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Abstract—Deep learning methodologies constitute nowadays
the main approach for medical image analysis and disease pre-
diction. Large annotated databases are necessary for developing
these methodologies; such databases are difficult to obtain and
to make publicly available for use by researchers and medical
experts. In this paper, we focus on diagnosis of Covid-19 based
on chest 3-D CT scans and develop a dual knowledge framework,
including a large imaging database and a novel deep neural
architecture. We introduce COV19-CT-DB, a very large database
annotated for COVID-19 that consists of 7,750 3-D CT scans,
1,650 of which refer to COVID-19 cases and 6,100 to non-COVID-
19 cases. We use this database to train and develop the RACNet
architecture. This architecture performs 3-D analysis based on
a CNN-RNN network and handles input CT scans of different
lengths, through the introduction of dynamic routing, feature
alignment and a mask layer. We conduct a large experimental
study that illustrates that the RACNet network has the best
performance compared to other deep neural networks i) when
trained and tested on COV19-CT-DB; ii) when tested, or when
applied, through transfer learning, to other public databases.

Index Terms— medical imaging, COVID-19 diagnosis,
COV19-CT-DB database, 3D chest CT scan analysis, RACNet
deep neural network, dynamic routing, mask layer, feature
alignment.

I. INTRODUCTION

Various methods have been proposed to diagnose COVID-
19, containing a variety of medical imaging techniques, such as
analysis of chest x-rays, or CT (computed tomography) scans.
In particular, chest 3-D CT images can be used for precise
COVID-19 early diagnosis [1], [2]. The target is to detect
COVID-19 findings, such as multiple ground-glass opacities,
consolidations, and interlobular septal thickening in both lungs,
mostly distributed under the pleura.

Machine and deep learning have been used for analyzing
CT scans and detecting COVID-19 [3], [4]. Such approaches
require large training datasets. A few databases with CT scans
have been recently developed [5], [6], [7]. However,some
datasets are private and not publicly available [8] [9] [10].
Others are rather small, either in terms of total CT scans, or
in terms of COVID-19 annotated CT scans [11] [12] [13].
Moreover, they do not contain volumetric 3-D CT scans (with
slices), but only a few CT scan slices or images .

In this paper we present a new very large database, COV19-
CT-DB (COVID-19 Computed Tomography Database), includ-
ing chest 3-D CT scans, aggregated from different hospitals.

In particular, it includes 7,750 3-D CT scans, annotated for
COVID-19 infection; 1,650 are COVID-19 cases and 6,100 are
non-COVID-19 cases. The 3-D CT scans consist of different
numbers of CT slices, ranging from 50 to 700, totalling around
2,500,000 CT slices. Part of the database was successfully used
in a recently held Competition [14]. The whole database will
be made available to the research community and will be used
for research purposes.

We also develop a deep neural architecture able to: i)
analyze the 3-D CT scan inputs, ii) effectively handle the
problem that each CT scan consists of a different number of
CT slices and iii) provide a very high performance, when used
on COV19-CT-DB and on other public datasets for COVID-19
diagnosis. RoutingAlignCovidNet (RACNet) is a CNN-RNN
(Convolutional Neural Network - Recurrent Neural Netrwork)
architecture [15], [16] that is modified to include a feature
alignment step and a mask layer that dynamically selects,
according to each 3-D input length (i.e., number of slices), the
specific RNN outputs to be fed to the dense (fully connected)
layers for COVID-19 diagnosis.

The rest of the paper is organized as follows. Section II
presents related work, including methods that are considered
for comparison purposes in this paper. Section III presents
the generated COV19-CT-DB. The RACNet architecture is
described in Section IV. Section V includes the experimental
study presenting evaluation of the performance of RACNet
when trained with COV19-CT-DB and when refined on other
public databases. Conclusions and future work are presented
in Section VI.

II. RELATED WORK

A variety of 3-D CNN models have been used for detecting
COVID-19 and distinguishing it from other common pneumo-
nia (CP) and normal cases, using volumetric 3-D CT scans
[17]. In [18], the authors developed a multi-task architecture
consisting of a (common) encoder that takes a 3-D CT scan as
input and i) a decoder that reconstructs it; ii) a second decoder
that performs COVID lesion segmentation; and iii) a multi-
layer perceptron for classification between COVID and non-
COVID categories. In [19], a weakly supervised deep learning
framework was presented using 3-D CT volumes for COVID-
19 classification and lesion localization. A pre-trained UNet
was utilized for segmenting the lung region of each CT scan
slice; the latter was fed into a 3-D DNN that provided the



Fig. 1: Four CT scan slices, two from a non-COVID-19 CT scan, on the left and two from a COVID-19 scan, on the right.
Bilateral ground glass regions are seen especially in lower lung lobes in the COVID-19 slices.

classification outputs; the COVID-19 lesions were localized
by combining the activation regions in the DNN and some
connected components in unsupervised way.

In [20] the authors first used 3D models, such as
ResNet3D101 and DenseNet3D121, to establish the baseline
performance. Then they proposed a differentiable neural ar-
chitecture search (DNAS) framework to automatically search
the 3D DL models for 3D chest CT scan classification and
use the Gumbel Softmax technique to improve the search
efficiency. This paper has published the training, validation and
test datasets that they used in order to have a fair comparison
with future works.

III. THE COV19-CT-DB DATABASE

COV19-CT-DB includes 3-D chest CT scans annotated for
existence of COVID- 19. Data collection was conducted in
the period from September 1 2020 to November 30 2021. It
consists of 1,650 COVID and 6,100 non- COVID chest CT
scan series, which correspond to a high number of patients
(more than 1150) and subjects (more than 2600). Due to
the anonymization procedure, no specific patient and subject
numbers can be reported.

Annotation of each CT slice has been performed by 4
very experienced (each with over 20 years of experience)
medical experts; two radiologists and two pulmonologists.
Labels provided by the 4 experts showed a high degree of
agreement (around 98%). Each of the 3-D scans includes
different number of slices, ranging from 50 to 700. In total,
724,273 slices correspond to the CT scans of the COVID-19
category and 1,775,727 slices correspond to the non COVID-
19 category.

Figure 1 shows four CT scan slices, two from a non-
COVID-19 CT scan, on the left and two from a COVID-
19 scan, on the right. Bilateral ground glass regions are seen
especially in lower lung lobes in the COVID-19 slices.

IV. THE RACNET ARCHITECTURE

A. 3-D Analysis and COVID-19 Diagnosis

The input sequence is a 3-D signal, consisting of a series
of chest CT slices, i.e., 2-D images, the number of which
is varying, depending on the context of CT scanning. The
context is defined in terms of various requirements, such as
the accuracy asked by the doctor who ordered the scan, the

characteristics of the CT scanner that is used, or the specific
subject’s features, e.g., weight and age.

The 3-D signal can be handled using a 3-D CNN architec-
ture, such as a 3-D ResNet. However, handling the different
input lengths, i.e., the different number of slices that each
CT scan contains, can only be tackled in some ad-hoc way,
by selecting a fixed input length and removing slices when
a larger length is met, or duplicating slices when the input
contains a smaller number of slices [21], [22]. The 3-D signal
can alternatively be handled using different Multiple Instance
Learning methods [23]. Nevertheless, this does not fit our case,
as the problem we are dealing is not to identify one or more
CT slices that illustrate COVID-19 occurrence; it is to learn
doctors’ diagnosis making after they have examined the whole
3-D CT scan.

In the proposed approach, we tackle this problem by using
RACNet, a CNN-RNN architecture, instead of a 3-D CNN
and by including a Mask Layer, following the RNN part, that
dynamically selects RNN outputs taking into account the input
length, i.e., the number of slices of the currently analyzed CT
scan.

Segmentation of each 2-D slice is performed first, so as
to detect the lung regions and the resulting segmented image
constitutes the input to the CNN.

All input CT scans are padded to have length t (i.e., consist
of t slices). Then the CNN part performs local, per 2-D slice,
analysis, extracting features mainly from the lung regions. The
target is to make diagnosis using the whole 3-D CT scan series,
similarly to the way medical experts provide the annotation.
The RNN part provides this decision, analyzing the CNN
features of the whole 3-D CT scan, sequentially moving from
slice 0 to slice t.

As shown in Figure 2, we get RNN features corresponding
to each CT slice, from 0 to t. We then concatenate these
features and feed them to the Mask layer. The original (before
padding) length l of the input series is transferred from the
input to the Mask layer to inform the routing process. During
RACNet training, the routing mechanism performs dynamic
selection of the RNN outputs/features. In particular, it selects
as many of them as denoted by the length l of the input series,
keeping their values, while zeroing the values of the rest RNN
outputs. In this way it is routing only the selected ones into
the following dense layer.

This can be done: a) by selecting the first l RNN outputs, or,
b) through an ’alignment’ step, i.e., by first placing the l RNN



outputs in equidistant positions in [0, t] and by then placing the
remaining outputs in the in-between positions; the Mask gets
their positions and performs routing of the respective RNN
outputs to the following dense layer.

The final output layer then follows that uses a softmax
activation function and provides the final COVID-19 diagnosis.

B. The ’alignment’ step

Let us, for example, assume that a maximum input length
of 700 CT scan slices is considered. For a specific input CT
scan consisting of 50 slices, 650 duplicate slices are inserted so
that it is made to contain 700 slices in total. During training, all
700 slices are fed to the CNN-RNN network. In the case where
no ’alignment’ is performed, the network’s output is fed to the
Mask layer which: i) zeroes the features corresponding to the
650 duplicate slices (slices 50-699), ii) lets the first 50 features
(corresponding to original slices 0-49) keep their values. In the
case where ’alignment’ is performed, the features extracted
from the CNN-RNN part are re-positioned as follows. The
features corresponding to the 50 original slices (0-49) are
placed in equidistant positions in [0, 699]. The rest features
corresponding to the 650 duplicate slices are placed in the
in-between positions. The operation of the Mask layer is the
same as when no ’alignment’ is performed; it i) zeroes the
features corresponding to the 650 duplicate slices (slices 50-
699), ii) lets the other 50 features (corresponding to original
slices 0-49) keep their values.

In both cases, the ’masked features of CT slices 0-49’ and
the ’masked features of duplicate CT slices 50-699’ are fed to
the dense layer that precedes the output layer.

V. EXPERIMENTAL STUDY

This section describes a set of experiments evaluating the
performance of the proposed approach.

At first, we compare the performance of RACNet with the
performance of the best methods in an ICCV 2021 competi-
tion on COVID-19 diagnosis [14]. A part of COV19-CT-DB
composed of 5000 CT scans was used in this Competition.
The dataset was split in training, validation and testing sets.
The training set contained, in total, 1552 3-D CT scans cor-
responding to 707 COVID-19 cases and 845 non-COVID-19
cases. The validation set consisted of 374 3-D CT scans, 165 of
which represented COVID-19 cases and 209 represented non-
COVID-19 cases. Finally the test set included 443 COVID-19
and 3012 non COVID-19 CT scans. We make a comparison
of RACNet’s performance, trained with the above dataset, to
the performance of the three winning methods in the above-
mentioned Competition, showing that RACNet outperforms
all three methods. Then we evaluate RACNet’s performance
on another publicly available CT scan database, CC-CCII
and show the improved performance when compared to that
of the recently published state-of-the-art DNAS framework
referenced in Section II [20].

In both cases, we initially performed segmentation of all
3-D CT scans. We used a combination of morphological
transforms and a pre-trained U-Net model [24] resulting in a
2D semantic segmentation network. More specifically, for each
CT scan, every slice first passed through the pre-trained U-Net

TABLE I: Comparison of RACNet’s performance compared to
that of state-of-the-art methods on COV19-CT-DB

Method ’macro’ F1 Score
ACVLab 88.74

SenticLab.UAIC 90.06
FDVTS COVID 90.43

RACNet 93.43

model. After all slices of the CT scan were segmented by the
U-Net model, there was a checking procedure to assure that all
slices were segmented. If a slice had a mask area less than 40
% of the largest mask area of the CT scan, then morphological
transforms were used to segment this particular slice. RACNet
was trained next, using the segmented training data.

A. Comparison with best performing methods on COV19-CT-
DB

As described in [14], the FDVTS-COVID [25] network
achieved the top performance in the ICCV Competition. It
included a Periphery-aware Spatial Prediction network, which
predicted whether a pixel belonged to the interior of the lung
region, as well as the distance to the region boundary. This
network was a pre-trained U-Net network with an encoder-
decoder architecture; ResNet was adopted as the encoder.
Each CT image was at first augmented and then fed into
this encoder, generating vector representations. A classifier
was trained on top of these representations for COVID-19
classification. Meanwhile, these representations were mapped
by a projection network to new representations which were
further enhanced in a contrastive learning manner.

The SenticLab.UAIC [26] network ranked second, using an
inflated 3D ResNet50 model with non local operations on the
second and third layers. Inflated convolutions were obtained by
expanding filters and pooling kernels of 2-D ConvNets into
3-D, resulting in learning spatio-temporal feature extractors
from 3-D images while using ImageNet architectures and label
smoothing. To handle the variable length of CT scans, a sub-
sampling technique, or padding, were used for lengths above,
or under 128 respectively. During inference, parts of a single
CT scan volume were inputted several times in the model; a
threshold procedure followed to eliminate some results; final
prediction was based on majority voting over remaining results.

The ACVLab [27] network ranked third, based on either
slice- level, or 3D volume analysis. In the first case a vision
Swin-Transformer was used for single-slice level classification
followed by Wilcoxon signed-rank test. In the second case
a Within-Slice-Transformer and a Between-Slice-Transformer
were used, based on ResNet50 for feature extraction and self-
attention for context-encoded features.

We trained the RACNet architecture using the Competition
training and validation sets and tested its performance on
the test set, similarly to the above three approaches. Table I
presents all four methods’ performance on the test set, using
the official metric of the competition (’macro’ F1 score). From
this Table it can be easily seen that RACNet provides a superior
performance in comparison to the other three approaches.



Fig. 2: The proposed Pipeline: A 3-D input composed of, up to t chest CT slices is processed for COVID-19 diagnosis; 3-D
analysis is performed by a CNN-RNN architecture, while a routing mechanism including an ’alignment’ step and a Mask Layer
handles the varying input length t. A dense layer follows, preceding the output layer that provides the COVID-19 diagnosis; the
neuron outputs of the dense layer are further analyzed through clustering to derive a latent variable model and a related set of
anchors that provide further insight into the achieved decision making.

B. Comparison of Performance of RACNet to 3-D CNNs on
CC-CCII Database

In the following we evaluated the performance of the
RACNet network on the CC-CCII database [28]. The original
CC-CCII dataset contains a total number of 617,775 slices of
6,752 CT scans obtained from 4,154 patients. However, there
were some problems with it (i.e., damaged data, non-unified
data type, repeated and noisy slices, disordered slices, and
non-segmented slices). The authors of [20] published training
and test partitions that did not include damaged data and they
referred to this version of CC-CCII as ’Clean CC-CCII’.

In order to handle the different number of input CT scan
length, the authors of [20] used two slice sampling algorithms:
random sampling and symmetrical sampling. Specifically, the
random sampling strategy was applied to the training set,
which can be regarded as data augmentation, while the sym-
metrical sampling strategy was performed on the test set to
avoid introducing randomness into the testing results. The
symmetrical sampling strategy referred to sampling from the
middle to both sides at equal intervals. The relative order
between slices remained the same before and after sampling.

For a fair comparison we trained, fine-tuned and evaluated
RACNet exactly with the same ’Clean-CC-CCII’ partitions.
In particular: i) we trained the RACNet architecture with the
Clean CC-CCII training set and tested its performance on the
test set; ii) we trained RACNet initially on the COV19-CT-DB,
fine-tuned on the Clean CC-CCCII training set and tested its
performance on the test set. Table II presents the performance
of three state-of-art 3-D CNN networks, as well as of the model
described in [20]. It also presents the performance of RACNet
in the two above-mentioned contexts. The presented results in
Table II indicate that RACNet greatly outperforms all three 3-D
CNNs models, as well as the method proposed in [20]. It also
indicates that the new COV19-CT-DB database can be used

TABLE II: Comparison of Performance of RACNet to that of
3-D CNNs on the CC-CCII Database

Method Accuracy score
Resnet3D101 89.62

Densenet3D121 88.97
MCE 18 87.11

COVIDNet3D-L 90.48
RACNet 93.64

RACNet (fine-tuned) 95.33

as an excellent prior for transfer learning and pre-training of
deep neural networks for COVID-19 diagnosis in other medical
environments.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we introduced COV19-CT-DB, a new large
database of chest 3-D CT scans obtained in various contexts.
We have also developed RACNet, a state-of-the-art deep neural
architecture that is able to successfully analyze CT scans for
COVID-19 diagnosis. We illustrated that RACNet outperforms
state-of-the-art 3-D CNNs over the COV19-CT-DB, as well
as over the Clean CC-CCII database. Moreover we showed
that its performance is further improved when trained on
COV19-CT-DB as prior and then refined over Clean CC-CCII
database. In future work we will build on the dual generated
knowledge, i.e., COV19-CT-DB and RACNet, developing a
domain adaptation methodology [29], so as to enrich, in a
semi-supervised learning way, the created database with very
large numbers of - originally non-annotated - chest 3-D CT
scans that will be further aggregated from various medical
centres.
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