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Abstract—The modernization of the Common Agricultural
Policy (CAP) requires the large scale and frequent monitoring
of agricultural land. Towards this direction, the free and open
satellite data (i.e., Sentinel missions) have been extensively used
as the sources for the required high spatial and temporal
resolution Earth observations. Nevertheless, monitoring the CAP
at large scales constitutes a big data problem and puts a strain
on CAP paying agencies that need to adapt fast in terms of
infrastructure and know-how. Hence, there is a need for efficient
and easy-to-use tools for the acquisition, storage, processing and
exploitation of big satellite data. In this work, we present the
Agriculture monitoring Data Cube (ADC), which is an automated,
modular, end-to-end framework for discovering, pre-processing
and indexing optical and Synthetic Aperture Radar (SAR) images
into a multidimensional cube. We also offer a set of powerful tools
on top of the ADC, including i) the generation of analysis-ready
feature spaces of big satellite data to feed downstream machine
learning tasks and ii) the support of Satellite Image Time-Series
(SITS) analysis via services pertinent to the monitoring of the
CAP (e.g., detecting trends and events, monitoring the growth
status etc.). The knowledge extracted from the SITS analyses and
the machine learning tasks returns to the data cube, building
scalable country-specific knowledge bases that can efficiently
answer complex and multi-faceted geospatial queries.

Keywords—common agricultural policy, open data cube, anal-
ysis ready data, satellite image time-series, Sentinel missions

I. INTRODUCTION

The Common Agricultural Policy (CAP) has set out to
implement radical changes towards fairer, greener and more
performance-based policies [1]. In this context, and inspired
by the advent of free and open satellite data and the recent
advancements in data science, the CAP aims at the country-
wide evidence-based monitoring of the farmers’ compliance
with the agricultural policies. Towards this effort, the Sentinel
satellite missions, advanced ICT technologies and Artificial
Intelligence (AI) have been identified as key enablers [2].

The Sentinels provide frequent optical and Synthetic Aper-
ture Radar (SAR) images of high spatial resolution and have
been extensively used for the monitoring agriculture and
specifically for the purposes of the CAP [3], [4]. Most Sentinel-
based CAP monitoring systems utilize the parcel boundaries
from the Land Parcel Identification System (LPIS). LPIS is a
database that connects the crop type label, as declared by the
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farmer, to each parcel object. The LPIS objects and crop labels
are then combined with the Satellite Image Time-Series (SITS)
to feed AI models for CAP monitoring applications [2].

CAP monitoring systems need to be able to process and
visualize large amounts of satellite data, which is not possi-
ble using traditional local storage and processing workflows,
and for this reason big Earth Observation (EO) management
technologies are necessitated [5]. One such example are the
EO Data Cubes (EODCs) that can handle large volumes and
provide a solid solution for accessing and managing Analysis
Ready Data (ARD) [6]. Currently, several EODC technologies
have been developed, e.g., Google Earth Engine [7], Sentinel-
hub [8], gdalcube [9], Rasdaman [10], Open Data Cube (ODC),
OpenEO [11], and Earth System [12].

In this work, we demonstrate an end-to-end workflow for
building and exploiting a scalable Agriculture monitoring Data
Cube (ADC) based on ODC, which is hosted on CreoDIAS,
one of the five Data and Information Access Services (DIAS)
cloud platforms. ODC is open and infrastructure-independent,
so it can be installed in diverse environments, from personal
computers to supercomputers [13]. It enables effortless data
management and simplifies data querying, using a Python
Application Programming Interface (API) [14]. In ODC-based
systems, data are indexed or ingested into data cubes and
can be then loaded into xarrays, which is a powerful mul-
tidimensional data structure. The simplification of processing
and exploitation of big spatio-temporal data, using data cubes,
allows for unlocking their full potential and strengthens the
connection between data and users [15]. The ODC technology
has been used for the implementation of a number of national
data cubes, i.e., Australia [16], Africa [17], Switzerland [18],
Colombia [19], Brazil [20] and Taiwan [21].

Our solution comes with several notable advantages when
compared with the related work, as it includes both satellite
data (SAR and optical) and auxiliary geospatial data, such
as the farmers’ declarations (crop type labels) and parcel
boundaries from the LPIS, opening the door to fast and
accurate operations between them. This is crucial for oper-
ational scenarios of CAP monitoring applications. In addition,
we build several tools on top of the ADC. Specifically, we
built functionalities that enable the effortless generation of
corrected, cleaned and smoothed SITS that are formed into
feature spaces that feed AI pipelines with ARD. We also offer
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functionalities for computing multidimensional statistics and
in turn smart geospatial queries, enabling the recognition of
patterns and trends and the detection of events on agricultural
land. The outputs of the AI models (e.g., crop classification
and grassland mowing detection) fed by ADC, along with the
multidimensional information extracted from the monitoring
of an area throughout the years, populate the cubes through
a feedback loop. This way, we generate unique country-
specific EO knowledge bases for agriculture monitoring. These
knowledge bases allow for the evidence-based decision-making
by fully exploiting big EO data products and results of AI
models.

II. AGRICULTURE MONITORING DATA CUBE

The architecture of the ADC is based on two layers. The
first layer is related to data discovery and acquisition, and
the second layer is for the production of ARD. The ARD
generation layer includes a number of pre-processing tools for
SAR and optical images that make use of open-source libraries.
Instructions and code for setting up a data cube like ADC can
be found in https://github.com/Agri-Hub/datacap.

A. Access to Sentinel data

Copernicus Sentinel missions and specifically Sentinel-
1 (SAR) and Sentinel-2 (optical) have contributed to the
monitoring of agriculture by providing high temporal and high
spatial resolution images at global scale. Sentinel-2 offers
images in the visible and near infrared parts of the spectrum,
making them ideal for vegetation monitoring. Apart from the
surface reflectances of Sentinel-2, vegetation indices, e.g., the
Normalized Difference Vegetation Index (NDVI), can also be
extracted from optical images to enhance certain vegetation
characteristics (e.g., water content, physiological stress etc.).
SAR images (Sentinel-1) have also been used in related work,
either as stand-alone or complementary to optical images, as
they are not affected by clouds and allow for constructing
dense SITS that are essential in agriculture monitoring [22].

To generate ARD we need to consider both data acquisition
and data storage. To minimize the effort of accessing data,
ADC has been developed within the CreoDIAS cloud platform.
This allows us to access data directly via an offered catalogue
(eodata), which according to the latest statistics includes more
than 27 PB of Sentinel-1 and Sentinel-2 data [23]. The
CreoDIAS object storage repository ensures good performance
and eliminates the need for repeated downloading of raw
data locally. It is worth mentioning that CreoDIAS hosts the
complete archive of Sentinel data, and thus we do not have to
search across multiple data hubs. This is often a complicated
and strenuous process due to the large number of sources and
their varying performances (i.e., download speed, latency etc.).

Our ADC includes both Sentinel-1 and Sentinel-2 products
that cover Cyprus and Lithuania over the span of three years
(2019-2021). This results to a total number of approximately
15 TB of data, which are pre-processed before indexed in the
ADC. The metadata of the products, as retrieved from the Cre-
oDIAS API, are stored to a database. Thus, spatial operations
are allowed giving the potential for statistics extraction. In
addition, flags per product are created in every step of the pre-
processing chain aiming at the monitoring of possible failures
and the re-execution of the problematic task, if needed.

B. Generation of Analysis Ready Data

In order to convert the raw satellite data to ARD, certain
processing steps are required, i.e., i) atmospheric corrections
for optical images (Sentinel-2) using the Sen2Cor software
(Level 2A products) and ii) the generation of backscatter
coefficients (σ0) and interferometric coherence for the SAR
data (Sentinel-1) using the python library snappy. Then all the
products were converted to Cloud Optimized TIFFs that are
more efficient in terms of storage and loading speed and thus
fast enough for web applications. In addition, as ADC handles
data from two sensors, it is important for all the pixels to
have the same spatial resolution and be spatially aligned. For
this, Sentinel-1 and Sentinel-2 data are resampled to 10 m and
matched pixel-to-pixel, thus enabling efficient, sensor-agnostic
time-series data analysis. The final step of the pre-processing
chain is the masking of clouds and shadows on the optical
images; the detection of which is done using the Sentinel-2
scene classification product of the Sen2Cor algorithm.

ADC is able to scale efficiently and cover large areas,
which possibly include millions of objects (parcels), for which
we need to compute statistics and execute geospatial queries.
Besides serially querying the data cube for each parcel, using
its boundaries in vector format, we can also rasterize them as
shown in Fig.1. Then we index the layer of rasterized parcels
and load them into the data cube. This enables the fast and
parallel computation of zonal statistics per parcel using the
powerful xarrays data structure. We use the groupby function,
which allows for the grouping of the xarray dimensions based
on the respective IDs. Table I shows the processing time for
generating zonal statistics for a varying number of parcels
using the serial querying method and the groupby method.
It is observed that for a large number of parcels, groupby is
far more computationally economic.

TABLE I: Execution time for generating monthly averages for
one year and one Sentinel-2 band over one tile.

# parcels groupby serial querying
1 k 69 sec 250 sec
10 k 71 sec 40 min
100 k 150 sec 400 min

Fig. 1: Example of how parcels are indexed in the data cube
as rasters. Value −1 represents the pixels that do not belong
to any stored parcel, whereas pixels intersecting a parcel are
labeled with it’s corresponding database id (here 36).



III. SATELLITE IMAGE TIME-SERIES ANALYSIS

Long and dense SITS are essential for agriculture moni-
toring since crops change dynamically with time. We need to
capture these changes to i) detect trends and events (e.g., grass-
land mowing detection), ii) monitoring the growth status and
health, iii) classify crops to verify the validity of declarations
and many more applications pertinent to the monitoring of the
CAP. We enable the effortless, rapid and large scale analysis of
long and dense SITS, by exploiting the capabilities of xarrays.
In this section, practical scenarios are described to showcase
in detail the functionalities that are built on top of the ADC
and specifically how we can reduce noise, detect trends, speed
up work and improve reliability of decision-making. The code
and data are available at https://github.com/Agri-Hub/ADC.

A. Spatial buffers

One of the main advantages of ADC is the rasterized
information of the parcels, described in Sec. II. Apart from
the real parcel geometries, one can use our inward buffer
functionality, as shown in Fig.2, which can alleviate the ad-
verse consequences of mixed pixels. This way, we can extract
only the representative information from the rest of the pixels
encompassed inside the parcels’ buffered geometries.

Fig. 2: Inward buffer to parcel boundaries to avoid using mixed
pixels.

We additionally provide an adjustable outward buffer that
can be applied on the less-than-perfect cloud and shadow mask
products in order to reduce some of the noise. The Sen2Cor
scene classification product has suboptimal recall for the cloud
and shadow classes. However, for many agriculture monitoring
applications it is important to have only clear pixels involved
in the analyses. To tackle this issue, one can apply an outward
buffer zone around the masked cloud and shadow objects. As
a result, the pixels adjacent to clouds are now classified as
cloudy, providing a trade-off between better cloud masking
and fewer clear pixels for analysis. The original cloud mask
and a cloud mask with a buffer are illustrated in Fig. 3.

Fig. 3: Applying an outward buffer on cloud and shadow
objects.

B. SITS preparation

Our ADC solution offers a number of SITS processing
techniques to filter, interpolate, resample and smooth the
pixel or parcel time-series. For instance, by applying specific
thresholds we can filter out outliers, as seen in Fig. 4, and
fill the missing values from clouds and shadows using a
number of off-the-shelf interpolation techniques that we offer
(e.g., Linear, Bicubic etc.). Interpolated SITS can then be
sampled at any desired temporal resolution. This is useful when
constructing feature spaces for machine learning tasks that
require homogeneous input of fixed elements. Additionally,
our solution provides smoothing functionalities (e.g., rolling
median) to eliminate the noise caused by temporal fluctuations
on the SITS. Thus, patterns can be more clear and reveal trends
throughout the year(s). By refining the SITS, one can enhance
the performance of AI models that are fed with these data,
as well as improve photo-interpretation tasks. For example,
crop classification tasks perform better using interpolated time-
series and grassland mowing event detection is significantly
enhanced through filtering and smoothing that removes outliers
and abrupt changes that could be mistaken for real events.

Fig. 4: An example of SITS preparation functionalities (fil-
tering, interpolation, resampling and smoothing) applied to all
pixels of a sampled parcel.

.

C. Feature space generation

Using the ADC, one can go beyond single-date image
features and combine spectral bands and vegetation indices
that come from multiple temporal instances and thereby ex-
tract phenological features via computing the integrals and
derivatives of the time curves (i.e., biomass indicator, yield
indicator, end-of-season, peak-of-season, start-of-season) [24].
Such features have been shown to enhance the performance
of crop classification AI tasks [25]. The capacity of the
ADC to navigate in the spatial, temporal and spectral/variable
dimensions, using the grid format of multidimensional xarrays,
enables the effortless generation of SITS feature spaces. One
can select to generate a feature space at the pixel or parcel
level to match the downstream application requirements for
spatial resolution. Additionally, one can segment the satellite
images to chunks and generate patch-based datasets to feed
deep learning models for computer vision tasks.

D. Smart multidimensional queries

Time-series of earth observations hold important infor-
mation on the evolution of crops and should be analyzed



to extract knowledge on the vegetation development and to
identify potential trends. By using the ADC, one can easily
perform historical statistical analysis over an area at different
time units, i.e., day, month, season or year. These statistics
can be provided in the form of aggregated values for a parcel
or any user-defined area. Apart from the coordinates of the
area, a user can decide on additional parameters, such as the
maximum cloud coverage percentage or the minimum number
of cultivated crop fields over this area etc.

Using the ADC, we can generate animations of the evolu-
tion of a selected Sentinel variable (e.g., NDVI). Fig. 5 shows
a useful example on how temporal statistics can be used for
validating if a CAP obligation is met or not. Specifically, the
illustrated field was declared as spring triticale, which is a
particular type of spring cereal, and it was predicted, by our AI
crop classifier [4] to be maize, which is a summer cultivation.
The animation in Fig. 5 can be used to verify that indeed the
prediction is correct and the declaration is erroneous, since the
field has substantial vegetation during the summer months and
spring triticale would have been harvested. This functionality
is particularly useful for paying agency inspectors of the CAP
that are not EO experts. This way, they can easily fetch a
parcel-focused Sentinel time-series for the field of inspection
and decide on the validity of the farmer’s declaration.

Fig. 5: An example of NDVI time-series animation for a maize
field with monthly averages.

Similarly to the temporal statistics described above, one
can use ADC to compute pertinent statistics along the space
and spectral/variable dimensions. All these statistics can be
used in a synergistic manner to formulate complex geospatial
queries. This is a game changer for the inspectors of the
CAP paying agencies that are for the first time enabled to
ask combinatory and multidimensional questions to make their
inspection process faster, targeted and precise. As already
mentioned, the ADC supports several services (e.g., crop
classification, grassland mowing detection, SITS multidimen-
sional statistics etc.) by providing gridded ARD. The results
of these services are used to update a PostgreSQL/PostGIS
database. The database contains aggregated results per parcel,
which can then be easily accessed, enabling a back-and-forth
communication with the ADC.

Thus, we have data cubes that include and keep on being
dynamically populated by Sentinel-1 and Sentinel-2 products.
We also have auxiliary geospatial data (e.g., LPIS) that are
used to enable the provision high level data products (e.g., crop
classification) that in turn populate the cubes. This way, we end

up with country specific knowledge bases for CAP monitoring.
Meanwhile, useful operations such as the computation of
distance between two geometries, the calculation of an area,
buffer analysis and geospatial queries, can take place exploiting
the power of the PostGIS extension. PostGIS and ADC queries
can be combined to address the most sophisticated of questions
inspectors might have. Below are listed examples of smart
queries supported by our ADC-based framework.
Query 1. Generate feature space. Return monthly averages of
Sentinel-1 coherence and Sentinel-2 NDVI at the parcel-level
for Lithuania from 2017 to 2021 and Paphos, Cyprus for 2020.
Apply inward buffer 5 m to avoid mixed pixels and outward
buffer 50 m to reduce noise from clouds. Feed data to grassland
mowing detection and crop classification algorithms.
Query 2. Select potential wrong declarations. Using the output
of query 1, return the fields in Paphos in 2020 that were
declared to cultivate maize but have been predicted in a
different crop type class. Visual verification. Return animation
of NDVI time-series, with a 10-day step, from June to October.
Query 3. Quantify grassland use intensity. Using the output of
query 1, return the number of mowing events in Lithunia per
year from 2017 to 2021. Limit the results to grassland fields
with average NDVI of less than 0.4. Identify hotspots of low
grassland intensity with an average mowing event of less than
1 per year, over the years of inspection. Ultimately, this query
will enable the decision makers to suggest spatially tailored
mitigation or adaptation measures for the hotspots.

IV. CONCLUSIONS

Data cubes enable the transformation of EO data into i)
analysis-ready information, ii) high-level knowledge and iii)
intuitive visualizations to support timely and effective decision
making. Our cloud-based approach allows for the efficient and
automated discovery, pre-processing, data cube indexing and
analysis of big satellite data. Currently, ADC is populated
with Sentinel-1 and Sentinel-2 images that cover wall-to-wall
Cyprus and Lithuania for three years. It also includes the parcel
boundaries, crop type maps (LPIS) and ancillary data that
enable the development of downstream applications for the
monitoring of CAP rules. We indicatively used the outputs of
an in-house crop classification model and Sen4CAP’s*

grassland mowing detection model. Furthermore, a suite
of tools has been built on top of the ADC. The users of
our framework can straightforwardly generate spatial buffers,
multidimensional statistics, animations, time-series plots and
feature spaces, and execute complex multidimensional geospa-
tial queries. We address the challenge of CAP controls by
bringing together EO products, geospatial services and ex-
tracted knowledge from validated models. This solution is a
stepping stone towards the modernization of the CAP and the
seamless integration of big EO data in the operating models
of non-expert users.
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