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Abstract—Video cameras with interlaced scan sensors find
applications in a variety of tasks such as object tracking due
to their lower overhead in terms of memory and the higher
sensitivity in comparison to their counterparts that employ
progressive scan sensors. Such cameras, however, suffer from
noticeable interlacing artefacts that need to be corrected with
appropriate de-interlacing methods before the target in the
video can be accurately tracked. Despite this, the effect of de-
interlacing methods on the object tracking accuracy has not
yet been widely studied. In this work, the first comprehensive
comparison of different de-interlacing methods is carried out in
the context human computer interaction studies where precise
finger tracking is required. Furthermore, we propose a semi-
automatic sub-pixel annotation scheme to create precise ground
truth for fingertip location, allowing the analysis of the impact
of de-interlacing filters on tracking at sub-pixel level. The
experimental part of the work showed that the de-interlacing
filter by Pixop outperformed other filters that were evaluated.
Moreover, the plausible benefits of sub-pixel precise tracking over
pixel precise tracking in trajectory analysis were demonstrated.

Index Terms—De-interlacing, Hand Tracking, Key-point An-
notation, Human Computer Interaction

I. INTRODUCTION

Human-Computer Interaction (HCI) is an endeavour that
seeks to understand and transform our interactions with com-
plex technological artefacts in order to make these interactions
effective, efficient and more importantly, enjoyable. With the
recent advancements in gesture recognition, touch screens,
augmented and virtual reality, studies that seek to better un-
derstand potential usability concerns have gained prominence.
While data gloves that employ electro-mechanical, infrared or
magnetic sensors offer a robust avenue to address the challenge
of accurately tracking hand movements in HCI studies [1],
these devices, however, hinder natural hand movements and
are hence not suited for such usability studies. Commercial
computer vision based technologies such as Leap Motion
sensor [2] and Microsoft KinectTM on the other hand can
capture such interactions in an unimpeded manner, but are
limited by their narrow range and low frame rate respectively.

High speed cameras, that can capture video at frame rates
exceeding 250 frames per second (fps), coupled with visual
object trackers have since emerged as a viable solution [3],
[4]. Such a setup can be augmented inexpensively, with
the aid of a normal speed camera to infer 3-D real world
coordinates [5]. However, a minor blemish associated with

such a framework emanates due to the inability of the generic
object trackers to accurately localize the hand and finger
movements to the required level of precision leading to a
significant number of overshooting errors [6]. This apathy
of object trackers towards sub-pixel accuracy is warranted as
most object tracking algorithms are geared towards tasks that
consider robustness and real time processing, over accuracy,
as more critical factors in evaluating the success of a tracking
algorithm. However, in touch screen usability studies, sub-
pixel accuracy takes precedence as even minor errors in
target localization can lead to huge errors, especially while
considering parallax errors [7].

An interesting aspect that is commonly ignored in similar
usability studies is the fact that a large percentage of computer
vision applications rely on cameras that employ interlaced scan
sensors. The reason behind this is two fold: low overhead
related to memory and the higher sensitivity of interlaced
camera sensors compared with cameras having progressive
scan sensors [8]. However, in the event that an object in a
given frame exhibits considerable motion between consecutive
frames, tearing or interlacing artefacts are induced near regions
surrounding such objects which can significantly hinder the ap-
plicability of visual object trackers. De-interlacing algorithms
that interpolate each half-frame into a corresponding full frame
have emerged as a possible approach to handle such artefacts
while also doubling the number of frames. This, however, is a
fundamentally impossible task and brings about considerable
degradation to the quality of the video frames.

In this paper, efforts have been directed towards refining the
previously concluded usability study on 3-D touch screens by
Kuronen et al. [9] in the context of the frailties discussed
above. Specifically, we compare the various de-interlacing
filters, including a recent deep learning based de-interlacer
[10] and their implications on the performance of the visual
object trackers. Moreover, the benefits of sub-pixel precise
tracking over pixel precise tracking is studied by evaluating the
velocity and acceleration curves of the tracked fingertips. To
enable this, a robust sub-pixel annotation scheme is proposed
to allow for the creation of high precision ground truth for
tracker evaluation.978-1-6654-0645-1/21/$31.00 ©2021 IEEE



II. RELATED WORK

A. Visual Object Tracking
Visual object tracking is amongst the most rapidly devel-

oping field in computer vision with applications in various
disciplines such as robotics, automation and surveillance sys-
tems. The main objective of this field is to reliably estimate
the state of a certain target object across all the frames of any
given video sequence, given its state in the first frame [11].
The state of an object refers to information pertaining to the
object’s position, appearance and shape. An object tracking
framework essentially comprises three core elements: an ob-
ject representation model, a dynamic model, and a search
mechanism [12], of which the object representation model has
attracted an overriding amount of research interest and forms
the basis of classification of object trackers into generative and
discriminative methods [13]. Generative methods concentrate
on finding areas within a frame that are congruent to the target
object. On the other hand, discriminative methods distinguish
the target objects from the surrounding background and essen-
tially approach object tracking as a classification problem.

Previously, object trackers were known to be inept at their
handling of various challenges posed by partial occlusions,
motion blurs, scale variations and illumination changes, among
others, resulting in considerable research effort being directed
to this cause. These shortcomings, however, have been ad-
dressed considerably since the inception of the annual Visual
Object Tracking (VOT) Challenge [14] that made it possible to
achieve performance standardisation in tracker evaluation over
its carefully compiled data-sets. Over its 8 iterations, many
promising methodologies have emerged, but in particular, there
has been an extensive acceptance of correlation filters based
approaches with complex features and the deep convolutional
neural networks due to the associated improvements in tracker
performances [15], [16].

B. De-Interlacing
Interlacing can be described as a spatio-temporal sub-

sampling technique, for TV broadcasts and video recording,
that seeks to double the perceived frame rate without increas-
ing the bandwidth. A frame in an interlaced video sequence
typically consists of two fields captured consecutively. While
one field consists of all odd-numbered lines of the frame,
the second field contains all the even-numbered lines of the
frame. The main benefit of interlacing stems from the fact that
the human visual system is less sensitive to flickering details
than to large-area flicker [17]. However, since two fields are
captured at slightly different time intervals, video sequences
consisting of fast moving objects exhibit tearing or interlacing
artefacts, as shown in Fig. 1, which can be quite detrimental
to the success of various computer vision tasks.

De-Interlacing algorithms, on the other hand, seek to in-
terpolate two fields (half-frames) to recombine them into a
corresponding full frame in order to alleviate the sub-sampling
artefacts. This however is an ill-posed problem since two
fields are captured at slightly different time intervals. De-
interlacing algorithms can be classified into two categories:

Fig. 1: An illustration of the tearing artifacts that arise due to
interlacing (left) and their subsequent remediation by means
of a de-interlacing algorithm (right).

techniques that aim to reproduce the whole frame from each of
the odd-even fields independently and techniques that attempt
to analyse the object motion before de-interlacing. While the
former approach is associated with real-time performance but
lower visual quality, the latter approach generally leads to
better visual quality at a relatively higher computational cost.

C. Hand Movement Analysis Framework

The current work builds on a framework originally proposed
in [18] and further developed in [9] with a view towards
understanding the interactions of human subjects with stereo-
scopically rendered content on 3-D touch screens. Particularly,
the authors were interested in deciphering user behaviour in
instances when the stereoscopically rendered content floats in
front of or behind the touch screen surface. The proposed hand
movement analysis framework consisted of several blocks
starting from setting up of the touch screen experiment and
a collection of the video sequences. Video sequences were
captured by means of a multi-camera setup involving a Sony
HDRSR12 camera and a Mega Speed MS50K camera which
captures videos at a frame rate of 25 fps (interlaced) and 500
fps (progressive) respectively. Based on the pointing actions
carried out by 20 test subjects, paired normal and high speed
video fragments were carefully extracted and pre-processed.
Visual object trackers were then employed to reliably estimate
the individual 2-D coordinates of the fingertips of the subjects
for a particular pointing action from both the cameras across
all the video frames. The obtained trajectory data were sub-
sequently filtered and was used to compute the 3-D world
coordinates of the fingertips with the aid of the intrinsic and
extrinsic parameters of the cameras. The experimental setup
for data collection as well as the subsequent hand movement
analysis framework has been summarised in Fig. 2 [9].

Earlier studies on the framework were found wanting with
regard to the tracker accuracy as the authors had to resort
to unconventional strategies such as a backward tracking of
the normal speed videos [5] which complicates the task of
3-D reconstruction. Additionally, in case of the high speed
videos the movement between subsequent video frames could
easily amount to less than a pixel and hence, the velocity
and acceleration curves obtained from the trackers used in the
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Fig. 2: The experimental setup (above) and the subsequent
hand movement analysis framework (below)

earlier studies were also unstable and required a certain degree
of a smoothing in order to obtain a reasonable approximation
of the finger trajectory. While these limitations were addressed
to a certain extent in one of the more recent iterations of
published literature [19], without a highly accurate and sub-
pixel precise estimate of the ground truth the authors could
only then speculate about the superiority of such an approach.
Furthermore, an unforeseen correlation was observed between
the quality of the de-interlacing filter and the success of
tracking in the case of the interlaced normal speed videos
which warranted a broader study [19]. In the current work,
we focus our attention primarily on these observations. Firstly,
we propose a highly robust and accurate sub-pixel precise
annotation scheme to establish ground truth fingertip locations
for each of the video frames. Following which, we compare the
performance of a modern deep learning based de-interlacing
filter with the classical ffmpeg based de-interlacing filters with
respect to the performance of the visual object trackers. Lastly,
we briefly investigate the advantages of sub-pixel precise
tracking over pixel precise tracking in terms of the observed
trajectory, velocity and acceleration curves.

III. EXPERIMENTS

A. Dataset Description

As described earlier, the video sequences considered in the
present work emanate from two different cameras: A high
speed camera that captures video sequences at 500 fps at a
resolution of 800x601 and a normal speed RGB camera that
records the user’s pointing actions at 25 fps (interlaced) at
a resolution of 1440x1080. While the initial HCI experiment
captured pointing actions from 20 different human subjects we
randomly sample 10 video sequences arising from different
test subjects.

B. Sub-Pixel Precise Annotation

The incorporation of sub-pixel precise trackers causes tradi-
tional bounding box based annotation to be insufficient. More-
over, manual annotation frameworks such as LabelMe [20] add

a degree of subjectivity to the task of annotation which could
result in erroneous ground truth estimates, thereby corrupting
any conclusions with regard to the tracking accuracy. There-
fore, we devised an objective sub-pixel precise annotation
scheme which employs a coarse-to-fine strategy for identifying
the fingertip locations in any given frame.

At first, the pixel intensities are smoothed in the grayscale
video frames by means of median filtering. This is necessary
as the pixel intensities on the periphery of the fingertips were
observed to be unstable. After this, the annotator draws a
n-sided polygon by selecting n points around the ground
truth fingertip position to mask out the region of interest.
This is vital in order to prevent pixel intensities from the
objects in the immediate vicinity of the finger such as the
trigger box, or the touch screen to interfere with the soon-to-
follow finger edge computation. After isolating the region of
interest, a coarse estimate of the fingertip location is obtained
based on the following assumption: the fingertip is the central
uppermost nonzero pixel and the immediate vicinity of the
fingertip consists of pixels with intensities zero. By means of
the obtained coarse estimate of the fingertip, the left and right
edge points and their corresponding midpoint are computed
at a few discretized pixels (ranging from 1 to 10 pixels)
below the coarse estimate. Then a line connecting the mid-
point between the lowermost center point and the coarse
fingertip estimate from earlier represents the longitudinal axis
of the fingertip. The pixel intensities are then interpolated
and smoothed along the fingertip axis and beyond followed
by computing the gradient on the smoothed-interpolated pixel
intensities along the axis. The point of minima, so observed
from the computed intensity gradient, then corresponds to an
accurate sub-pixel precise estimate of the fingertip position.
The annotation strategy is summarised in Fig. 3.

C. De-interlacing and Tracking

The core objective of this study was to understand the effect
of various de-interlacing filters on the accuracy of the trackers.
While a study could be conducted on the reconstruction quality
of various de-interlacing filters by applying them on the
interlaced video sequences collected from the study, such a
comparison however, would be incomplete without a ground
truth reference progressive video. For this reason, the high
speed video sequences captured at 500 frames per second
were used instead. The high speed videos were converted into
video sequences of 50 frames per second, which constituted
as the ground truth and the resultant ground truth sequence
was then interlaced for it to be de-interlaced by the various
de-interlacing filters included in the study. A predetermined
tracking algorithm was then employed with exactly the same
initialization settings (bounding box estimate for the first
frame, tracker parameters etc.) and was used to track the finger
movements across both, the compiled video sequences as well
as the generated ground truth progressive video. The tracker
results were averaged over two runs on each of the video
sequences.



Fig. 3: A visual illustration of the proposed annotation framework.

Accurate Tracking by Overlap Maximization (ATOM) [16]
was selected as the tracking method since it outperformed the
competing methods in an earlier study on similar data [19].
As for the de-interlacing algorithms, we selected five of the
most popular classical de-interlacing algorithms available via
FFmpeg [21] while also included a de-interlacing filter from a
modern cloud based AI video enhancement tool, Pixop [10].
The ffmpeg based de-interlacers considered included the We-
ston 3 field de-interlacing filter (w3fdif), Motion Compensated
De-Interlacing filter (mcdeint), Yet-another de-interlacing fil-
ter (yadif), Bob-Weaver de-interlacing filter (bwdif), and the
Neural network edge directed interpolating (nnedi) filter.

1) Accurate Tracking by Overlap Maximization: The
ATOM tracker aims to obtain a high-level understanding
about the object’s state in order to reliably track the target
object [16]. This is achieved by segregating the task of tracking
into two modules: a classification module that is trained online
to predict a rough 2-D estimate for the target object and an
estimation module that utilizes a pre-trained Intersection over
Union (IoU) predictor network [22] and the rough estimates
from the classification module to obtain a refined bounding
box estimate for the target in the given frame. For more
detailed description of the algorithm, see [16].

2) De-Interlacing Methodologies: The w3fdif was devel-
oped at the BBC R&D [23]. This filter employs the field
dominance information in order to evaluate which of the odd
or even fields to place first in the output. Yadif evaluates the
pixels in the current, previous and next frame in order to re-
create the field by means of edge directed interpolation. Two
sets of outputs depending on its mode of operation can be
obtained. If the mode is set as ”send frame” the output consists
of just one frame for each input frame and if the mode is
set as ”send field” the resulting output will consist of one
frame for each of the fields and thereby, doubling the frame
rate. The latter mode of operation was chosen based on a

comparative study carried out earlier in the framework of this
research, but the former mode was used in conjunction with the
mcdeint de-interlacing as described in the ffmpeg documen-
tation. The nnedi filter uses a predictor neural network along
with neighbourhood pre-processing for obtaining the missing
pixels by using information available only from the field being
reconstructed. The bwdif filter employs a consolidation of the
previously described de-interlacing filters such as yadif and
w3fdif along with a few cubic interpolation algorithms for the
de-interlacing of the interlaced video sequences. Lastly, the
novel pixop tool [10] employs a deep convolutional neural
network in order to optimally merge the effects of motion and
temporal imperfections to generate high quality de-interlaced
output.

D. Experimental Results

Central Location Error (CLE) was employed as the evalua-
tion metric for the tracker performance. CLE is fundamentally
a measure of the Euclidean distance between the estimated fin-
gertip position of the tracker bounding box and the annotated
fingertip position in any given frame. The adoption of CLE
measure is justified in the context of the current study as it
aligns well with the objective of tracking the fingertips and
allows for comparability with the similar experiments carried
out in the framework of touch screen usability experiment [5],
[9], [19]. Additionally, average errors were computed along the
x and y axis, respectively. The Tracker Success (TS) score was
used to evaluate the success of the tracker across the entire
video sequence. It corresponds to the percentage of video
frames where the distance between the obtained fingertip esti-
mate from the bounding box was less than a defined threshold
from the ground truth fingertip position. The threshold was
set as half the width and the height of the predicted bounding
box window along the x and y axes respectively. Lastly, the
average Peak Signal-to-Noise Ratio (PSNR) and the Structural
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Fig. 4: Plots illustrating the quality of the video frames
generated by various de-interlacing filters based on the PSNR
and SSIM scores for one of the videos in our dataset. (Best
viewed zoomed in at 250%)

Similarity Index (SSIM) [24] of all the de-interlaced video
frames were computed against the ground truth video frames
in order to identify any existing correlation between the quality
of de-interlacing and the tracker performance.

The results of the experiments averaged over the entire
dataset are presented in Table I. The results demonstrate clear
benefits of the deep learning based Pixop Video Enhancement
Tool which provided the best performance in most categories
including error along x, error along y, CLE, TS as well as
PSNR. Fig. 4 further illustrates the de-interlacing capability
of the various methodologies in terms of PSNR and SSIM,
on a per frame basis, for one of the videos from our dataset.
The drop in PSNR and SSIM scores in the latter stages of
the video sequences can be explained by the fact that de-
interlacing methods are a function of the amount of motion
occurring in the frame and in the sample video considered
here the fingertip only starts moving after the 140th frames.

E. Sub-Pixel Precision Trajectories

Prior studies involving the hand movement analysis frame-
work [5], [9] relied exclusively on pixel precise bounding box

TABLE I: Results of the experiment. The best performing
de-interlacing filter has been highlighted in green while the
tracking results on the Ground Truth video represents the upper
limit of performance.

Videos ∆x (↓) ∆y (↓) CLE (↓) TS (↑) PSNR (↑) SSIM (↑)
Ground Truth 4.1267 1.6403 4.6823 97.1225 % - -

bwdif 6.3363 4.4126 8.1540 93.8732 % 44.4670 0.9920
mcdeint 34.5164 34.2731 50.6011 69.7259 % 37.4332 0.9882

nnedi 6.3381 3.7607 7.7691 94.0421 % 44.1282 0.9917
yadif 7.6301 4.2252 9.0007 93.3725 % 44.2774 0.9915

w3fdif 41.2231 38.3313 57.4718 69.4332 % 37.3993 0.9882
Pixop 4.9189 2.824 6.2703 95.9218 % 44.5841 0.9916

(a) Pixel Precise tracking

(b) Sub-Pixel Precise tracking

Fig. 5: Illustration of the difference in the velocity and accel-
eration curves arising from difference in tracking precision on
the High Speed Videos.

estimates from the tracking algorithm. Such reliance implied
that any information pertaining to the tracked fingertip’s
velocity and acceleration would be unreadable without prior
smoothing of the raw trajectories. One of the reasons behind
the unreadability of trajectories can be attributed to instances
where the fingertip movement between consecutive frames
is less than a pixel which would lead to rounding up of
the bounding box estimates. We argue here that sub-pixel
definition of the bounding box would be more pragmatic and
would go some way towards remedying such errors due to
rounding up. This advantage has been illustrated in Fig. 5
wherein one can observe the minor improvement in terms of
the stability of the velocity and the corresponding acceleration
curves.

The remaining inaccuracies in the fingertip location are due
to the fact that the predicted bounding box in every frame is
dependent on the confidence score of the IoU Net employed
by the ATOM tracker which varies inevitably despite little to
no movement of the finger in consecutive frames. Coupled
with the fact that the fingertip is localised along the edge of
the predicted bounding box rather than its center, it is clear to
see that sub-pixel precision tracking on its own is insufficient
for addressing all the errors. While trajectory smoothening
approaches were employed in previous pixel precision studies,
they have their own vulnerabilities. For instance, a large
window size for smoothening could potentially imply a larger
distortion to the raw true trajectories. The choice of window
size is of vital importance, especially at the points of interest
– the start and end of the finger movement in the given video
sequences. In Table II, the effects of smoothening on the
velocity and acceleration curves are compared and visualized
for the high speed video sequences. It can be observed



TABLE II: Comparing the effect of smoothing window size
on the velocity and acceleration curves.

Nr. Precision Window
Size Velocity Curve Acceleration

Curve

1 Pixel 19

1400 1500 1600 1700 1800 1900 2000 2100
0

500

1000

1500

2000

2500

velocity curve

1400 1500 1600 1700 1800 1900 2000 2100

-3

-2

-1

0

1

2

3

4
10

4

acceleration curve

2 Sub-
Pixel 19

1400 1500 1600 1700 1800 1900 2000 2100
0

500

1000

1500

2000

2500

velocity curve

1400 1500 1600 1700 1800 1900 2000 2100

-3

-2

-1

0

1

2

3

4
10

4

acceleration curve

3 Pixel 9

1400 1500 1600 1700 1800 1900 2000 2100
0

500

1000

1500

2000

2500

velocity curve

1400 1500 1600 1700 1800 1900 2000 2100

-1.5

-1

-0.5

0

0.5

1

1.5
10

5

acceleration curve

4 Sub-
Pixel 9

1400 1500 1600 1700 1800 1900 2000 2100
0

500

1000

1500

2000

2500

velocity curve

1400 1500 1600 1700 1800 1900 2000 2100

-1.5

-1

-0.5

0

0.5

1

1.5
10

5

acceleration curve

5 Pixel 5

1400 1500 1600 1700 1800 1900 2000 2100
0
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velocity curve
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-0.5

0
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1

1.5
10

6

acceleration curve

6 Sub-
Pixel 5

1400 1500 1600 1700 1800 1900 2000 2100
0

500

1000

1500

2000

2500

velocity curve

1400 1500 1600 1700 1800 1900 2000 2100

-1.5

-1

-0.5

0

0.5

1

1.5
10

6

acceleration curve

that with a larger window size the curves arising from sub-
pixel and pixel precise tracking tend to converge, but with
a smaller window size the difference between them becomes
pronounced. Smaller smoothing window sizes are preferable
as they imply that in frames with high motion the deviation
from the original trajectory is minimal.

IV. CONCLUSION

In this work, we explored a few intricate details concerning
a computer vision based HCI experiment that were previously
unexplored. Specifically, we address the issue of sub-pixel
annotation while allowing for human errors via our semi-
automatic annotation scheme. Apart from this, we also show-
cased the importance of the choice of de-interlacing algorithms
on the tracker accuracy. Lastly, we argued the relevance of
sub-pixel precision in the context of our HCI experiment
while also addressing the shortcomings and the reason behind
them. While we based our findings on a very specific HCI
experiment, our findings can be easily interpolated to other
computer vision based HCI experiments as well as practical
machine vision tasks relying on interlaced scan sensors and
precision object tracking.
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