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The global trend towards digitalization along with the 4th Industrial Revolution allows
building new innovative solutions to optimize manufacturing. In particular, the highly
competitive sawmill industry is not an exception. The industry always depends on ef-
ficient raw material utilization, and thus, exploration of the internal log structure is an
important feature in the timber conversion process. One common approach for a com-
prehensive internal wood structure examination is virtual sawing that is predicting the
outcome of sawing process based on log measurements. The main objective of this thesis
was to study the suitability of state-of-the-art generative adversarial networks for virtual
sawing. The specific aims were to choose an appropriate generative adversarial network
architecture to build a trainable model as an extension to an existing virtual sawing sys-
tem. The proposed method for image-to-image translation is capable to synthesize the
photorealistic images of the boards based on log measurements. The defects (knots) on
virtual boards were detectable and their locations correspond to those in real boards.
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1 INTRODUCTION

1.1 Background

The Finnish forest industry accounted for 20% of the total export value with 9 thousand
million EUR generated GDP and employment of 62000 people [1]. The largest part of
the sawmill business depends on log processing. The raw material expenses are normally
about 60-70% of total costs [2]. Therefore, the sawmill profitability highly depends on
efficient raw material utilization. Moreover, the potential gain from a more effective board
production reduces the wood wastes (residues) and leads to a decline in the volume of
excess logging and the development of sustainable forestry.

Thus, optimization of the sawing parameters is essential in terms of rational forest re-
source management and revenues of the mill companies. Currently, a sawing pattern and
an angle are not based on the internal features of a log, since the first is decided before-
hand, and the second is typically chosen randomly. The location and sizes of the internal
wood defects strongly impact the end-product quality as they decrease the local strength
of the sawn products. The most crucial internal defect is a knot. A knot is a place where
the tree branches join the stem and they become an integral part of it (see Figure 1) [3].
Hence, a system that would provide a transparent feedback loop for the mill operator on
the internal wood structure is capable to increase yield and highly valuable for the sawmill
industry.

Figure 1. Knot is a natural structural wood defect [3].

The master’s thesis focuses on virtual sawing, which simulates the sawing process with a
digital reconstruction of a wooden log in order to predict the outcome of the real sawing
process. The virtual sawing system can help an operator to make the correct decision
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and to increase the production rates. More specifically, the thesis considers generative
adversarial networks (GAN) to construct a trainable model for virtual sawing. GANs
are powerful deep machine learning models that consist of two neural networks: gen-
erator and discriminator. GANs are commonly used for generating realistic images or
translating them from one domain to another (image-to-image translation). The work
builds around earlier research on virtual sawing where laser scans of a log surface were
utilized to estimate the knot locations inside the log (see Figure 2) [4]. The method out-
puts grayscale images (knot maps) where the pixel values correspond to the probability
of the knot appearing in that location on the sawn board. The grayscale knot maps are
used as an input for the GAN, which translates them to photorealistic images. Moreover,
the study explores the capability of an image-to-image GAN based technique to generate
photorealistic images from raw surface heightmaps projected onto the boards surface.

Figure 2. Step by step algorithm of obtaining of the knot maps [4].

This master’s thesis continues the work carried out in the DigiSaw research project [5].
The DigiSaw project is oriented to develop and to modify sawmill manufacturing pro-
cesses via the implementation of novel digital solutions.

1.2 Objectives and delimitations

The main goal of the master’s thesis is to implement a trainable virtual sawing model
based on the selected GAN architecture. The model should be capable to produce pho-
torealistic images from the knot maps and the raw projected heightmaps obtained in the
mentioned research (see Figure 3) [4]. The main objectives of this thesis are the following:
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(a) (b)

Figure 3. An input conversion to a photorealistic image: (a) Using as the input a knot map; (b)
Using as the input a raw projected heightmap

1. Study the state-of-the-art models for generative adversarial networks.

2. Select a suitable model for the virtual sawing system.

3. Prepare a dataset of RGB images and corresponding knot maps and raw projected
log surface heightmaps.

4. Implement, train and evaluate the applicability of the proposed GAN architecture.

5. Study the possibilities to modify the virtual sawing method proposed by Zolotarev
et al. to improve the GAN performance [4].

As this work is based on the previous research, the data delimitation is inherited, only
Scots pine (Pinus sylvestris) is considered [4]. However, the GAN method should be also
applicable to wood species if proper training data is provided.

1.3 Structure of the thesis

This thesis organized as follows: Chapter 2 gives a short introduction to the sawmill
process and existing machine learning frameworks for its optimization, including virtual
sawing. Chapter 3 provides an overview of the generative models and state-of-the-art
approaches for generative adversarial networks in terms of an image-to-image transla-
tion task. Chapter 4 discusses all the details of the measurements-to-image translation
including the implemented GAN architecture. The results are presented in Chapter 5. In
Chapter 6 the discussion of the achieved results and possible future work is given. Finally,
the conclusions are drawn in Chapter 7.
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2 SAWMILLING AND VIRTUAL SAWING

2.1 Sawmill process

The sawmilling process refers to a certain number of steps in order to transform raw wood
material into the final product, e.g., planks or boards [6]. It includes a wide range of
activities from harvesting and transportation of roundwood to timber drying, sorting, and
grading (see Figure 4) [6]. Approximately, 50% of the raw material volume (roundwood)
converts to viable boards and planks [7]. In the next subsections, the base outline is
presented where the conversion chain depends on the sawmill equipment, environment, a
species of wood material, and the desired product as well [3].

Figure 4. The sawmill process from forest to the sawn wood product [6].
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2.1.1 Log sorting and barking

After harvesting trees from a forest, roundwood is delivered to a sawmill factory [7]. On
arrival at the sawmill, roundwood is sorted by species, dimensions (length and diameter),
end-use, and other relevant features. The logs are accumulated in sufficient amount to
form a buffer which provides continuous manufacturing in the case of the material supply
disruptions [6]. Further processing requires debarking the logs. Debarking is a protection
measure from excessive wear and damage to the sawmill equipment, but it also contributes
a sawyer to estimate the quality of an arrived timber [6].

2.1.2 Log sawing

Next the logs are cut to the maximum possible length with a cut-off saw and put onto
a headsaw carriage [6]. A headrig operator chooses a sawing pattern to obtain the most
efficient utilization with the minimum volume of waste and conveys accordingly the log
through a headsaw. The sawing pattern is defined by various parameters such as a type
of the sawing machines, a log size, a type of wood, condition of the wood, a proportion
of heartwood to sapwood, a future use, structural or decorative, and also customer re-
quirements for the thicknesses and widths (see Figure 5) [3] [8]. More specifically, wood
can be divided into two basic subgroups, that is hardwood and softwood. Hardwood usu-
ally comes from deciduous trees which lose their leaves annually. Softwood generally
comes from conifer trees, which usually remain evergreen. The trees from which hard-
wood is obtained tend to be slower growing, meaning the wood is usually denser. As a
consequence, hardwood and softwood require distinct sawing approaches [3]. Finally, the
received wood material is sawn into planks and boards. On the last step of this stage, the
edges are aligned and the defects are pruned by edging and trimming in order to upgrade
the lumber quality and to standardize the proportions [6].

2.1.3 Sorting and grading

At this stage, the sawn timber is sorted according to the dimensions and species, and
then is graded [6]. Grading refers to the categorization of the lumber which comes from
an overall quality and a condition [3]. Quality is a quantity, a size, and a type of the
following defects (see Figure 6):
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(a) Big log (b) Small log

Figure 5. Commonly used sawing patterns: (a) For a big log; (b) For a small log [8].

• Natural defects (e.g., knots).

• Defects as a result of drying (checking, splitting, distortion).

• Machining defects (as a result from saw/roller marks).

Condition is generally connected with surface staining and a moisture content [3].

Figure 6. A possible appearance of the different grades of European softwood [3].

2.1.4 Drying

The timber that is not sold green (freshly felled, containing "free water") is enhanced
further by a drying procedure [6]. The main goal of lowering the moisture content, i.e. the
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drying, is to improve strength and color properties, to provide stability in size and shape,
to reduce weight, and many other enhancements [3]. The drying process is generally
performed by one of the following methods [3]:

• Air drying (natural drying).

• Kiln-drying (artificial drying).

• Air drying followed by kiln-drying.

After the drying phase, the timber is inspected then if defects are revealed, and it may be
cut by trimming and regraded accordingly [6]. The final product is stacked and stored at
a warehouse.

2.2 Machine learning in sawmill process optimization

Over the last two decades, machine learning has developed dramatically from laboratory
research to practical technology with an extensive commercial use [9]. It has emerged
as the method of choice for developing computer vision, speech recognition, natural lan-
guage processing, robot control, and many other systems [9]. Machine learning systems
can be described as algorithms that are capable to perform tasks by generalizing from ex-
amples [10]. This approach is often cost effective compared to traditional programming
where codes and rules are formulated manually by a person [10]. The machine learning
approaches are derived from data and how the data should be utilized by a learning sys-
tem [11]. The fundamental goal of machine learning is to train an algorithm on a limited
amount of data (training data) in such a way that chosen model performs well on the new
data (test data, previously unseen).

Digitalization of the manufacturing processes leads to automation in production tech-
niques, lowered response times, and increased operation accuracy, more efficient storing
and distribution, and other industry optimizations [12]. In particular, the digitalization of
the sawmill industry is proceeding via numerous researches in the application of machine
learning and computer vision models. However, there are still many opportunities to be
found and researched since the 4th Industrial Revolution has just begun.
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2.2.1 Defect detection in sawn timber

Automated quality control is an important feature for the sawmill industry, as produced
timber need to be efficiently sorted into different grades. Thus, it is vital to sort obtained
planks and boards as accurately and fast as possible [13]. There exist numerous computer
vision and machine learning based approaches for a surface inspection and an identifica-
tion of different defects on sawn timber [14]. However, in terms of computer vision and
machine learning systems three general steps can be highlighted as follows:

1. Localization of defects.

2. Feature extraction for defect characterization.

3. Classification of defects.

One of the frameworks for defect detection was built in the research [13] (see Figure 7).
The convolutional neural network (CNN) model was applied for analyzing visual imagery
reaching more than 92% classification accuracy in detection of the mechanical damages
on boards [13].

Figure 7. A diagram of the proposed method for the mechanical damages detection from sawn
timber images [13].
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2.2.2 Wood species identification

Another substantial task in the industry is the identification of species as their mixing
can lead to operational costs due to the differences in wood processing between species.
Manual verification of boards and planks is impossible for a modern sawmill environment
with high production rates. This calls for an automated visual inspection system. The
proposed method [15] for the wood species identification is based on CNN achieving
almost a perfect accuracy of 99.4% (see Figure 8).

Figure 8. Proposed approach for wood species identification [15].

2.2.3 Timber tracing

Usually, in sawmills, a conversion pipeline is not straightforward and differs from log
to log. Therefore, a timber tracing system from the raw material to the end product can
be employed for efficient process control, the optimization of sawing, and the prediction
of final product quality [16]. The non-invasive board-to-log tracking technique was de-
signed for this purpose in the DigiSaw project. The outline of the solution is based on a
convolutional encoder-decoder network and includes the following stages (see Figure 9):

1. Laser point cloud transformation to a heightmap.
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2. Application of an encode-decode network to generate "barcode" from an image and
an heightmap.

3. Conversion of a "barcode" into a 1-D signal and executing a cross-correlation algo-
rithm to find the matching log.

Figure 9. The board-to-log matching process [16].

2.3 Virtual sawing

Virtual sawing or sawing simulation is one of the commonly used frameworks for in-
creasing the sawmill yield. Multiple log breakdown simulators have been developed.
There are products with a long history of researches and commercial attempts, such as
SIMSAW [17] which the first version was released in 1975 at the Council for Scien-
tific and Industrial Research [18]. WoodCIM [19] has been under development at the
Technical Research Centre of Finland (VTT) since early 1970. The more recent software
InnoSIM [20] was produced by the VTT in 2007, presumably as a replacement and a mod-
ification for WoodCIM. SEESAW [21] was initially designed by the New Zealand Forest
Research Institute as a research prototype in 1988, and in 1990 system was enhanced into
a much more powerful solution called AUTOSAW [22]. RAYSAW [23] was published in
2013 and is based on the surface laser-scanner data and applying a ray-tracing algorithm
for virtual sawing.

Commonly, data from an X-ray or a laser surface scanner is used as an input for a sawing
simulator. Then obtained information is mathematically reconstructed as a three dimen-
sional (3-D) approximation model with a cylindrical shape, i.e., virtual log. Finally, the
model is processed virtually considering the log internal structure. More advanced solu-
tions consider the available sawmill equipment and even desired outputs. Those sophisti-
cated techniques are often represented as a fully autonomous system that is capable to run
various scenarios for optimization of sawmill patterns and sawing parameters. However,
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even if a system is not fully autonomous, the results can be used as a recommendation
by the sawmill employees in order to define the most beneficial sawing pattern. The sys-
tems for optimization of sawing patterns are widely employed in the mill environment
and proven to have considerable evidence in profitability gain [24, 25].

2.3.1 WoodCIM

The WoodCIM is an integrated optimizing software system developed by VTT [19]. The
WoodCIM (as well as InnoSIM) simulates the operations of the whole production chain
from stem bucking to end products: timber, wood components, chips, and sawdust [26].
The sawing simulator consists of several modules and calculates the yield by comparing
different sawing patterns and set-ups. As an input the programme requires an accurate ge-
ometry of logs, quality requirements such as length and grades, sawing dimensions [19].
After sawing a log the software allows reconstructing a log model scanning sawn flitches
by the WoodCIM camera system (see Figure 10).

(a) (b)

Figure 10. Mathematical model of log of maritime pine demonstrating the internal structure: (a)
2-D reconstruction; (b) 3-D reconstruction [19].

According to [19], the framework demonstrated potential to solve an optimization prob-
lem for a mill as predicted outputs were close to the true outputs when simulations were
compared. One substantial drawback of the WoodCIM that is considering the locations
of knot inside a log only after an actual process of sawing.
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2.3.2 RAYSAW

The RAYSAW [23] is a research tool for virtual log sawing of hardwood based on process-
ing a high-resolution 3-D reconstructed laser-scan data (see Figure 11). The approach is
using internal defect prediction models to evaluate locations of the defects on sawn board
faces. The key feature of the system is to apply a ray-tracing algorithm for obtaining
virtual board images.

Figure 11. A sample point cloud image of a 3-D laser-scanned red oak log [23].

The simulator saws to a predefined pattern. Boards produced by the software can be
observed visually with a schematic view, and the results are possible to grade according
to the National Hardwood Lumber Association rules (see Figure 12) [23].

Figure 12. A computer generated and a true board from RAYSAW [23].
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2.3.3 DigiSaw

An alternative method proposed in the DigiSaw project [4] estimates the internal structure
using only external information, i.e., by a laser surface scanner. The approach allows the
employment of more practical and affordable laser range scanners in comparison to ex-
pensive or rather low speed computer tomography or magnetic resonance imaging based
systems. The framework comprises five major steps as follows (see Figure 2):

1. Point cloud filtering and centerline estimation.

2. Log surface heightmap extraction.

3. Knot segmentation.

4. Volumetric log reconstruction with knots.

5. Virtual sawing.

The final output represents the grayscale image of board faces with the depicted corre-
lation between the probabilities of knot appearing and the pixel intensities in the corre-
sponding locations (see Figure 13). This thesis focuses on the further development of the
proposed approach by implementing a more transparent feedback loop that transforms a
grayscale knot map into a photorealistic board image with an image-to-image translation
GAN based technique (see Figure 3).

Figure 13. A schematic representation of a virtual log with the generated knot maps inside. [4].
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3 GENERATIVE MODELS

The chapter gives an introduction to generative adversarial networks starting with gener-
ative and discriminative approaches in machine learning. After this, an outline for con-
volutional neural networks is given, since it is often used as the main building block for
GANs. Next existing deep generative models are shortly discussed. Finally, GANs are
examined including structure, application areas, and current state-of-the-art approaches.
Several models are discussed in terms of the image-to-image translation task.

3.1 Generative and discriminative model

In contrast to a discriminative approach where the goal is to learn from the underlying
distribution and to produce an accurate predictor, a generative approach models that un-
derlying distribution over the data in order to estimate the parameters of the model [27].
More formally, generative classifiers try to learn a model of the joint probability p(x, y)

where x are the inputs and labels are described by y, or simply p(x) if there are no labels.
Then new samples x can be classified by the Bayes rule and estimated probability distri-
butions p(y|x). Discriminative classifiers directly utilize the posterior probability p(y|x),
or learn a direct map from inputs x to the labels y. However, they never solve a more
general problem as an intermediate step such as modeling p(x, y) [28].

Consider an art dataset, a certain part painted by Vincent van Gogh and the rest by Sal-
vador Dalí [29] [30]. If a discriminative model is trained, the model would learn that some
colors, shapes, textures are more probably to describe the Dutch master and another the
Spanish painter. Then in the data space, the discriminative model draws a splitting line by
studying the difference between Dali’s and van Gogh’s paintings. As a result, from a new
observation x discriminative modeling estimates the probability of belonging to the cate-
gories and then outputs the most likely label as shown in Figure 14. A generative model
after training is modeling the distribution throughout the data space. The generative model
would be capable of solving a more difficult machine learning problem than analogous
discriminative models, such as the image generation task (see Figure 15) [29] [30]. To
summarize, the discriminative model is able to build a perfect predictor to identify van
Gogh or Dali paintings. However, the discriminative model is still incapable to create
a new painting that looks like van Gogh, Dali, or hybrid [30], whereas, the generative
model can learn and then generate a distribution with the sets of pixels that belongs with
a high probability to the training set.
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Figure 14. A discriminative modeling process modified from [29] [30].

Figure 15. A generative modeling process modified from [29] [30].
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3.2 Convolutional neural networks

CNNs are a specialized type of artificial neural network that is especially effective for
processing grid-like topology data, e.g., images that are organized in 2-D arrays of pix-
els [11]. One of the first CNN with the backpropagation algorithm for an image recog-
nition task was implemented by a research group at Bell Labs in 1990 [31]. LeCun et
al. proposed the LeNet architecture for the recognition of handwritten postal codes which
achieved an error rate of only 1% and a rejection rate of about 9% [31]. Later, CNNs have
found tremendous success in practical applications, most commonly in analyzing visual
imagery [32].

The "convolutional" in CNNs indicates that the network utilizes an operation called con-
volution over a general matrix multiplication in at least one of their layers [11]. Behind
CNNs are the four important features: local connections, shared weights, pooling, and
applying many layers [33]. A classic CNN is a composition of multiple building blocks
as follows: (see Figure 16):

• Convolutional layer.

• Pooling layer.

• Fully connected layer.

Figure 16. A typical structure of a CNN is formed by stacking the building blocks: the convolu-
tional layer, the pooling layer, and the fully connected layer (FC). A training process of the CNN
consists of a forward and a backpropagation algorithms [33].
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When a neural network receives an input x and generates an output ŷ, a signal flows
forward over the network [11]. The input x produces the primary signal which then
propagates up to the hidden units at each layer and in the end, forms ŷ. During the training
process the forwardpropagation can continue until producing a scalar cost J(θ), and this
denotes forwardpropagation. Whilst, the backpropagation algorithm is used to compute a
gradient by the signal from the cost which flows backward through the net [11].

The described CNN structure along with the backpropagation and the forwardpropaga-
tion algorithms allows to automatically and adaptively learn spatial features. As a conse-
quence, manual feature extraction and a building stage are skipped. However, due to the
previously mentioned factor, CNN is much more computationally expensive and requires
an immense amount of training data to adjust typically millions of learnable parame-
ters [34].

Convolutional layer

A convolutional layer is a general feature extraction component of the CNN that includes
commonly linear (convolutional) and non-linear operations (activation functions) [11].
The convolutional operation is an element-wise product between a kernel and an input
tensor which is calculated for each kernel location in the input tensor. An output ten-
sor is called a feature map. The convolution layer parameters can be defined as follows:
kernel size, number of kernels (channels), stride, padding, activation function (see Fig-
ure 17) [35]. Then the output tensor (result) is passed over a nonlinear activation func-
tion, for example, sigmoid, hyperbolic tangent (TanH), or rectified linear unit (ReLU).
The choice of an activation function depends on an application area but presently ReLU
is commonly used [34].

Pooling layer

A pooling layer performs a downsampling operation by reducing in-plane dimensionality
of the output tensor [34]. With the reduced size of the input images, a number of the
following learnable parameters are lowered, computational costs are decreased, and the
identified features become more robust [35]. The types of pooling layers are as follows:
max/min pooling, average pooling as shown in Figure 18 [34]. The hyperparameters for
pooling layer are similar to the convolutional layer and include the pooling method, filter
size, stride, padding.
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Figure 17. An example of convolution operation with 3 kernels, 3×3 sized, no padding, and a
stride of 1 [35].

(a) (b)

Figure 18. Pooling layers: (a) Max pooling filter; (b) Average pooling filter with size 2×2, and
stride 2 [34].

Fully connected layer

The last layer is typically transformed into a 1-D array of vectors each connected to a
fully connected layer or a dense layer [34]. In the dense layer, each input is connected
with each output by a learnable weight. The final layer usually consists of a number
of outputs equals to the number of classes in the case of an image classification task.
Moreover, an activation function in the fully connected layer is usually different from the
others layers and needs to be chosen accordingly to a classification problem. For example,
in the case of a binary classification problem sigmoid function is a good choice, while for
a multiclass case softmax function is prevalent [34].
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3.3 Deep generative models

Generative models can be separated into two groups of machine learning algorithms. The
traditional generative models operate with diverse forms of probability density functions
approximating the distribution. Infinite Gaussian mixture models [36], hidden Markov
models [37], and hidden naive Bayes models [38] are not capable to learn complicated
distributions [39]. In contrast, the deep generative models use such methods as stochastic
backpropagation, deep neural networks, and approximate of Bayesian inference for pro-
ducing new samples from variational distributions in large-scale datasets. Such models
are deep Boltzmann machine [40], deep belief networks [41], variational autoencoders
(VAE) [42], and GANs [43]. The last two techniques become prevalent in recent years as
they demonstrate the most efficient results. However, likelihood-free approaches such as
GANs outperform VAE models offering clear evidence of prevailing over autoencoders
in terms of an ability to infer and to model successfully complicated data distributions for
generating quality, realistic, and sharp images [39] [44] [45] [46].

3.4 Generative adversarial network

GANs are a kind of artificial intelligence algorithm introduced by Ian Goodfellow et al.
in 2014, designed to solve the generative modeling problem [43] [47]. They have demon-
strated a great practical value in realistic data generation tasks, most notably images (see
Figure 19).

Figure 19. Evolution of GANs in terms of high quality and realistic image generation [43].

The fundamental goal of a generative model is to learn a probability distribution of a train-
ing dataset as stated in Section 3.1. The GAN training process can be described as a game
between two machine learning models. The aim of the models is to find a local Nash equi-
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librium on each step: a point that is a local minimum of each player’s cost with respect
to that player’s hyperparameters [43]. Generally, deep neural networks, more precisely
CNNs, are utilized as a baseline for a typical GAN architecture (see Figure 20) [29]. The
first network is called a generator which is able to create samples from the distribution
pmodel. The generator samples come from a prior distribution p(z) with a vector z that is
used as input to the generator function G(z; θ(G)) where θ(G) determines learnable param-
eters for the generator strategy in the game [43]. The vector z can be thought of as a seed
in a pseudorandom number generator and is denoted as noise. The goal of the generator
is to learn the G(z) function with parameters θ(G) that converts the noise z into realistic
image instances.

Figure 20. A generative adversarial network structure [29] [43].

The second network is defined as a discriminator which considers produced instances x
and returns an estimate D(x; θ(D)) of whether x is a forgery or real [47]. Each network
tries to minimize its own cost for a generator J (G)(θ(G); θ(D)) and for the discriminator
J (D)(θ(G); θ(D)). However, the mentioned definition is not simply applicable in terms
of model optimization, since each player cost is a function of the other player parame-
ters [43]. The training process also endures several challenges, such as failure to converge,
a mode collapse, and vanishing gradient [47]. Nevertheless, GAN is indeed a powerful
deep generative model for diverse computer vision related problems: image-to-image
translation, image synthesis, text-to-photo translation, image inpainting, and cartoon gen-
eration [39] [45] [48].
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3.5 Challenges in training process of generative adversarial networks

The fundamental problem during the training process of generative adversarial networks
is the issue of a non-convergence [49]. The model might oscillate, destabilize and never
converge due to the fleeting nature of a convergence point.

For the most part, an optimization of deep models is searching for the lowest possible
value of a cost function. Although optimization algorithms usually provide a reliable
movement towards an optimum point, many problems can prevent an optimization. How-
ever, in the case of GANs, it is required to find the Nash equilibrium for two networks as
stated in Section 3.4. Therefore, even if both networks appropriately move in the direction
of the Nash equilibrium during the simultaneous gradient descent on the player’s update.
The update might move the other network in the opposite course. Thus, the networks are
highly sensitive to the hyperparameters and may reach the equilibrium in one scenario,
but in other cases. they can over and over recall each other’s progress without achieving
any successful result [49].

A special case of non-convergence is the mode collapse, also known as the Helvetica
scenario [47]. The problem denotes an incident when a generator network trains to convert
several different inputs z into the same output point. In Figure 21 the mode collapse issue
is illustrated. The top row presents the target distribution expected to be learnt by the
model. The lower row describes a series of distributions learnt with a particular time
range of training. Instead of converging to the target distribution keeping all of the modes
in the training data. The generator network only produces a single mode at a time cycling
among different modes, since the discriminator network trains to reject the others [49].

Figure 21. An example of the mode collapse problem [50].
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3.6 Image-to-image translation

Various image processing, computer vision, and computer graphics tasks can be consid-
ered as the image-to-image translation problem. The idea of image-to-image translation
was raised by Hertzmann [51], who described a nonparametric framework for the one-
to-one image translation [52]. The image-to-image translation task refers to mapping a
source image domain to a target image domain by changing the domain-dependent prop-
erties of the source image, for example, colors, but preserving the domain-independent
features like content, e.g., season transfer and painting style transfer (see Figure 22) [39].

Figure 22. The image-to-image translation using Cycle-Consistent Adversarial Networks [52].

Variants of GANs have grown exponentially since the framework has been proposed in
2014. Researchers are constantly attracted to study GANs and have produced a large
number of models due to the special structure and a great generation capability of the
approach. However, in terms of the image-to-image translation task might be possible to
categorize them as shown in Figure 23.

All the machine learning models depend on the type of training data. The type of training
data usually defines an applicable approach: supervised or unsupervised. For the super-
vised image-to-image translation there is a labeled set of pairs of images (x, y) in domains
(X, Y ) where each image x ∈ X is matched with the corresponding image from y ∈ Y .
GAN learns a joint probability distribution PX,Y(x, y) to produce a new sample by map-
ping from the first domain to the second (X → Y ) [53]. The supervised approaches can
be further divided by an objective function into directional and bidirectional.
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The unsupervised image-to-image translation focuses on learning the conversion with-
out aligned pairs in a set of images. With the given marginal distributions PX(x) and
PY(y). It is impossible to infer anything for the network since an infinite set of possible
joint distributions can be obtained [53]. Different approaches and assumptions are ap-
plied which have resulted in the emergence of various unsupervised techniques for the
image-to-image translation. The unsupervised approaches can be classified as follows:
cyclic consistency-based, autoencoder-based, and methods using a disentangled represen-
tation [39]. The unsupervised techniques are beneficial for the ability to map effectively
between the domains and to alleviate the challenge of limited training data.

Figure 23. Taxonomy of the GANs modified from [39].
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3.6.1 Directional supervised translation

The Pix2Pix [54] is a directional supervised translation method based on a conditional
generative adversarial network. A pair of images is utilized for the one-to-one mapping.
The training process is depicted in Figure 24.

Figure 24. Training a conditional GAN to transform edges→photo. In contrast to an unconditional
GAN, both a generator and a discriminator observe an input edge image [54].

The conditional GAN objective is expressed as

LcGAN(G,D) = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z)))], (1)

whereG is a generator, D is a discriminator, x, y, and z are the input image, output image,
and noise accordingly. G attempts to minimize this objective in opposition to adversarial
D that tries to maximize it. In the Pix2Pix a traditional loss is also added to the adversarial
loss. The L1 loss is described as follows

LL1(G) = Ex,y,z[‖y −G(x, z)‖1]. (2)

The final objective is a combination of the two losses, the adversarial and the traditional

G∗ = arg min
G

max
D
LcGAN(G,D) + λLL1(G), (3)

where λ is a hyperparameter defining an amount of the traditional noise. The images
generated with the Pix2Pix [54] network are quite limited due to low resolution and blur-
riness. Later, the Pix2PixHD [55] architecture was proposed in order to increase the
resolution of the output samples to 2048x1024 and make them more realistic by utilizing
a multiscale generator and a discriminator. The Pix2Pix and the Pix2PixHD are limited
to operate only in two domains, or in the case of a multidomain image-to-image transla-
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tion, their architectures require several separate instances for each additional domain. The
StarGAN [56] was proposed to address the limitation with a unified model architecture
for a multidomain image-to-image translation (see Figure 25).

(a) (b)

Figure 25. Comparison between a common cross-domain architecture and the StarGAN architec-
ture: (a) A classic GAN architecture requires additional instances for every pair of image domains;
(b) The StarGAN architecture is capable to learn multidomain transformations using a single gen-
erator [56].

3.6.2 Bidirectional supervised translation

The BicycleGAN [57] is a multimodal and crossdomain translation method proposed as
an attempt to mitigate a mode collapse, occurring in the Pix2Pix models by encouraging
a bijective mapping between a latent encoding space and output modes. It is a hybrid
approach with a baseline from the Pix2Pix model. There are two networks: the condi-
tional Variational Autoencoder GAN (cVAE-GAN) and the conditional Latent Regres-
sor GAN(cLR-GAN). The compound technique generates realistic and diverse images
in comparison to the previously discussed Pix2Pix (see Figure 26) [57]. The objective
function combines two objective functions:

1. cVAE-GAN objective function

G∗, E∗ = arg min
G,E

max
D
LVAE

GAN(G,D,E) + λLVAE
L1 (G,E) + λKLLKL(E). (4)

2. cLR-GAN objective function

G∗, E∗ = arg min
G,E

max
D
LGAN(G,D) + λlatentLlatent

L1 (G,E), (5)
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where λ, λlatent, and λKL are the hyperparameters to control the relative importance
of each term.

The final objective function is described as follows

G∗, E∗ = arg min
G,E

max
D
LVAE

GAN(G,D,E) + λLVAE
L1 (G,E) + LGAN(G,D)+

λlatentLlatent
L1 (G,E) + λKLLKL(E).

(6)

Figure 26. The BicycleGAN method produces results which are both realistic and diverse [57].

The method of Consistent Embedded GAN (CEGAN) [58] is another attempt based on a
conditional generation model to tackle the problem of perceptually realistic and diverse
images. The CEGAN learns the distribution by enforcing tight connections between the
latent space and the real image space. The model consists of a generator, a discriminator,
and an encoder. With the encoder and the discriminator, this model distinguishes the
real and the fake samples in the latent space instead of the real image space in order to
moderate the impact of redundancy and noise for generating realistic results [58].

3.6.3 Unsupervised translation with cycle consistency

The objective of the unsupervised image-to-image translation can be defined as follows:
to learn a mapping G : X → Y such that the output ŷ = G(x), x ∈ X is not distinguish-
able from the y ∈ Y with an adversarial loss. As that transformation is highly constrained
and leads to the mode collapse, in the CycleGAN [52] it was proposed to couple it with
an additional translator F : Y → X that is an inverse mapping of the G : X → Y (see
Figure 27).
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Figure 27. The CycleGAN model: (a) CycleGAN architecture; (b) Forward mapping; (c) Back-
ward mapping [52].

In addition, two associated adversarial discriminators DY and DX were introduced. DY

supportsG to translateX into results indistinguishable from domain Y , and backward for
DX helps F to map from the Y domain into the X domain. The authors introduced two
cycle consistency losses:

1. The forward cycle consistency loss

x→ G(x)→ F (G(x)) = x̂. (7)

2. The backward loss cycle consistency loss

y → F (y)→ G(F (y)) = ŷ. (8)

The cycle consistency loss is expressed as follows

Lcyc(G,F ) = Ex∼pdata(x)[‖F (G(x))− x‖1] + Ex∼pdata(y)[‖G(F (y))− y‖1]. (9)

Then the final loss includes the adversarial losses for both mapping functions as the cycle
losses

L(G,F,DX, DY) = LGAN(G,DY, X, Y ) + LGAN(G,DX, Y,X)

+λLcyc(G,F ).
(10)

Finally, the main objective function to solve is

G∗, F ∗ = arg min
G,F

max
DX ,DY

L(G,F,DX , DY ). (11)

Based on the CycleGAN various unsupervised image-to-image translation models emerged,
e.g., the DiscoGAN [59], the DualGAN [60]. The method achieves good results on many
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translation tasks including object transfiguration, season, and style transfer. However, the
CycleGAN can only perform a one-to-one domain transition. Also, it fails when geomet-
ric conversions are essential [45].

Recently, for unpaired training data, Asymmetric GAN [61] was proposed. This asym-
metric framework presents an auxiliary variable to resolve the issue of imbalanced infor-
mation in case of transformation from the information-poor domain to the information-
rich domain and vice versa. As a consequence, the solution outperforms the CycleGAN
in image quality and diversity. In the unified quality-aware GAN (QGAN) [62] approach
a quality loss function was developed for the unpaired image-to-image translation. The
QGAN architecture compounds two methods of the quality-aware framework: a classi-
cal quality assessment loss, and a high level adaptive visual content structure loss as an
addition to the adversarial loss [62]. The Cross-GAN architecture [63] consists of two ad-
versarial autoencoders. It employs semantic consistency loss to capture the common fea-
ture representation of the source and target domains, and to learn the joint feature-space
information rather than insufficient pixel-level data. The spatial Attention GAN (SPA-
GAN) [64] introduces a spatial attention mechanism for the unpaired image-to-image
translation. The SPA-GAN computes the spatial attention map directly in the discrimina-
tor and returns it back to the generator. Such an algorithm is used to focus the generator
on the most discriminative areas between two domains. Also, an additional feature map
loss is implemented to sustain domain specific features during the image conversion [64].

3.6.4 Unsupervised translation with autoencoder-based models

An autoencoder contains both an encoder that transforms the source images into a latent
space and a decoder for inverse operation. The compressed vector can be used as an input
to the generator in order to produce high-quality images [39].

The UNIT approach [53] combines generative adversarial networks (the CoGAN [65])
and VAE. The UNIT framework includes two encoders, two generators, and two dis-
criminators (see Figure 28). The weight-share constraint is used in adversarial training to
enforce the shared latent space and to generate corresponding images for source and target
domains. However, the UNIT requires that the two images obtain analogous patterns for
a good performance [45]. In addition, the Gaussian latent assumption is able to produce a
unimodal output, on the one hand, while, on the other hand, training may be unstable due
to the saddle point (floating state of convergence) [45].
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Figure 28. The UNIT framework: (a) The shared latent space assumption: corresponding images
(x1, x2) in two different domains X1, X2 can be mapped to a same latent code z in a shared-latent
space Z. E1, E2 are two encoding functions, mapping images to latent codes. G1 and G2 are two
generation functions, mapping latent codes to images; (b) The network structure [53].

3.6.5 Unsupervised translation with the disentangled representation

The ability to understand high-dimensional unsupervised data and to transform them into
useful representations remains an essential problem in deep learning. One approach to
solve these challenges is through disentangled representations. The models with disen-
tangled representations capture independent features of a given scene in such a way that if
one feature changes, the others remain unaffected [66]. For example, each feature can be
disentangled into narrowly defined vectors and encode as separate dimensions [67]. The
MUNIT framework [68] assumes that an image latent space is possible to decompose
into a content code that is domain-invariant and a style code that refers to domain-specific
parameters. It is also assumed that images in different domains share a common content
space but not the style space (see Figure 29) [68]. Then the MUNIT applies two autoen-
coders, and the latent code of each autoencoder is factorized into the content code Ci and
the style code Si.

Figure 29. The MUNIT approach: (a) Images of each domain Xi are encoded to a shared con-
tent space C and a domain specific style space Si. Each encoder obtain an inverse decoder (not
depicted); (b) To translate an image from X1 (a leopard) to X2 (domestic cats), we recombine the
content code of the input with a style code in the target style space. Different style codes lead to
different outputs [68].
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3.7 Summary

A quick overview on state-of-the-art techniques for image-to-image translation tasks would
not give complete and comprehensive information to select the model for virtual sawing.
However, with the described characteristics of GAN methods (see Table 1) and a limited
amount of the available training data [4], some architectures are more suitable architecture
than others.

First of all, the data is an aligned (paired) set of images. In addition, no multi-domain
and unified structure are required as there are only two domains, as well as no multi-
modal property is needed, the output should be deterministic. A bidirectional translation
is also a redundant attribute since the study focuses only on the mapping to photorealistic
images. Following the Occam’s razor rule the Pix2Pix and the BicycleGAN are the most
preferable approaches. Nevertheless, it can be beneficial to adapt properties from the more
advanced architectures of GANs such as shared feature space and feature disentanglement
to avoid a possible mode collapse. Finally, it is not possible to make the right decision
from the beginning and only the results from experiments would be a determining factor
in a practical sense of the research.

Table 1. Comparison of GANs methods [39].

Property
Method

Pix2Pix BicycleGAN StarGAN CycleGAN UNIT MUNIT

Unpaired images − − + + + +
Multi-domain − − + − − +
Multi-modal − + − − − +
Unified structure − − + − − −
Bidirectional translation − + + + + +
Shared feature space − + − − + +
Feature disentanglement − − − − − +
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4 IMAGE-TO-IMAGE TRANSLATION TO VIRTUAL
SAWING

4.1 Pipeline

The main objective of the study is to create a supplementary GAN based method for the
existing virtual sawing framework [4]. The existing system allows optimizing the density
and distribution of knots on a board prior to sawing parameters without an actual pro-
cess of log sawing which aids in increasing the grade of the final product, and thus, the
overall profitability of a sawmill. The approach proposed by Zolotarev et al. translates
point cloud data from laser range scanners to knot maps [4]. Additionally, the raw pro-
jected heightmap images are considered to explore the capability of an image-to-image
translation method. The new supplementary module should be able to generate photore-
alistic board images from both grayscale knot map images and raw projected heightmap
images introducing a more transparent feedback loop for a sawmill operator as shown in
Figure 30.

Figure 30. A complete pipeline for generation photorealistic board images.
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4.2 Log measures-to-image translation

4.2.1 Knot map generation

The existing virtual sawing method is divided into the following five steps as illustrated
in Figure 30:

1. Point cloud filtering and centreline estimation.

2. Log surface heightmap generation.

3. Knot segmentation.

4. Volumetric reconstruction of knots.

5. Virtual sawing.

Point cloud filtering and centerline estimation

In the first step of the measures-to-image translation, the point clouds extracted from laser
range scanners are filtered to reduce the noise and potential artifacts such as metal rails
holding the log. The filtering process is done layerwise where each cross section layer can
be described as a point clouds on the same plane of z coordinate. The z axis is pointing
up on the first and the second steps of the method depicted in Figure 30. Then a circle is
fitted in order to get an estimation of a centerline. The clusters in each layer are filtered
using the fitted circle and least square algorithm as shown in Figure 31.

Log surface heightmap generation

Afterward, the filtered point cloud data is transformed into a log centric coordinate system
with a discretization step defined as 0.1N , where N is the number of cross sections in a
log. The obtained heightmap data and the relevant coordinate transformation are shown in
Figure 32. The centerline (blue dashed line) is discretized into segments (red solid line).
The new coordinates are estimated separately for each cross section along z axis where θ
is the angle around the log, l is the position along the length of a log, and ρ is the distance
to the centerline.
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Figure 31. Filtering of a cross section layer and centerline estimation with circle fitting method.
The fitted circle is plotted as a solid line, the least square thresholds are plotted with dashed line.
The points outside of the two dashed lines are considered as a noise [4].

(a) (b)

Figure 32. The new coordinate system and the corresponding dimensions of a raw heightmap map
image: (a) The transformation into the log centric coordinate system; (b) A raw heightmap image
where x axis on the heightmap denotes the θ (an angle around the log), y axis defines a length of
a log, and pixel intensities spacing between surface and a centerline point or ρ [4].

Knot segmentation

The third step, knot segmentation, applies Laplacian of Gaussian filtering (LoG) on the
raw heightmap data, further all the negative pixel values from LoG filtered heightmap
are set to zero (see Figure 33). As a result, the pixel intensities in the segmented knot
locations correspond with a probability of a real knot being there.
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(a) (b) (c)

Figure 33. The method of the conversion a raw heightmap image into a segmented heightmap
image: (a) The raw heightmap; (b) The LoG filtered heightmap; (c) The segmented heightmap. [4].

Volumetric reconstruction of knots

The mapping of the segmented 2-D surface heightmaps into the inside of the log is pos-
sible using information about the biological properties of knot growth. For the extension,
the simplified approximation of a full knot model is used. The main characteristics are
the following:

1. Knot radius change: knots are rapidly growth during the first several stages of their
life.

2. Knot vertical position: knots grow at a certain angle.

For modeling the knot vertical position [69]

z = (ZH − Cρmax)
(

1− e
B

ρmax−ρ

)
+ Cρ (12)

is applied where ZH is the vertical distance between the knot location on the surface and
its starting point, z is the vertical displacement at a distance ρ from the centerline, ρmax
is the maximum distance from the surface to the centerline, and B, C, are supplementary
model parameters specific for the wood species [4]. For the knot radius

r =
1

2

(
(2rsurface −Gρmax)

(
1− e

F
ρmax−ρ

)
+Gρ

)
(13)

is applied where rsurface is the radius of the knot at the surface, r is the radius of a knot
at a distance l from the centerline, and F, G are model supplementary parameters specific
for the wood species [4].
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Rather than modeling each knot separately, model parameters remain constant for all knot
intensity maps. As a result, instead of acting as functions z(ρ) and r(ρ) of the distance
from the centre, 2-D maps in the stack are translated along l by z(p) mm, simulating the
vertical displacement of knot growth. The growth is simulated by morphological oper-
ations. The complete procedure of applying the growth model to a stack of heightmaps
as a scheme is illustrated in Figures 34(a)– 34(c), then the stack of knot intensity maps
transformed from the log centric coordinates to the Cartesian coordinates in order to re-
ceive the volumetric reconstruction of the knot growth intensity inside the log as depicted
in Figures 34(d)– 34(e).

(a) (b) (c)

(d) (e)

Figure 34. The full pipeline of the volumetric reconstruction of knots inside a log: (a) stacked
initial heightmaps; (b) Shifted heightmaps; (c) Eroded and shifted heightmaps; (d) Stacked log
centric heightmaps; (e) Stacked cartesian heightmaps [4].

Virtual sawing

Finally, virtual sawing can be performed. The process of virtual sawing is approximating
the pixel intensity values accordingly to the placement of the boards inside the log (see
Figure 35). The system possesses five degrees of freedom: α, is the sawing angle, rotation
around the sawing axis, and x1, y1, x2, y2 define coordinates p1 and p2. The measurements
of the sawn logs are estimated with predefined sawing patterns used during the actual pro-
cess of sawing. The approximate measurements are calculated by fitting a sawing pattern
in the center of a fitted circle produced at the stage of filtering and centerline estimation.
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However, if a log is too curved, the following sawing coordinates can possibly lie outside
of a log. In this case, the sawing coordinates are translated, such that the outliers are
located inside the estimated log boundary. The sawing angles for each log were measured
using videos of the log entering the sawing machine. Hence, the approximate error is
significant, up to the 10°.

The result of virtual sawing is a set of images, each corresponding to a side of a board
(see Figure 35). Pixels intensity values in images are correlated with the probability of a
knot appearing in a specific location on the real board.

Figure 35. A schematic representation of a virtual log with the generated knot maps inside. [4].

4.2.2 Raw projected heightmap generation

An alternative input is considered to test the CNNs capability for extracting all the nec-
essary information directly from raw heightmap data. If the GAN would able to generate
photorealistic board images from such input, then the ad-hoc solution for knot segmenta-
tion and modeling biological properties can be avoided.

The raw projected heightmap images are produced using exactly the same method but the
stage of knot segmentation is skipped and the simplified volumetric reconstruction is ap-
plied which does not simulate the knot growth. The pipeline for raw projected heightmap
images is shown in Figure 30. Additionally, for the raw projected heightmap images,
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a mean subtraction is performed. This helps to dissolve a homogeneous inclination of
values among the board (see Figure 36). Nonuniform scaling of values among the board
surface can force the network to learn only from the brighter part of a raw projected
heightmap image.

(a)

(b)

Figure 36. The inclination of a raw projected heightmap image dissolves with mean subtrac-
tion: (a) A raw projected heightmap image with inclination; (b) A homogeneous raw projected
heightmap image.

4.3 Board image generation using GAN based image-to-image trans-
lation

This section introduces the suggested extension for the translation of the produced knot
maps or the projected heightmap images into realistic looking board images. The study
proposes to apply an existing state-of-the-art architecture of GAN for image-to-image
translation. From a large number of various architectures, the Pix2Pix model is selected
as it is successfully employed for various image-to-image translation tasks and datasets.
Two models for virtual sawing are proposed:

1. Pix2Pix model for patched board images.

2. Pix2Pix model for full board images.

The first model utilizes the vanilla version of the Pix2Pix model. For the second model,
the vanilla Pix2Pix architectures are not applicable as it is, because the original structure
of the GAN requires an input image to be cropped into patches. The initial model was
built to operate with image data in which width and height dimensions are equal, i.e.,
representing a square and invariable within the dataset. Whereas, the size of the boards in
the existing dataset is rectangular and changing from one instance to another. This calls
to rebuild the vanilla architecture of the Pix2Pix GAN.
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4.3.1 Specifications of the Pix2Pix model

In this section, detailed specifications on the defined Pix2Pix loss functions are revealed.
The objective of the Pix2Pix conditional GAN is set with Eq. 1. It is possible to train the
network without noise z, but the transformation of an input x to y in this case would be
deterministic. Hence, the model would fail to match any distribution other than a delta
function. The commonly applied Gaussian noise is also ineffective since a generator in
the Pix2Pix architecture simply learns to ignore the noise. To address this problem the
Pix2Pix framework uses the noise in the form of a dropout applied for the several first
upsampling layers in the generator [54]. The final GAN objective is a mix of the GAN
objective and a traditional loss function, i.e., L1 or L2 distance. Isola et al. explored both
options and found out that using L1 over L2 distance promotes less blurring. Therefore,
the final objective remains unchanged as it is designated in Eq. 3. The hyperparameter in
the final objective function defines a multiplier for the L1 loss. Setting it to 0 gives a much
sharper output image but injects visual artifacts. The inference from each loss component
can be observed in Figure 37.

Figure 37. Different losses produce different results. Using only L1 generates blurry images,
while solely utilization of a conditional GAN loss introduces artifacts to an images. L2 loss was
not considered, since blurring of an output image is stronger than with L1 loss [54].

In conclusion, the objective function, the loss function, and the hyperparameter remain
unchanged for the virtual sawing model as proposed in the study by Isola et al. [54].
The Pix2Pix vanilla network to update weights utilizes the Adaptive Moment Estimation
(Adam) optimization algorithm which is a common and widely applied method in ma-
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chine learning. The learning rate in Adam algorithm is adopted from the original paper
and is set as 0.002. The other parameters are default for the Adam optimizer, the β1 is 0.5,
theβ2 is 0.999. Finally, using conditional objective function previously defined in Eq. 3
the GAN training procedure can be defined as shown in Algorithm 1.

Algorithm 1 Training of the Pix2Pix GAN

INPUT: A set of input images (gray-level knot maps) X
a set of target images (RGB real boards) Y
a discriminator network D
a generator network G
a number of training epochs N
a number of batches in the splitted sets B
an objective function F
OUTPUT: a trained GAN, includes G and D

1: for number of training epochs N do
2: for number of batches in datasets B do
3: for every input and target image in a batch Bi do
4: pick an image xi from batch Bi of input set
5: pick an image yi from batch Bi of target set
6: produce a generated image x̂ with G(xi)
7: calculate a discriminator real output dreal with D(xi, yi)
8: calculate a discriminator generated output dgen with D(xi, x̂)
9: calculate a discriminator loss F (dreal, dgen) (see Eq. 3)

10: calculate a generator loss F (dgen, x̂, yi) (see Eq. 3)
11: update the D weights using Adam optimization method
12: update the G weights using Adam optimization method
13: end for
14: end for
15: end for

4.3.2 Pix2Pix model for patched virtual sawing

Generator architecture

In the Pix2Pix GAN, a modified encoder-decoder U-Net model is used as a generator
network architecture. The vanilla structure comprises a contracting path (left side) and
an expansive path (right side) as shown in Figure 38. The contracting path pursues a
typical architecture of a convolutional neural network, i.e., repeating blocks of application
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of convolutions, each followed by ReLU, and max pooling operation. While the left
path consists of upsampling blocks of the activation map followed by a convolution that
decreases the number of feature channels, a concatenation with the accordingly cropped
feature map from the contracting path, and convolutions, each followed by ReLU. The
cropping is necessary due to the loss of border pixels in every convolution. In the final
layer, convolution is used to map each n-component feature vector to the desired number
of classes [70].

Figure 38. An example of the U-net architecture with 32 × 32 pixels resolution in the middle
block. Blue boxes denotes a multi-channel feature map. On top of the boxes numbers indicate
the number of channels in activation map. The x-y-dimensions are provided at the lower left edge
of the box. White boxes represent copied feature maps. The arrows denote the corresponding
operations [70].

The Pix2Pix adopts the idea of the U-Net architecture on a shared low level information
between an input and ab output in the encoder-decoder network. The network translates a
low level information through all the layers including the bottleneck, i.e., the middle layer.
The skip connection feature in the architecture such information shuttles directly across
the network and gives the generator a means to circumvent the middle layer (see Fig-
ure 39) [54]. Specifically, the skip connections are added between each layer i and layer
n− i, where n is the total number of layers. Each skip connection simply concatenates all
channels at layer i with those at layer n− i [54]. Furthermore, several important modifi-
cations are employed to the generator. The encoder section of the generator network uses
blocks of the following form: convolution layer followed by batch normalization layer
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and ReLU. The batch normalization layer by reducing an internal covariate shift helps
in accelerating the deep network training process [54] [71]. The implemented decoder
network has the following structure: transpose convolutional layer followed by batch nor-
malization layer and ReLU layer. The noise is applied in the form of dropout layers for the
first 3 blocks in the decoder. The last block utilizes TanH activation function over ReLU
converting a 128-component vector into RGB image scaled in a range [−1, 1]. Also in the
last block batch normalization layer is not presented.

Discriminator architecture

As a discriminator in Pix2Pix network serves convolutional PatchGAN. The L1 loss func-
tion enforces to capture the low frequencies. This address to restrict the discriminator to
map only high-frequency structure. Then would be sufficient to constrain the discrim-
inator attention to the structure of local image patches [54]. The PatchGAN penalizes
structure at the scale of those patches. The discriminator tries to classify if each N × N
patch in an image is real or fake. The PatchGAN convolutionally iterates across the im-
age and averages all the patches responses providing the final signal D. The ultimate
advantage of such discriminator architecture that N can be much smaller than the initial
image size, and the model would be still capable to generate high quality results. As a
result, small PatchGAN contains a fewer number of parameters, calculates faster, and can
be applied to arbitrarily large images [54]. The structure of the discriminator is depicted
in Figure 40. Each block in the discriminator has the following structure: convolution
layer followed by batch normalization layer, and ReLU layer as in the generator network.
Except for the penultimate block of the discriminator which is slightly altered. It is sur-
rounded by zero padding layers to get the desired shape of the output. Moreover, ReLU
activation function is changed to the leaky ReLU. The last layer maps a 512-component
activation map to a 2-D gradient.

4.3.3 Pix2Pix model for full board virtual sawing

The initial goal of the research is to generate full size board images. In order to obtain
such output the following two approaches were taken into consideration:

1. Merge the patches into full board image.

2. Modify the architecture of the GAN.
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Figure 39. The original Pix2Pix generator network structure [72].

The first option implies to continue working with the patches obtained in the vanilla
model. The second option calls for changes in the original framework architecture. This
study does not focus on a texture synthesis algorithm that merges the patches into a full
size board image. However, it can be an alternative method to be considered in future
research. As a consequence, modification of the network structure can induce some unex-
pected visual artifacts and even problems with the training process such as mode collapse
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Figure 40. The original Pix2Pix discriminator network structure [72].

or failure in convergence. Although the second approach is more unpredictable and com-
plex, it was chosen. The next section describes how the initial model is transformed, and
the difficulties encountered are overcome.

Generator and discriminator architectures

The GAN generator architecture is based on the encoder-decoder U-Net network which
baseline is a convolutional layer. In order to adjust the generator recognizing and pro-
ducing the full image boards with high width to height ratio, the stride parameters in the
upsampling and the downsampling block are altered. The changes allows to obtain the
desired output from the input image of size 128 × 2048 pixels (see Figure 41). The dis-
criminator uses the downsampling block from the generator, and thus, no complementary
changes are required due to the advantageous architecture of the PatchGAN. The final
architecture with the corresponding feature maps is illustrated in Figure 42.
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Figure 41. Modified Pix2Pix generator network structure with resize convolutional layers.

Checkerboard artifacts

The implemented GAN architecture after the encoding phase builds up the output image
with the upsampling blocks in the decoder from a low resolution and a high feature map
to a high resolution, and a low feature map (see Figures 41 and 42). The deconvolution or
so called transpose convolution technique in the decoder network allows to describe the
approximate image and then fill in the details. Unfortunately, transpose convolution easily
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Figure 42. Modified Pix2Pix discriminator network structure.

tends to emerge artifacts into the output if the uneven overlap occurs (see Figure 43).

Figure 43. An uneven overlap from a deconvolution operation with kernel size 3 and stride 2. The
upper line of rectangles is an input layer, the lower line is an output layer. The shades indicates
an intensity of the overlap. The brightest regions on the edges of the output layer do not affected
with an overlap while others suffer from the issue. [73].

In particular, an uneven overlap arises when a kernel size and an output window size are
not divisible by a stride. The problem inclines to be more severe in two dimensions.
Moreover, in the multilayer decoder architecture when output is constructed iteratively
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from a stack of layers that turns out into extreme visual artifacts, i.e., checkerboard arti-
facts. Carefully chosen deconvolution parameters help to prevent the appearance of such
output but bring significant restriction on filters, and in practice, the artifacts are still
present in these models [73]. To address the problem the regular transposed convolu-
tional layer is replaced with a resize convolutional layer as was proposed by Odena et
al. (see Figure 44) [73]. The final upsampling block transforms from transpose convolu-
tional layer followed by batch normalization layer, dropout layer (for the first 3 blocks),
and ReLU layer to upsampling layer followed by reflection padding layer, and ordinary
convolutional layer, the last three layers are the same. Although this method brings one
substantial disadvantage, since the number of layers in blocks is increased from 4 to 6
which affects the computation time for the block, and thus, total training time.

(a) (b)

(c)

(d)

Figure 44. Switching deconvolution layers for resize convolution layers successfully dissolve the
artifacts [73]: (a) An example of output from deconvolution layer; (b) An example of output from
resize convolution layer. The checkerboard artifacts were successfully dissolved for the generated
boards as well: (c) A board generated with deconvolution layer; (d) The same board generated
with resize convolution layer.
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5 EXPERIMENTS

5.1 Data

The data consist of 100 Scots pine Pinus sylvestris) logs. The logs were measured and
sawn in the real sawmill environment. The produced boards were imaged with an RGB
camera system. During the experiments, the following four modalities of the dataset are
employed (see Figure 45):

• RGB images of real boards.

• Knot map images, obtained using the method from [4].

• Raw projected log surface heightmap images, computed as described in Section 4.2.2.

• Ground truth knots images, composed by manually annotation the knot locations.

(a)

(b)

(c)

(d)

Figure 45. The sample from four modalities of the dataset: (a) A real board image or a target
image for the GAN; (b) A knot map image used as an input for the GAN; (c) A raw projected
heightmap image used as an alternative input for the GAN; (d) An image with segmented ground
truth knot locations.

5.2 Evaluation criteria

Despite significant progress in the field of various GAN applications, evaluation and com-
parison of GANs remain a challenging task. In fact, an efficient quantitative measure
should meet a number of properties [74]:
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• Support models generating high fidelity samples.

• Support models generating diverse samples.

• Support models with disentangled latent space.

• Possess a well-defined boundaries (lower, upper).

• Be perceptive for image distortions.

• Correspond to a human perceptual estimation.

• Possess a low sample and computational complexity.

In the scope of a virtual sawing task, an important characteristic of a generated board im-
age is the accuracy of located knots, i.e., knots on a generated image correlate with knots
on an actual image. Moreover, the generated knots should be similar to the knots of the
real boards. As a consequence, an appropriate quantitative measure would be segmenta-
tion performance with a segmentation model trained on the real board images and using
true knot locations as ground truth. More specifically, to compare the quality of the pro-
duced images, segmentation performance can be evaluated with the following measures
(see Figure 46) [75]:

1. Precision.
Precision is the ability of a model to recognize only relevant objects. In case of
virtual sawing, it is the percentage of correct identified knot pixels to all knot pixels

Precision =
TP

TP + FP
, (14)

where True Positive (TP) is a number of correctly identified knot pixels and False
Positive (FP) which is an amount of incorrectly identified nonknot pixels, or mis-
placed detections of knot pixels.

2. Recall.
Recall is the capacity of a model to identify all relevant cases (all ground truth mask
areas or bounding boxes). It is the percentage of correct knot pixel predictions
among all given ground truths

Recall =
TP

TP + FN
, (15)

where TP is an amount of correctly identified knot pixels and False Negative (FN)
is a number of undetected ground truth knot pixels.
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3. Jaccard index (Intersection-over-Union).
The Intersection-Over-Union (IoU), or simply the Jaccard Index, is one of the most
typical similarity measures applied in instance segmentation

IoU =
TP

FP + TP + FN
. (16)

(a) (b) (c)

Figure 46. Demonstration of three measures for bounding boxes, the same are applied for mask
areas: (a) Precision; (b) Recall; (c) IoU.

5.2.1 Detectron2 and COCO for knot segmentation performance

In order to find knot segmentation performance Detectron2 library is used [76]. However,
a straightforward employment of Detectron2 is impossible with the existing format of
the segmented ground truth knots images. One of the possible forms of annotation in
Detectron2 is the Common Objects in Context (COCO) dataset format. As follows, the
segmented ground truth knots dataset is transformed into the COCO format in which each
knot representing a separate instance with the information about knot mask, bounding
box, and also respective board (see Figure 47).

Eventually, the annotated dataset can be fed into a network that supports the COCO for-
mat. Next, from Detectron2 model zoo the pretrained Mask Region-Based Convolutional
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(a)

(b)

Figure 47. An example of a board annotated in COCO format: (a) COCO annotated board; (b)
Corresponding real board image.

Neural Network (R-CNN) [77] with the ResNeXt-101-Feature Pyramid Network (FPN)
backbone is picked [78] which key properties are presented in Table 2. To estimate the
quality of the generated images, the model trained on the real images then if an artificial
image structure corresponds with a real image structure. The Detectron2 model would be
able to successfully segment knot locations on a test subset of generated images.

Table 2. The main characteristics of the Mask R-CNN ResNeXt-101-FPN [78].

Model
Characteristic

Train time Inference time Train memory Box average precision Mask average precision

Mask R-CNN ResNeXt-101-FPN 0.690 seconds/iteration 0.103 seconds/image 7.2 GB 44.3 % 39.5 %

However, before utilizing the mentioned approach an optimal model among training
epochs should be defined. In this research, only the loss function values are considered
in searching for an optimal model, since the loss function values are not fully reliable
measures as they do not possess the listed properties of efficient measures. Also due to
the fact that the model tends to destabilize and oscillate due to the fleeting nature of a
convergence point. The two different models with identical loss function values would
certainly differ in a visual aspect. At the very least, this approach can cause selecting a
nonoptimal model, but it might also cause various visual artifacts to the chosen model or
a kind of a mode collapse.

5.2.2 Metrics for knot segmentation performance

Usually, an evaluation performance estimation of segmentation is done by a more sophis-
ticated variant of precision and recall measures. An Average Precision (AP) and Average
Recall (AR) metrics are commonly supplemented with a confidence level τ and IoU val-
ues [75]. Whereas, the Detectron2 library with COCO annotated dataset allows only to
apply IoU values, and the following 11 metrics are used for characterizing the segmenta-
tion performance [79]:
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• Average Precision across IoU.
Includes two following metrics: AP IoU=0.01:0.25:1, AP IoU=0.01.

• AP across scales.
Considers another three types of knots depending on the sizes (in pixels) as follows:
AP small, APmedium, and AP large for small, medium, and large knots, accordingly.

• Average Recall across detections.
Recall calculated for a given number of detections: ARmax=1, APmax=10, and
APmax=100 for the 1, 10, or 100 detections per image.

• AR across scales.
The metric examine recall for various sizes of knots areas as follows: ARsmall,
ARmedium, and ARlarge for small, medium, and large knots.

AR is the maximum recall given a fixed number of detections per image. All metrics
are computed allowing for IoU = 0.01 at most 100 top-scoring detections per image
unless otherwise mentioned. The evaluation metrics for detection with bounding boxes
and segmentation masks are identical in all respects except for the IoU computation which
is performed over boxes or masks, respectively. Additionally, the small, medium and large
knots are defined for each segmentation evaluation individually as follows

Knot type =


small, ifxi <

max{X}
3

medium, if max{X}
3

< xi <
max{X}

2

large, ifxi >
max{X}

2
,

(17)

where xi is a knot area (in pixels) in a given set of knot areas X .

As a complementary performance metric, sample Pearson correlation coefficient (PCC) is
applied to measure the linear correlation between a number of detected knots on generated
board images and a true number of knots on corresponding RGB images of real boards.
More specifically, PCC is the covariance of two variables in a sample set, divided by the
product of their standard deviations

rxy(PCC) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i (yi − ȳ)2
, (18)

where n is sample size, xi, yi are the sample points, x̄ the sample mean, and analogously
for ȳ.
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5.3 Experiment 1: Patch architecture

The experiment with the unmodified Pix2Pix model comprises three main stages: the
transformation of the data, the training process, and evaluation of the results.

5.3.1 Data preparation

The real board images, knot map images and ground truth images were transformed as
follows:

1. Split dataset.
The dataset was splitted to the train and test subsets. After partitioning each subset
contained 80% (348 images) and 20% (87 images), respectively.

2. Image resizing.
All the images were resized to the 179 × 5002 pixels which is median value of the
images dimensions for the initial images.

3. Patch extraction.
The images were cropped into square patches with the side of 179 pixels. After-
ward, each board contained 28 patches, or 12180 patches in each modality.

4. Patch normalization.
The extracted patches were normalized between [−1, 1] in order to match an output
of the TanH activation function in the last layer of the generator network.

5. Patch resizing.
The patches were resized to the 256× 256 pixels resolution matching the input and
the output of the vanilla Pix2Pix architecture.

Additionally, the ground truth images are blurred by a Gaussian filter with a standard
deviation of 10 to imitate the knot maps images where pixel intensities denote the proba-
bility of a knot being there. The value for standard deviation was chosen such that knots
visually recall a knot map image.
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5.3.2 Training process

To update network weights Adam optimization algorithm was used. The learning rate
in the Adam algorithm was set as 0.002 adopting the one used in the original Pix2Pix
architecture. The other parameters are tge default for Adam optimizer: the β1 is 0.5 and
the β2 is 0.999. The hyperparameter for L1 loss equaled 100 which was also used by Isola
et al [54]. The GAN was trained on 50 epochs for both the knot map images and ground
truth images. During the training, the models oscillated and destabilized struggling to find
a Nash equilibrium (see Figure 48).

(a) (b)

(c) (d)

Figure 48. The graphics of the loss functions: (a) The discriminator loss for knot map images;
(b) The generator loss for knot map images; (c) The discriminator loss for ground truth images;
(d) The generator loss for ground truth images. A good reference point for discriminator loss is
loge(2) = 0.69. It indicates that a discriminator network is on average uncertain for both options
if a reference image is real or generated.

5.3.3 Qualitative evaluation of results

The obtained patches from the knot map images are represented in Figure 49. The knot
locations of generated patches for the most part correlate with the structure of a knot map
image, but in some patches, divergence is presented. The GAN generated patches from the
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ground truth dataset are represented in Figure 50. The obtained patches are realistically
looking: the model is able to reproduce the various structures of knots, the low-level
structure is also looking highly realistic. It is possible to conclude that the vanilla Pix2Pix
model successfully managed to generate realistic patches for both datasets. Thus, an
extension of a model for full board images is a reasonable decision.

(a)

(b)

(c)

Figure 49. Example results from the vanilla model trained on the knot map images: (a) Patches
of a knot map images; (b) Patches of a real board; (c) Patches of a generated board.

(a)

(b)

(c)

Figure 50. Example results from the vanilla model trained on the ground truth images: (a) Patches
of a ground truth images; (b) Patches of a real board; (c) Patches of a generated board.
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5.4 Experiment 2: Full board image generation with deconvolution
block

In this experiment, the modified Pix2Pix architecture with deconvolution upsampling
blocks was applied for the knot map images and raw projected heightmap images. The
hyperparameter, as well as optimizer parameters, remained unchanged. The number of
training epochs was increased to 200, as the number of training weights was increased
significantly for full board image architecture. The input and target images were resized
to 128× 2048 pixels and then normalized.

5.4.1 Qualitative evaluation of results

The model generates output with apparent visual artifacts such as checkerboard patterns
on both dataset modalities the raw projected heightmap images and knot map images.
Therefore, no segmentation performance metrics are applied for the defective model. The
generated image from the model trained on knot map images is illustrated in Figure 51.
Although the overall structure of the generated image correlates with the target image,
since the image corrupted with the checkerboard artifacts, it can not be defined as realistic
looking. The output of the GAN trained on the raw projected heightmap images is shown
in Figure 52. Overall, the network struggles to reproduce the exact structure of the real
board images from the raw projected heightmap images. The checkerboard artifacts are
less presented in the generated image, but other visual artifacts are induced: a wavy low
level structure, a repeating vertical line pattern.

(a)

(b)

(c)

Figure 51. Example results for the model trained on the knot map images with deconvolution
upsampling block: (a) A full size knot map image; (b) A full size real board image; (c) A full size
generated image.
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(a)

(b)

(c)

Figure 52. Example results for the model trained on the raw projected heightmap images with
deconvolution upsampling block: (a) A full size raw heightmap image; (b) A full size real board
image; (c) A full size generated image.

5.5 Experiment 3: Full board image generation with resize convolu-
tion block

In this experiment the deconvolution upsampling block is replaced with the resize convo-
lution upsampling block. The dataset preparation algorithm and training procedures were
adopted from the full board network approach with upsampling deconvolution block. The
instance segmentation metrics were computed for all three inputs: knot map images, raw
projected heightmap images, and ground truth images. The 358 real samples (80% of
images) formed the training subset for the Detectron2 model. The rest of the generated
boards that were 87 images (20% of images) composed the testing subset for segmenta-
tion metrics evaluation.

5.5.1 Quantitative evaluation of results for ground truth images

The Mask R-CNN ResNeXt-101-FPN segmentation model is trained on 5000 iterations
with a base learning rate 0.025. The model training was carried out on the real board
images, while metrics calculation was performed with generated images. Both for the
real and generated datasets ground truth COCO annotation was used. The training model
was able to extract knot locations from the generated boards. With ground truth dataset
the implemented model is capable to generate realistic looking boards (see Figure 53).
The structure of knots in the output image robustly coincides with a real board image.
Although some visual artifacts are still presented. The calculated PCC and segmentation
performance metrics are presented in Figure 54 and Table 3, respectively. The boundaries
for the small, medium, and large knots areas are computed from the generated board im-
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ages as defined in Eq. 17. The segmented binary masks and bounding boxes are illustrated
in Figure 55.

(a)

(b)

(c)

Figure 53. Example results for the model trained on the ground truth images with resize convolu-
tion upsampling block: (a) A full size ground truth image; (b) A full size real board image; (c) A
full size generated image.

Figure 54. Scatter diagram for the sample set illustrates a correlation between the predicted num-
ber of knots and true number of knots for 87 images. The PCC represents a strong positive corre-
lation with r = 0.76
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Table 3. Segmentation metrics for the model trained on the ground truth images.

Metric
Annotation type

Bounding boxes Segmentation masks

AP IoU=0.01:0.25:1 0.400 0.389
AP IoU=0.01 0.683 0.682
AP small(202 > pixels) 0.683 0.681
APmedium(202 < pixels < 242) 0.782 0.782
AP large(242 < pixels) 0.356 0.356
ARmax=1 0.039 0.039
ARmax=10 0.391 0.390
ARmax=100 0.686 0.684
ARsmall(202 > pixels) 0.688 0.686
ARmedium(202 < pixels < 242) 0.786 0.786
ARlarge(242 < pixels) 0.357 0.357

(a)

(b)

(c)

Figure 55. An example of successfully extracted knot locations with Detectron2 model: (a) A
generated knot binary mask; (b) Bounding boxes and mask areas from a generated image; (c)
Ground truth bounding boxes and mask areas.

5.5.2 Quantitative evaluation of results for knot map images

The checkerboard visual artifact completely dissolved with the resize convolutional block,
but a wavy low level structure is still presented on the boards (see Figure 56). Overall, the
positions of knots correlate with a pattern of the knot map image. However, in a scope
of a segmentation performance, the locations of knot on the generated boards weakly
correlate with the real boards. Since the problem is at least an order of magnitude more
complex, than basic object detection. The segmentation metrics can not be expected
as high results as in ordinary object detection. The calculated PCC and segmentation
performance metrics for model trained on knot map images are presented in Figure 57
and Table 4. An example of the segmented bounding boxes and mask areas is represented
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in Figure 58.

(a)

(b)

(c)

Figure 56. Example results for the model trained on the knot map images with resize convolution
upsampling block: (a) A full size knot map image; (b) A full size real board image; (c) A full size
generated image.

Figure 57. Scatter diagram for the sample set illustrates a correlation between 87 images. The
PCC equals 0.01 which designates an absence of a correlation.
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Table 4. Segmentation metrics for the model trained on the knot map images.

Metric
Annotation type

Bounding boxes Segmentation masks

AP IoU=0.01:0.25:1 0.008 0.006
AP IoU=0.01 0.025 0.015
AP small(222 > pixels) 0.020 0.014
APmedium(222 < pixels < 272) 0.378 0.249
AP large(272 < pixels) 0.455 0.257
ARmax=1 0.009 0.007
ARmax=10 0.068 0.051
ARmax=100 0.108 0.078
ARsmall(222 > pixels) 0.097 0.070
ARmedium(222 < pixels < 272) 0.465 0.349
ARlarge(272 < pixels) 0.450 0.250

(a)

(b)

(c)

Figure 58. An example of successfully extracted knot locations with Detectron2 model: (a) A
generated knot binary mask; (b) Bounding boxes and mask areas from a generated image; (c)
Ground truth bounding boxes and mask areas.

5.5.3 Quantitative evaluation of results for raw projected heightmap images

The resize convolutional block confirms an efficiency in resolving the checkerboard pat-
tern as presented in Figure 59. However, the knot locations from the generated image
weakly correlate with the real one. This calls into question the application of the raw
heightmap data as utilization of the raw projected heightmap data turned out into a big
challenge for the GAN architecture. The calculated segmentation performance metrics
decreased in comparison with the results from the model trained on the knot map images
proving that the raw projected log surface heightmap data is a kind of challenge for the
modified Pix2Pix architecture (see Tables 4 and 5). The PCC is shown in Figure 60. An
example of the segmented bounding boxes and mask areas is represented in Figure 61
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(a)

(b)

(c)

Figure 59. Example results for the model trained on the raw projected heightmap map images
with resize convolution upsampling block: (a) A full size raw projected heightmap image; (b) A
full size real board image; (c) A full size generated image.

Table 5. Segmentation metrics for the model trained on the raw projected heightmap images.

Metric
Annotation type

Bounding boxes Segmentation masks

AP IoU=0.01:0.25:1.00 0.005 0.004
AP IoU=0.01 0.019 0.013
AP small(172 > pixels) 0.011 0.008
APmedium(172 < pixels < 212) 0.178 0.141
AP large(212 < pixels) 0.270 0.175
ARmax=1 0.010 0.009
ARmax=10 0.061 0.050
ARmax=100 0.100 0.080
ARsmall(172 > pixels) 0.075 0.060
ARmedium(172 < pixels < 212) 0.268 0.225
ARlarge(212 < pixels) 0.408 0.310
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Figure 60. Scatter diagram for the sample set illustrates correlation between 87 images. The PCC
equals −0.13 which can be considered as very weak negative correlation.

(a)

(b)

(c)

Figure 61. An example of successfully extracted knot locations with Detectron2 model: (a) A
generated knot binary mask; (b) Bounding boxes and mask areas from a generated image; (c)
Ground truth bounding boxes and mask areas. A generated image structurally do not correlate
with a real image.
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6 DISCUSSION

6.1 Current study

The size and the location of knots are the main factors affecting the board quality. There-
fore, a system robustly predicting knot positions in the sawn board based on the external
log measurements is highly valuable as it is capable to increase sawmill profitability.

The study proposed a supplementary module for an existing virtual sawing system in-
troducing a more transparent feedback loop for a sawmill operator. The implemented
image-to-image translation method is capable to convert the knot map data and the raw
projected heightmap data into photorealistic board images. The method is based on the
modified state-of-the-art Pix2Pix GAN architecture. The generated images are looking re-
alistically from the visual perception. Moreover, the segmentation model trained on real
board images is able to find knots on the generated images. However, the relatively low
AP and AR segmentation measures and absence of the correlation between the numbers
of knots on the generated and the real images build existing evidence of weak structural
similarity with the real board images. More specifically, the model trained on the raw
projected heightmap images producing an output where knot locations weakly correlate
with the true positions of knots. The model trained with the knot map images achieved
a more prominent morphological similarity. Nevertheless, an attribute of photorealism
for generated images can not be directly interpreted through segmentation metrics. Thus,
the qualitative and quantitative measures allow the generated images to be considered
moderately realistic.

Despite that the training data was limited, only Scots pine is presented in the dataset. The
proposed image-to-image translation method should be also applicable to other wood
species if proper training data is provided.

6.2 Future work

As a continuation of the current study of the Pix2Pix architecture, many factors in data
preparation, training process, and network architectural parameters can be considered
or involved to generate more realistic-looking and diverse board images. As an exam-
ple, a relatively small dataset requires to be extended with data augmentation techniques.
During the training process, intermediate models should be examined with a quantitative
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measure like Frechet Inception Distance in order to find the optimal one. In addition,
an extension of a generator and a discriminator with supplementary downsampling and
upsampling block, in theory, can force the GAN to produce high fidelity and diverse
samples of board images. Moreover, different architectural parameters like a number of
feature maps in downsampling and upsampling blocks should be tested thoroughly. As
an alternative, a disentangled representation of a feature space can be employed as it can
help the network to generate more diverse and realistic instances with a small amount of
training data.

Besides the research of the Pix2Pix model, further studies can employ and evaluate other
GAN architectures. Also, the abovementioned Frechet Inception Distance can be ap-
plied as a quantitative measure to evaluate the photorealism of produced images. Another
important task to carry out is an improvement of an existing virtual sawing framework,
which requires a more accurate and in depth evaluation of the obtained results and the
implemented GAN network architecture.

Furthermore, using as input the knot maps has limited practical use since knot locations
are already defined and can be used for optimization as such. Whereas, application of raw
projected log surface heightmaps provides a more general end-to-end framework where
the networks learn to extract the necessary information from the log measurements. This
unbounded approach can be applied for various wood species skipping wood specific
properties on the stage of modeling knot growth and segmentation. Also, an interesting
option for future research would be to apply new input modalities such as x-ray log data
for unsupervised machine learning image-to-image models.
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7 CONCLUSION

The study investigated the applicability of GANs for the virtual sawing task. The ex-
isting state-of-the-art GAN architectures were reviewed. The principals of CNNs and
generative models were surveyed. The dataset for training the selected GAN architecture
was prepared. The trainable modification of the Pix2Pix architecture was implemented.
The proposed method was evaluated for the capability to generate realistic board images
from both inputs the raw projected log surface heightmap images and knot map images.
According to the demonstrated ability of a segmentation model to detect knots on the
generated images, the proposed image-to-image translation method can produce realistic
looking board images. Finally, for the continuation of the research were suggested to
extend the implemented model with Frechet Inception Distance or disentangled feature
space. Also an application of more advanced network architecture or utilization of x-ray
log data as an input is worth considering for future study of virtual sawing systems.
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