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Abstract—This paper presents a real-time implementation
workflow of neural networks for autonomous driving tasks. The
UNet structure is chosen for a road segmentation task, providing
good performance for low complexity. The model is trained and
validated using two datasets, KITTI (validation of the model with
respect to state of art) and a local highway dataset (UHA dataset),
collected by the laboratory research team. The performance of
the model for road detection is evaluated using the F1 score
metric. After a simulation validation on both sets, the model
is integrated into a real vehicle through the RTMaps platform.
The application is tested in real-time conditions, around the city,
under various weather and light. Finally, the proposed model
proves low complexity and good performance for real-time road
detection tasks.

I. INTRODUCTION

Designing autonomous driving (AD) cars requires percep-
tion, path planning, and control [1], [2]. With the increasing
availability and improvement of sensors in the market, percep-
tion tasks have been upgraded considerably in the past few
years. One of the most common sensors used is the cam-
era, however self-driving performance increases when using
additional information from other sensors like GPS, Radars,
or LIDARs [3]. In autonomous navigation, the interest stands
for detecting traffic participants such as cars, pedestrians, and
objects/areas located around the car.

Processing a flow of images with respect to real-time con-
straints requires an important computational power that may
not be present in manufactured cars. Nowadays, commercial
cars are equipped with industrial embedded systems with low
processing capabilities, low energy, and low memory. When
dealing with advanced image processing techniques, neural
networks have shown very good detection performance these
last years but require to consider the computational time as
a performance criterion. Thus, autonomous vehicles become
more realizable. Examples can be found in the DARPA Urban
Challenge competition from 2007 [4], the Google car running
on highway, the development conducted by Vislab in 2013 or
the Tesla autopilot in 2015.

In the academic world, research centers perform signifi-
cant work. Datasets like KITTI [6], Berkeley DeepDrive [7],
A2D2 or generated by CARLA simulator [5] are exploited
for various autonomous driving tasks. Teichmann et al. ex-
plored techniques to measure computational time for semantic
segmentation tasks [8] within the KITTI dataset. Neven et
al. [9] worked on scene understanding using the Cityscapes
dataset. Another real-time endeavor on the same dataset is
developed using an ENet architecture [10]. An attempt using

3D LiDAR point clouds is intended for real-time semantic
segmentation in the work conducted by Wang et al. [11] with
the PointSeg architecture. Time-critical tasks performances are
also exploited on the KITTI benchmark by Bai et al. in their
road segmentation application [12]. In a further work, Jang
et al. aimed to both explain and reduce the end-to-end delay
for self-driving cars [13]. However, all of the previous works
refer to simulations conducted with their proposed models
applied for various datasets, yet not tested and validated into
an embedded system running in real-time conditions.

This paper focuses on tests conducted on an experimen-
tal prototype equipped with a real-time embedded system.
Therefore, an equilibrium between good results with respect
to the state-of-the-art and a low complexity neural network
(NN) that can be implemented inside the car is desired. Here,
a deep learning model is integrated into a car’s embedded
system. Furthermore, the application is subject to testing in
real-time experiments. Firstly, a UNet model is trained and
validated with appropriate datasets from the existing research
for self-driving cars. Once the model achieves good simulation
performances, the goal is to integrate it within the car. The
experimental setup will require finding the right cameras and
the compatible software needed for real-time data acquisition.
Finally, the overall target is to develop an end-to-end real-time
running application for road detection tasks.

The paper is structured as follows: Section II describes
the experimental setup (platform); Section III stands for Real-
time Implementation (NN model and integration); the fourth
section, Road Detection Results, illustrates the results obtained
(simulation and real-time obtained results); and finally, Section
IV highlights the Conclusions.

II. ARTEMIPS EXPERIMENTAL PLATFORM

A. Experimental Setup

Concerning the experimental setup, the IRIMAS labora-
tory possesses a vehicle called ARTEMIPS equipped for au-
tonomous driving development. Figure 1 illustrates the features
of the car.

Different devices are interconnected within the car. These
are the main computer (Control Process Unit), LIDAR Units (2
Velodyne LIDARs + 2 IBEO Lux LIDARs), global navigation
satellite system (GNSS), radar sensors, and cameras (Manta).

In this work, only the RGB camera is used for road detec-
tion tasks. To assess the real-time constraint, the computational
power is limited to a CPU-based embedded computer. The



Fig. 1: ARTEMIPS Car

photographic device illustrated in Figure 1, is mounted behind
the windshield as in the next image. The camera is a Manta G-
507 (Allied Version) incorporated with a Sony IMX264 sensor
that runs 23.7 frames per second at a 5.1-megapixel resolution.
The connection between the camera and the computer is of
Gigabit Ethernet (GigE) type, allowing the image recorder to
transmit data at a rate of 1Gb/s.

For the implementation of the road detection task, the pro-
posed architecture is developed using Tensorflow and Keras.
Consequently, the model is trained out of the prototype on
the Graphics Process Unit (GPU) board, NVIDIA RTX 2080.
For the experimental testing, the model is incorporated into
the main computer (CPU) with the Real-Time Multisensor
Applications (RTMaps) platform.

B. Datasets

The considered datasets include KITTI 1 and a dataset
directly created from the task and based on images from a
local highway in the city of Mulhouse, France. Therefore,
considering KITTI, the focus is on urban unmarked lane
category images, while the collected dataset from the highway
is annotated within the entire road as a navigable area. For the
KITTI dataset, 98 images have been considered, whereas, in
the set of data collected by the IRIMAS research team (UHA
dataset 2), 200 images have been investigated. The data split
ratio is 80% for the training (80 frames for KITTI, respectively
160 for highway) and the remaining 20% for validation (18
frames for KITTI and 40 images for the UHA dataset).

III. REAL-TIME IMPLEMENTATION

A. UNet Architecture

In segmentation and computer vision applications, deep
learning represents an important contributor. In 2015, Ron-
neberger et al. [14] developed the UNet architecture, which
belongs to the Convolutional Neural Network (CNN) family
and provides great results in medical imaging segmentation
tasks. Contemporary, UNet performs well and shows strong ca-
pabilities for delimiting surfaces, since it considers the spatial
correlation and the geometric information of the structure to
where it is applied to. git The UNet model (Figure 2) is divided
in two parts: encoder (left side) and decoder (right side) united
by a fixed block in between often called bottleneck. These parts
represent the contracting side (encoder) and the expansive side
(decoder).

1http://www.cvlibs.net/datasets/kitti/eval road.php
2https://github.com/vasigiurgi/RT-road-detection-with-Unet-for-AV

For the implementation, images are downsampled to a
lower resolution to decrease the complexity. Therefore, from an
original size of 2464H×2056W , the new resolution becomes
1016H×1232W . The model uses a classical UNet architecture
with concatenations. The entire architecture uses fourteen
convolutional layers, halved in the two parts. In the encoder
three blocks are used to downsample the information. Each
one of the blocks is composed of two convolutional operations
with the same padding, rectified by a ReLu objective function.
The convolutional layers are followed by a max-pooling block
with a pool size of 2 × 2. The max-pooling layers are used
for translation invariance. At the end of each block, there is a
Dropout regularizer. In this way, the network is simplified and
unimportant neurons are shut down randomly after each layer.
The opposite side represents the reflection of the encoder. The
decoder uses three modules to upsample back the data and
rebuild the image. Hence, data is interchanged between the
encoder and decoder through the concatenation connections.
As for the decoder part, each big block is composed of
two convolutional layers to propagate features, followed by
upsampling layers to reconstruct the features. In the encoder,
the layers are rectified by the ReLU functions, keeping the
same padding. Figure 2 shows the block architecture of the
proposed model. The part between the encoder and decoder

Fig. 2: The proposed UNet Model Arhitecture

represents the bottleneck which has two 256-channels convo-
lutional layers each. The role of this bottleneck is to limit the
NN to learn the compressed information. It is intended that
this part consists only of meaningful data for the reconstructing
part. The architecture ends with a sigmoid function and another
Dropout regularizer. The sigmoid computes results between (0
and 1) so that the neural network can separate the features in
regions that belong or do not belong to the road. The entire
architecture has 3×3 kernel filters and multiple channels. The
channels vector distribution [32, 64, 128, 256, 128, 64, 32] can
be observed from left to right. In the contracting component,
the network is downsampled and encodes from 32 to 128
channels. Therefore the bottleneck continues with two layers
of 256 channels each. The expansive part starts upsampling
and decoding from 128 channels to 32. In the encoder, the
input image comes as 3D data (RGB imge) and after decoder
operations, the output becomes a 2D tensor (representing the
monochrome prediction).

B. Integration within RTMaps platform

In the autonomous vehicle prototype, the RTMaps treats
the information generated by the sensors. It receives the
camera images with corresponding timestamps in real-time and
computes them into the model that has been developed. For the
RTMaps integration, the neural network model is adapted for
a Python Bridge Component (Figure 3). The Python Bridge
is a block that contains a Python file, written in a manner



Fig. 3: RTmaps Workflow Integration

that allows running the model in a loop and integrates the
input-output interfaces with other components. Therefore, the
Python Bridge allows only models of frozen graph type, so
the classic NN model needs to be transformed into a frozen
graph model to execute the road prediction based on real-time
images. The conversion method is illustrated in the following
algorithm (Alg. 1):

Algorithm 1 Conversion to the frozen graph

function EXPORT KERAS MODEL AS A FROZEN GRAPH
(keras model)

I. Freeze the Keras model using TF 2. x:
SavedModel => GraphDef

II. Optimize the frozen graph using TF 1.x:
GraphDef => GraphDef

III. Convert the optimized frozen graph back to Saved-
Model

GraphDef => SavedModel
end function

Consequently, after the model is integrated into the Python
bridge, the block is merged within the full diagram, as depicted
in Figure 3 and it is compiled to a RTMaps package.

IV. ROAD DETECTION RESULTS

A. Simulation Results

Following Section 2, the results are divided into two
categories: the results for unmarked lane images from KITTI
dataset, and the results for highway images collected on the
ARTEMIPS platform.

To evaluate the road detection tasks, accordingly to the
KITTI workbench, Fritsch et al. propose the F1 score metric
[6]. Considering precision and recall (Equation 1), the interest
is for calculating the F1-measure score [15].

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
(1)

Equation 2 is computed as a harmonic mean and reflects
the F1 score:

F1 =
(
1 + β2

) Precision · Recall
β2 Precision + Recall

(2)

where β = 1, and the other two metrics (precision and re-
call), are represented of the following: TP variable represents
the true positives, FP false positives, and FN is used for false
negatives.

Initially, the UNet model is trained on a partition of road
detection KITTI dataset, 98 unmarked lane images: 80 images

training and 18 images for validation. The model is constructed
based on a UNet architecture described in the implementation
part, but with adapted dimensions of the input data (360H ×
1200W ). Here, the model is trained for 30 epochs using Adam
optimizer (Figure 4a). The validation trend follows the training
trend and the prediction accuracy stabilizes around 0.80.

On the KITTI website, for the same category of unmarked
lanes, the best score obtained is realized by the method SNE-
RoadSeg+ [16] with a Max F1 score of 0.9704. Figure 4 shows
results obtained by the proposed model on the KITTI dataset.

(a) Accuracy (b) Best Case (c) Worst Case

Fig. 4: Kitti Dataset Results

Figure 4b represents the best case for the validation dataset
and it has a Max F1 score equal to 0.9407, whereas the right
side (Figure 4c) is the worst F1 score case, equal to 0.3090.
The average score for the validation dataset is 0.8475 which
means most of the predicted images are closer to the best
F1 score than to the worst F1 score. Conclusively, the model
achieves good performance with a Max F1 score close to
the top-20 on the KITTI dataset. The performance could be
improved by working on the worst cases that decrease the
average, however, to keep a network that can be embedded, the
choice is made not to improve the architecture, i.e. increasing
the number of layers and the number of neurons, so increasing
the complexity. Keeping in mind that the best scores from the
KITTI website might have behind robust and high-complexity
neural network models, the simple UNet architecture that has
been proposed proves to have good results for the embed-
ded part. The model is applied to the UHA dataset. The
original dimensions of the raw images are adjusted from
(2056H × 2464W ) to (1016H × 1232W ) for computational
reasons. For this experiment, 50 images have been considered
to be tested. Thus, with respect to the ground truth, the model
has to predict the entire road, including the opposite way and
line markers.

Figure 5a represents the original image of the best predic-
tion results. For the UHA dataset, the model provides efficient
F1 score values. The results obtained from over 50 images
from the validation dataset are the following: Mean F1 Score:
0.9798, Max F1 Score: 0.9922, Min F1 Score: 0.9480. Figure
5, respectively Figure 6 represent the best case and the worst
case prediction from the validation datasets. The reference
mask is shown between original image and predicted image.
On the right side, there is the predicted data. For the best case,
the F1 Score is 0.9912, which is very close to 1. This means
that the road has been predicted smoothly, almost one-to-one
with the ground-truth image.

Consequently, the worst-case prediction case is presented
in Figure 6, where the F1 score is 0.9480.



Fig. 5: Best predicted F1 score

Fig. 6: Worst predicted F1 score

The worst score is around 5% less accurate than the best
score, but the road is still predicted more than 90% of its
surface. Moreover, the average score of the predicted images
is 0.9798 which is closer to the best case prediction. Another
important aspect of the worst-case prediction is related to the
prediction of the line markers from the road, which have
not been taken into account within the annotation process.
Therefore, the model should predict the navigable area in-
cluding the line markers, with respect to the annotations (lane
delimitation markers have been annotated as part of the road).
However, considering the metric evaluation, the lane markers
that have not been predicted as the navigable area will be
considered as the wrong prediction, which justifies the score
in the worst case. Furthermore, the model performs well for
the car object. The car coming from the opposite direction has
been successfully predicted as non-road. To validate the work
two sets of experiments have been done. Firstly the model has
been validated on the offline dataset from the highway, in the
validation subset; secondly, the model has been validated on
the road in real-time tests on the ARTEMIPS car. The next
table resumes the results presented in this work:

Dataset Worst F1 Score Best F1 Score Mean F1 Score

KITTI 0.3090 0.9704 0.8475
UHA dataset 0.9266 0.9922 0.9798

TABLE I: Results UNet against KITTI and UHA dataset

B. Real-time results: Validation on real-time enviroment

The practical experiment represents the validation of the
project’s goals. In this way, the experiments validate an arti-
ficial neural network model’s performance in the real world.
For the practical part, the model is integrated with the RTMaps
platform. The camera is connected to the main PC for real-time
image acquisition. Due to the car’s limitations, a CPU (Control
Process Unit) computer is set to run behind the experiments.
Therefore, the proposed model is tested in real-time trials
under various weather (similar to dataset collection) and light
conditions. The vehicle speed on the highway during the test
oscillates between 50 and 110 km/h. The model performs well
for the real-time images and proves significant accuracy for

most of the images, however, it performs less accurately than
for offline simulations with images of the same category. An
image with an example of the real-time results is presented
in Figure 7. On the left side, the camera provides real-time
images. On the right side is the real-time prediction. Even if
the output image is good, the prediction has a little delay due
to embedded system’s computational limitations.

Fig. 7: Real-Time Experiments on the highway

The prediction has been challenged in a few scenarios. For
example, when the light conditions suffer a delayed update
(e.g. under the bridges or in ramp spots) or when the highway
is crowded, the model encounters problems in predicting
accurately. In this case, the real-time efficiency could not
be properly evaluated since the car computer did not have
GPU computational resource. Consequently, the prediction
is obtained with an execution time of 0.16 − 0.25 frames
per second (fps). The hypothesis is made that with a GPU
embedded computer, the performance can reach satisfying
results (a prediction in an acceptable delay regarding the
vehicle speed).

V. CONCLUSIONS

In this work, a real-time application concerning au-
tonomous driving functionalities in an embedded system has
been developed. The implemented model succeeds to perform
road segmentation in real-time (an execution time of 0.16 −
0.25fps), based on successive image acquisition. Additionally,
the project addresses a simple implementation with a low
complexity using a UNet architecture but manages to acquire
good results on both KITTI and highway datasets. The model
has performed accurately and efficiently in both in simulation
and real-time experiments. In the validation results, the UNet
model reached an average F1 Score equal to 0.9798, a best
prediction F1 Score of 0.9922, and a worst-case prediction
with an F1 Score equal to 0.9480. Regarding the real-time
experiments, qualitatively the results have been accurate, but
GPU features could improve significantly the performance.
The delay has increased due to the low computational power
resources. To gather faster results a knowledge distillation
approach can be considered to simplify the model. In this
way, together with a GPU experimental setup, the model could
predict the road in a faster way.
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