioncolor features also
remain prominent on the PH2 and Dermofit datasets, respec-
tively. From the results of EGP-1 and WGP-1 methods, it is
concluded that selecting a suitable feature extraction method
is critical in producing good classification performance.

D. An Evolved GP Individual

To analyze why our proposed WGP-5 method achieved
good performance, we show a good GP individual (Fig. 4) with
five trees (CFs) evolved using the five types of features with
98.48% accuracy on the unseen data. This individual is taken
from the Dermofit experiments for binary classification. In Fig.
4, colored nodes represent terminals (each color represents one
type of features) and white nodes represent functions.

VI. CONCLUSIONS

This work has developed a novel feature construction
method for skin cancer binary and multi-class image classifi-
cation using multi-tree GP in a wrapper approach. The pro-
posed method incorporates various types of multi-channel and
multi-resolution features which possess information related to
RGB and gray-level pixel-based image properties, variation in
color across the lesion image, as well as geometrical border
shape properties. These five types of pre-extracted features are
provided to MTGP by utilizing suitable genetic operators such
as same-index-crossover/mutation. The MTGP method evolves
five CFs which are then given to a classification method to
generate a model for skin image classification. The proposed
method has proved useful for both binary and multi-class
skin image classification problems as it has outperformed all
the six non-GP classification algorithms, the existing MTGP
embedded approach and the single-tree GP methods showing
evidence of effective discrimination between classes.

Due to the page limit, we remain unable to dig into the
details of prominent features appearing in the CFs of a GP

individual which we would like to explore in future. Further,
we would investigate the impact of using pre-processing
techniques before feature extraction to remove the various
artefacts present in skin images such as hair and reflection.
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