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ABSTRACT

Development of objective quality metrics that can reliably
predict perceived quality of 3D video sequences is challeng-
ing. Various 3D objective metrics have been proposed, but
PSNR is still widely used. Several studies have shown that
PSNR is strongly content dependent, but the exact relation-
ship between PSNR values and perceived quality has not been
established yet. In this paper, we propose a model to predict
the relationship between PSNR values and perceived quality
of stereoscopic video sequences based on content analysis.
The model was trained and evaluated on a dataset of stereo-
scopic video sequences with associated ground truth MOS.
Results showed that the proposed model achieved high cor-
relation with perceived quality and was quite robust across
contents when the training set contained various contents.

Index Terms— 3D, objective quality, subjective quality,
content analysis, quality prediction

1. INTRODUCTION

With the rapid growth of 3D video technologies, the design
of objective quality assessment methods, i.e., metrics, that
can reliably predict the quality of 3D content as perceived
by the end user, is of crucial importance. Subjective tests are
time consuming, expensive, and not always feasible. There-
fore, objective measurements are needed, especially to assess
advances in the design of coding technologies. Despite the
efforts of the scientific community in recent years, 3D video
quality assessment is still an open challenge. There are no
metrics that are widely recognized as reliable predictors of
human 3D quality perception. PSNR is commonly accepted
and used by video coding experts to evaluate the performance
of coding algorithms, even though its correlation with human
perception of visual quality is known to be limited.

PSNR values below 25 dB and over 40 dB are often con-
sidered as bad and excellent quality, respectively. However,
the exact relationship between PSNR values and perceived
quality has not been established yet. This relationship should
consider non-linearities and saturation effect of the human vi-
sual system (HVS). As it was shown that PSNR is strongly
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content dependent [1], this relationship should also be deter-
mined for each content separately.

Korhonen and You [2] have found a strong correlation be-
tween the parameters of an exponential function, which was
used to map PSNR values to mean opinion scores (MOS),
and the spatial and temporal activity of a set of six 2D video
sequences. Based on this finding, they have used a linear re-
gression to estimate the parameters of the mapping function
based on the spatial and temporal activity of the six contents.

Liao et al. [3] have shown how the Quality of Experi-
ence (QoE) of a set of 2D video sequences was correlated
with objective quality metrics, video content characteristics,
and device features. From these results, a linear mapping be-
tween multi-scale structural similarity (MS-SSIM) and QoE
was proposed. The authors assumed that the parameters of the
linear mapping can be accurately estimated from the amount
of spatial details, motion level, display resolution, and device
type, but this assumption was not investigated.

In this paper, we investigate the prediction of perceived
quality of stereoscopic video sequences based on PSNR and
content analysis. We propose a model based on a logistic
function to map the PSNR values to perceived quality, which
should better represent the saturation effect of the HVS when
compared to linear or exponential mapping. The parameters
of the mapping function were predicted using 2D and 3D
content features, which were extracted from the original se-
quences. Each parameter of the logistic function was pre-
dicted from two content features. To select the most relevant
features for each parameter, the dataset was split into training
and testing sets and the model was trained on the training set.
To evaluate how well the proposed model predicts perceived
quality, the trained model was applied to the testing set.

A dataset of eight stereoscopic contents with associated
ground truth MOS was used [4, 5]. The dataset is composed
of six natural contents and two computer-generated contents.
These contents are commonly used by MPEG, VCEQ, and
other researchers to evaluate the performance of 3D video
compression algorithms. The subjective results have been
collected during the evaluations of the MPEG Call for Pro-
posals on 3D Video Coding Technology [4]. Only the results
for the 3-view configuration, fixed stereo pair, of the two best
AVC proposals and two best HEVC proposals were used as
ground truth. The PSNR was computed as the average PSNR
of the left and right views of the displayed stereo pair.



The remainder of the paper is organized as follows. Sec-
tion 2 describes the proposed model. In Section 3, the evalua-
tion of the proposed model is reported and analyzed. Finally,
Section 4 concludes the paper.

2. PROPOSED MODEL

This section describes the feature extraction and feature selec-
tion processes used to predict the parameters of the mapping
function of the proposed model.

2.1. Feature extraction

Both 2D and 3D features were extracted from the original
video sequences. For the 2D features, the well-known spa-
tial perceptual information (SI) and temporal perceptual in-
formation (TI) [6] are often used to characterize the amount
of spatial detail of a picture and temporal changes of a video
sequence, respectively. These two features were used by Ko-
rhonen and You [2] to map PSNR values to perceived quality
in the case of 2D video sequences (see Section 1). In this pa-
per, the temporal perceptual information and a modified ver-
sion of the spatial perceptual information, referred to as SI,
were used. ST was computed using a Sobel kernel multiplied
by é. The 2D features were computed on the luminance com-
ponent of each content.

Mittal et al. [7] have proposed that 3D images have cer-
tain statistical properties that can be captured using simple
statistical measures of the disparity distribution. They used
statistical features from disparity and disparity gradient maps
to predict the Quality of Experience of 3D images and video
sequences. Thus, the following 3D features were computed
on the disparity map D of each content, according to [7]:

1. mean disparity p = E[D],

2. median disparity med = median(D),
3. disparity standard deviation o = \/E[(D — u)?],
e B[(D-)’]
4. kurtosis of disparity k = m,
E[(D—p)°]

5. skewness of disparity skew = ED—) 7>

mean differential disparity pq = E[0D],

N o

. differential disparity standard deviation
04 = \/E[GD — a)?).
E[(6D—pa)"]

8. kurtosis of differential disparity kg = D=2

9. skewness of differential disparity

E[(6D—pa)?
skews = Eisp - Ao

where the differential disparity (6 D) was computed using a
Laplacian operator on the disparity map. The 3D features
were computed on a frame-by-frame basis and then averaged
across frames.

Therefore, a total of eleven features, two 2D features and
nine 3D features, were extracted for each content.

2.2. Mapping function

To consider non-linearities and saturation effect of the human
visual system, a logistic function was used to predict per-
ceived quality from PSNR values:

b—a
1+ exp[—c(PSNR — d)]

where the parameters ¢ and d are related to the slope and
translation of the logistic function, respectively, and can be
controlled independently. The parameters a and b were deter-
mined as follows. The subjective scores range R is typically
divided into five parts of equal lengths, which are associated
with distinct quality levels. By varying the bit rate, the qual-
ity of the video sequence varies from the lowest quality level
to the highest quality level. Therefore, we assumed that the
horizontal asymptotes of the logistic function are associated
with the lowest and highest quality levels for the lowest and
highest bit rates, respectively:

LJim  MOS,(PSNR) = a = Ry,

ponlim  MOS,(PSNR) = b= Ry,

MOS,(PSNR) = a + (1)

2)

To determine the optimal values c, and d,, for each content
of the dataset, a fitting using Equation 1, partially constrained
by Equation 2, was performed between the PSNR values and
ground truth MOS, for each content separately.

2.3. Feature selection

The total number of extracted features (see Section 2.1) is
higher than the number of contents in the dataset. There-
fore, the number of features used to predict the parameters
c and d of the mapping function in Equation 1 needs to be re-
stricted. To avoid the risk of over-fitting, only two features out
of eleven were used to predict each parameter of the logistic
function:

c=afi+Bfr+y (3)

d=06fs+efs+¢ 4
where f1, f2, f3, and f4 are content features, and «, 3, v, 4,
€, and ( are coefficients.

To determine which extracted features should be used to
predict the parameters of the mapping function, the proposed
model was trained on a subset of contents of the dataset. For
each combination of two features, a least square regression
was performed to determine the coefficients of Equation 3.
The pair of features which obtained the best correlation with
the optimal parameters c, of the contents in the training set
was chosen to predict the parameter ¢ of the contents in the
testing set. Similarly, for each combination of two features,
a least square regression was performed to determine the co-
efficients of Equation 4. The pair of features which obtained
the best correlation with the optimal parameters d,, of the con-
tents in the training set was chosen to predict the parameter d
of the contents in the testing set.
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Fig. 1: Histogram of features selected across all train-test tri-
als to predict the parameter c.

3. PERFORMANCE EVALUATION

To evaluate the performance of the proposed model, a dataset
of 3D video sequences with associated ground truth subjec-
tive scores, containing a total of n = 8 contents, was used.
The contents were divided into a training set and a testing set.
The size of the training set was varied between five and seven
contents to evaluate the influence of the training set size. For
a fixed training set of size k, all possible (Z) combinations to
split the contents into training and testing sets were realized
to evaluate the robustness of the proposed model across con-
tents. For each train-test trial, the model was trained on the
training set according to Section 2.3 and the performance of
the trained model was evaluated on the testing set.

3.1. Selected features

Figure 1 and Figure 2 show the histograms of features se-
lected across (?) + (i) + (g) = 92 train-test trials to predict the
parameters ¢ and d, respectively. To predict the parameter c,
no feature, except x4, was selected in more than a third of the
train-test trials. Features extracted from the differential dis-
parity map were more often selected than features extracted
from the disparity map. This result is intuitive since the differ-
ential disparity map is related to occluded areas. Whereas the
temporal activity was used to model the slope of the exponen-
tial function in [2], the T'I feature was selected only 12 times
out of 92 train-test trials. Regarding the prediction of the pa-
rameter d, the T'I and ST features were selected in almost half
and a third of the train-test trials, respectively. However, the
translation of the exponential function in [2] was modeled us-
ing the spatial activity. This difference might come from the
fact that the training contents only covered a limited range of
spatial activity and no general trend could be drawn.
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Fig. 2: Histogram of features selected across all train-test tri-
als to predict the parameter d.

3.2. Performance indexes

The following properties of the prediction of perceived qual-
ity were considered: accuracy, monotonicity, and consistency.
The Pearson linear correlation coefficient (PCC), root-
mean-square error (RMSE), and mean absolute error (MAE)
were computed between predicted quality, MOS,, and
ground truth scores, M OS, to estimate the accuracy. The
root-mean-square error is defined as follows:

M

1
=1 2 (MOS; = MOSy)*

i=1

RMSE =

where M is the total number of points.

To estimate monotonicity and consistency, the Spearman
rank order correlation coefficient (SROCC) and the outlier ra-
tio (OR) were computed between M O.S,, and M O.S, respec-
tively. The outlier ratio is defined as follows:

_ total number of outliers
B M

OR

outlier if: [MOS; — MOS,;| > CI;

where M is the total number of points and C'I; is the 95%
confidence interval corresponding to M O.S;.

3.3. Anchors

To compare the performance of the proposed model to useful
reference points, a fitting using Equation 1, unconstrained,
was performed between the PSNR values and ground truth
MOS to determine all four parameters (a, b, ¢, and d). In this
case, no prediction was performed and all eight contents were
used. The fitting was applied in two different ways:

A. on all contents at once,

B. on each content separately.



Table 1: Performance indexes of the anchors.

Anchor | PCC SROCC | RMSE | MAE OR
A 0.3926 | 0.3973 | 1.4592 | 1.1057 | 0.7344
B 0.9462 | 0.9015 | 0.3723 | 0.2879 | 0.2109

In the latter case, the performance indexes were computed
separately on each content and then averaged across contents.
Anchor A does not consider content characteristics since all
contents are mixed. Therefore, the proposed model must
show better performance than anchor A to be considered as
valid. However, anchor B does consider all contents charac-
teristics as the fitting is applied on each content separately.
Thus, this anchor should provide upper bounds on PCC and
SROCC as well as lower bounds on RMSE, MAE, and OR
for comparison with the proposed model. Table 1 reports the
performance indexes of the two anchors.

3.4. Results

Table 2 reports the mean value and standard deviation of the
performance indexes across (Z) train-test trials of the pro-
posed model for different training set sizes. For each train-
test trial, the best features selected on the training set (with a
frequency shown in Figure 1 and Figure 2) were used to pre-
dict the parameters of the mapping function for the testing set.
Whereas the PCC and SROCC were quite high over the differ-
ent training set sizes, the RMSE and MAE increased signifi-
cantly for k£ < 7. Since the mapping function was applied on
each content separately in the proposed model, the PCC and
SROCC values were quite high when compared to anchor A.
Nevertheless, if the mapping function had a wrong slope or
translation, namely if there was an error in the prediction of ¢
or d, the RMSE, MAE, and OR values increased significantly
compared to anchor B. For k = 7, the standard deviation of
the PCC and SROCC was quite low, which indicates that the
proposed model was quite robust across contents when the
training set contained various contents. However, in some
cases for k < 7, the predicted quality scores had a negative
correlation with the ground truth MOS, which explains the

Table 2: Performance indexes of the proposed model.

(a) Mean value

PCC SROCC | RMSE MAE OR
k=171 0.9341 0.9015 1.2181 | 1.0104 | 0.6250
k=6 | 0.8743 0.8711 2.0893 | 1.7975 | 0.7143
k=5 0.7815 0.7863 2.2065 | 1.9106 | 0.7437

(b) Standard deviation

PCC SROCC | RMSE MAE OR
k=171 0.0595 0.0888 1.0914 | 0.9299 | 0.3204
k=6 | 0.2552 | 0.2486 1.7016 | 1.6262 | 0.2395
k=5 04559 0.4500 1.7753 | 1.7014 | 0.2351

high standard deviation for PCC and SROCC. This indicates
that the training set should contain different contents cover-
ing a wide range of spatiotemporal characteristics. In general,
predicted quality always achieved a high correlation with per-
ceived quality when compared to anchor A, which does not
consider content characteristics in the fitting process. This re-
sult indicates that content analysis can improve the accuracy
of the mapping of PSNR values to perceived quality.

4. CONCLUSION

In this paper, we proposed a model to predict perceived qual-
ity of stereoscopic video sequences based on content analysis.
A logistic function was used to map the PSNR values to per-
ceived quality. The parameters of the mapping function were
predicted using 2D and 3D content features. Results showed
that the proposed model achieved high correlation with per-
ceived quality and was quite robust across contents when the
training set contained various contents. This finding indicates
that perceived quality can be predicted from PSNR values
based on content analysis and that subjective tests might not
be always required.

To extend our work, different metrics will be considered
instead of PSNR in future investigations. The correlation be-
tween the parameters of the logistic function and additional
features will be investigated as well. A dataset containing
more contents will be used to further evaluate the perfor-
mance of the proposed model.
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