
Vehicle detection and tracking using homography-based plane 
rectification and particle filtering 

Jon Arróspide, Luis Salgado and Marcos Nieto 
Grupo de Tratamiento de Imágenes, E. T. S. Ing. Telecomunicación 

Universidad Politécnica de Madrid, 28040 Madrid, Spain 
{ j a l , I s a , m n d } @ g t i . s s r . u p m . e s 

Abstract—This paper presents a full system for vehicle 
detection and tracking in non-stationary settings based on 
computer vision. The method proposed for vehicle detection 
exploits the geometrical relations between the elements in the 
scene so that moving objects (i.e., vehicles) can be detected by 
analyzing motion parallax. Namely, the homography of the road 
plane between successive images is computed. Most remarkably, 
a novel probabilistic framework based on Kalman filtering is 
presented for reliable and accurate homography estimation. The 
estimated homography is used for image alignment, which in 
turn allows to detect the moving vehicles in the image. Tracking 
of vehicles is performed on the basis of a multidimensional 
particle filter, which also manages the exit and entries of objects. 
The filter involves a mixture likelihood model that allows a 
better adaptation of the particles to the observed measurements. 
The system is specially designed for highway environments, 
where it has been proven to yield excellent results. 

I. INTRODUCTION 

Nowadays advanced driver assistance systems receive 
increasing interest both commercially and from the 
scientific community. In particular, much work has been 
devoted to the research on techniques for the detection of 
vehicles in traffic scenarios based on monocular computer 
vision, due to its low cost and good performance. Aside from 
traditional knowledge or feature-based approaches, which 
are dependent on the specific conditions (e.g., weather, 
illumination), use of motion information is in the basis of 
many recent works in the field, as this is inherent to the 
vehicles regardless of the conditions. 

Usually movement on a planar surface (i.e., the road) 
is assumed. Nonetheless, environments using non-stationary 
camera settings, such as the considered traffic environment, 
feature motion both of the own vehicle (ego-motion) and of 
the surrounding vehicles. Many methods have been presented 
that aim at computing ego-motion in order to decouple these 
motions [1][2]. However, reliable and efficient ego motion 
estimation in still and open issue. 

As for vehicle tracking, statistical approaches are adopted 
in many recent works. In particular, particle filters have 
emerged as a very powerful tool to perform tracking in a 
wide variety of applications [3] [4]. Many of these works 
assume a given initial detection and perform tracking using 
likelihood models based on appearance templates. However 
such detection-by-tracking approaches carry the danger of 
drifting away from the correct targets [5]. Additionally, 
tracking is often limited to a constant number of objects. 

Some works, such as [6], can handle tracking of a variable 
number of objects, however they usually require an external 
detector that manages object entries and exits. 

In this work, a complete method for vehicle detection and 
tracking which addresses the above-mentioned limitations 
is presented for highway scenarios. The method involves 
a two-stage procedure. First, the vehicles are detected by 
using a motion parallax based approach that, as opposed 
to classical methods, does not require previous ego-motion 
calculation, which is usually prone to errors. Alternatively, 
it computes the homography that governs the relations 
between successive views of the plane [7]. The robustness 
of the method is ensured by introducing the instantaneous 
homography measurements into a probabilistic framework 
based on Kalman filtering. Once a reliable homography is 
available, the previous image is aligned with the current 
image, showing the projected position of the vehicles under 
the assumption that they are static. The difference between 
aligned images is only significant at those zones of the image 
featuring motion, that is, the regions where vehicles are. 
Therefore, the position of the vehicles is obtained from this 
difference. 

On the other hand, tracking of vehicles is achieved through 
a joint multidimensional state-space particle filter, which is 
able to handle a variable number of objects. Most remar­
kably, the management of vehicle entries and exits is realized 
intrinsically by the designed particle filter, hence avoiding the 
need for an external control module. The filter achieves thus a 
two-fold objective: first, it provides a temporal tracking of the 
measurements provided by the motion-based detector, and 
second it handles vehicle entries and exits by progressively 
adapting to the observed measurements on the basis of 
a complex mixture likelihood model. The model allows 
to attain smooth tracking of all the vehicles in the scene 
while removing spurious artifacts produced in the motion 
segmentation. 

II. VEHICLE DETECTION 

As stated above, vehicle detection is attained on the 
basis of road plane alignment between consecutive frames. 
Namely, alignment of images is performed by warping the 
previous image by a projective transformation or homo­
graphy. The steps towards the estimation of this homography 
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Fig. 1. Road feature extraction: (a) response to lane marking detector; (b) 
segments rendered by Hough Transform applied to (a); (c) road features 
and their correspondences in the previous image. 

and the naturally following image alignment and vehicle 
detection are explained in the following subsections. 

A. Feature extraction and matching 

The planar homography between successive time points 
can be computed from feature correspondences in the road. 
In this paper we present a novel feature extractor, which 
is based on the detection of the lane markings in the road. 
In particular, we propose to restrict the search of feature 
points to those regions with highest probability to contain 
lane markings. The presented lane marking detector is an 
enhancement of that presented in [8], and is specially 
designed to provide reliable results for the posterior 
feature matching. Notwithstanding, note that any other 
feature extraction and matching approach may well be used 
within the system proposed for vehicle detection and tracking 
(see [9] [10] for other references on road feature extrac­
tors). In particular, the homography calculation module in 
Section II-B works regardless of the used feature extraction 
method as long as a set of road plane correspondences is 
provided at its input. 

In particular, the proposed lane marking detector is applied 
to each row of the image, and assumes that the appearance 
of lane markings in this one-dimensional domain is given by 
pulses of high intensity values surrounded by darker regions. 
Therefore, the analysis is done by independently filtering 
each row j of intensity values, denoted by { x i } ^ 1 , which 
renders a new filtered data array {y¿}|^i, defined as 

Hi ¿xi ~ \XÍ—T(J) I xi+r(j)) ~ \XÍ—T(J) ~ xi+r(j)\ (-U 

where r{j) is the width parameter that governs the filtering 
process and W is the width of the image in pixels. The filter 
produces high responses for positions with values x¿ higher 
than their neighbors at distance T to the left and to the right. 
Note that T is dependent on the coordinate of the specific 
row, j : indeed, due to the perspective effect, T must decrease 
as j approaches the vanishing point of the lane markings. The 
last term in (1) penalizes those cases where the difference 
between left and right neighbors is high (such as vehicle 
to road transitions or narrow stretches of the road between 
vehicles or shadows); thus, this filter is less prone to errors 
than traditional gradient-based detectors. 

Fig. 1 (a) shows an example of the thresholded response to 
the filter. As expected, dense white areas arise in the positions 
of the actual lane markings. In order to find the underlying 
lines, a Hough Transform is applied to the filtered image, so 

that N clusters of segments are obtained. In the example, it is 
N = 2 (see Fig. 1 (b)). Each cluster of segments corresponds 
to a lane marking, denoted by M¿ (i = 1,..., N), and contains 
Si candidate segments. Let Sjj be a segment j belonging to 
the lane marking M¿; it is defined as Sjj = (pii:j,pUi:j), 
where p¡i:j and pUi:j are its lower and upper end points, 
respectively. Finally, a representative segment s¿ is extracted 
for every lane marking as the mean of the segments asso­
ciated to it: s¿ = (p¡ í ; p„J = i:J2%i(Ph^PuZ3), for 
¿ = 1,2, ...N. 

The segments s¿ represent the position and orientation of 
the lane markings on the road. Then, in order to span all 
over the lane markings, regions are grown centered on these 
segments, so that the extended regions contain the complete 
lane markings. These regions constitute the search area for 
feature points, which are extracted using the Harris corner 
detector. Generally, features are obtained in the ends of of the 
lane markings, as shown in the example in Fig. 1 (c). Once a 
set of reliable features is available, their correspondences on 
the previous image are obtained through the Lucas-Kanade 
algorithm. An example of point correspondences is given in 
Fig. 1 (c) with arrows that point from the current locations of 
the features to their correspondences in the previous frame. 

B. Homography estimation 

The homography matrix H defines the transformation of 
points belonging to the plane from the previous to the 
current instant as xfc = Hxfc_i, where xfc and xfc_i are 
the homogeneous coordinates of the features at times k — 1 
and k, respectively. Hence, this homography matrix can be 
computed using the Direct Linear Transformation (DLT) [7] 
if sufficient point correspondences between the images are 
available (i.e., four or more). Nonetheless, the computed 
homography may be highly affected by the inclusion of 
bad correspondences in the set of feature points (e.g., the 
homography is unreliable when only road features near the 
horizon line are available). In some works, robust estimation 
techniques are applied to the set of correspondences (i.e., 
LMS technique in [2]), so that outliers can be identified and 
filtered. However, this does not ensure the removal of all the 
outliers. These can be especially harmful when few points 
are available for the computation of H, as is the case in a 
traffic environment. 

In contrast, the system proposed in this paper is built upon 
a linear estimation process based on Kalman filtering, which 
allows to compensate for errors in homography calculation 
and to reliably estimate the homography at each instant. In 
effect, the evolution of the parameters of the homography 
matrix is smooth and the noise observed in the instanta­
neous measurements is similar-to-Gaussian, as ensured by 
the Kolmogorov-Smirnov test conducted on test data, hence 
the use of Kalman filter. 

Let us inspect the analytical expression of the homography 
given the scenario depicted in Fig. 2. The figure considers a 
vehicle with an on-board camera moving on a flat road plane, 
7ro = (nT , d)T, where n = (0,1,0)T . The world coordinate 
system has its origin in the position of the camera at instant 



Fig. 2. Relative pose of camera at time points t\ and ¿2 with respect to the 
world coordinate system (that has its origin at the position of the camera at 
t i ) and to the plane no. 

t\ and its axes coincide with those of the camera coordinate 
system. As the vehicle moves forward, at time t2 rotations 
might have occurred around the Y-axis, e.g., if the vehicle 
changes lane or takes a curve, and around the X-axis due 
to camera shaking. Assuming a pinhole camera model, the 
camera projection matrices at times t\ and t2 are respectively 

Pi = K[I|0] 

P2 = KRx(a)Ry(f3)[l\-C2] 

where C2 is the camera position at time t2. If the speed of 
the vehicle is v, then -Ry((3)C2 = t = - (0 , 0, l)Tv/fr, 
where fr = l / ( i 2 - h) is the frame rate. From the above 
camera projection matrices, it is straightforward to derive the 
expression for the homography as [7] 

H = KRx(a)(Ry(/3) - tnT / r f ) (KR c)- 1 

In successive frames, the homography changes only slightly, 
due to the intrinsic constraints in the motion of the 
vehicles. Therefore, the evolution of the homography matrix 
is modeled with a constant-state Kalman filter, whose state 
vector is composed of the elements Hij of the homography 
matrix, i.e., x^ = {Hij,l < i,j < 3}. Thus, it is 
Xfc = Xfc_i + Wfc_i, where w^ represents the process 
noise, with Gaussian distribution p(w) ~ N(0, Q). The 
instantaneous homography matrix, Hfc, computed from image 
correspondences as explained in Section II-A, constitutes the 
measurement vector as z~[ = {H^,l < i,j < 3}. It is 
then Zfc = Xfc + Vfc, where v^ has as well a Gaussian dis­
tribution p(v) ~ iV(0,R), independent of W&, representing 
measurement noise. The measurements are expected to be 
noisy due to the usually scarce number of points available for 
solving DLT in traffic environments. Hence, the measurement 
noise covariance matrix will usually be larger than the 
process noise covariance (in our system it is Q = 10~6, 
R = 10~3). However, note that the intrinsic inaccuracies of 
the measurement are corrected through the Kalman update 
stage, that yields a smoothed posterior estimate x^. 

On the other hand, the Kalman filter also generates a 
prediction of the state at time k, which in this case equals the 
corrected estimate at the previous instant: x^ = Xfc_i. This 
vector contains the expected values of the elements of the 
homography matrix at time k. Thus, a predicted homography 
matrix, Hp, may be built with the elements of x^. Most 
importantly, this predicted matrix provides a natural way 
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Fig. 3. Image alignment: (a) image at time k of the video sequence; (b) 
image at time k — 1 warped with H; (c) difference between aligned images, 
i.e., (a) and (b). 

to evaluate the goodness of the incoming measurements; 
indeed, it is natural to accept or dismiss measurements 
according to their distance to the prediction. 

In order to measure the distance between matrices, the 
2-norm of a matrix induced by the vectorial norm of a 
Euclidean space is used. Analogously to the well-known 
vector norm, this matrix norm, which is given by the largest 
singular value of the matrix in its Singular Value Decomposi­
tion (SVD) [11], provides a measure of the magnitude of the 
matrix. The distance based on the 2-norm allows us to define 
a rule for incoming homography acceptance. Specifically, if 
||Hfc - Hp|| < ta, then the measured homography matrix is 
accepted and the a priori prediction is updated with the new 
measurement within the Kalman filter framework. Otherwise, 
the incoming measurement is not relied on and the system 
uses the predicted homography for further processing stages. 
The threshold for homography acceptance, ta, must be pre­
defined according to kinetic constraints of the vehicles within 
their environment (see [12]) for an exhaustive discussion on 
the choice of ta). 

C. Image alignment and vehicle detection 

Once a reliable estimate of the homography, H, is obtained 
as a result of Kalman filtering, image alignment between 
previous and current frame is performed. This is achieved by 
warping the previous image with H. An example of image 
alignment through warping with homography is shown in 
Fig. 3: in (a) the image at time fc of a traffic sequence 
acquired with an on-board camera is shown; (b) represents 
the image obtained after warping the image at time k — 1 
with H. The difference between aligned images is expected 
to be null for all the elements of the road plane except for 
the contact zones of the vehicles with the road. Fig. 3 (c) 
illustrates this difference for the previous example. As can 
be observed, white regions -indicating significant difference-
appear in the areas of motion of the vehicles in the road. 

The position of moving objects on the plane is extracted 
by computing the Sum of Absolute Differences (SAD) over 
the difference between aligned images, and selecting those 
regions with significant differences. Other measures such 
as ZCC or ZNCC, which are invariant to brightness and 
contrast changes, could also be used. However, these changes 
are negligible between consecutive frames, therefore SAD is 
preferred due to its lower computational requirements. In 
particular, images are scanned bottom to up in search of 
regions with high SAD, which are classified as corresponding 
to vehicles. Assuming there are M measurements at time k, 



the detected set of vehicles is denoted by zk = {zfyfti, 
where each measurement z\ is given by the mid-lower point 
of its associated region of differences. 

Note that differences between aligned images might also 
be produced by background elements above the road plane 
(e.g., the guardrail in Fig. 3), in which the homography 
of the road plane does not hold. Therefore, the set of 
regions classified as vehicles at time k might contain some 
artifacts, i.e., regions that do not correspond to vehicles. 
These artifacts usually describe random patterns, therefore 
they may be removed by analyzing the temporal coherence 
of the measurements. This issue is addressed in the second 
stage of the proposed method, namely the tracking stage, 
which is described in the following section. 

III. VEHICLE TRACKING 

At this stage we introduce a probabilistic framework, 
provided by the particle filter, which takes account of the 
uncertainty in the measurement of the vehicle. Additionally, 
this framework allows to give coherence to the independent 
intraframe measurements delivered by the vehicle detector, 
so that it is possible to track vehicles in time and to analyze 
their trajectories. 

A. Probabilistic tracking framework 

The aim of the tracking stage is to update the estimated 
positions of the vehicles on the receipt of new measure­
ments. The Bayesian approach is ideally suited for such 
dynamic state estimation problem, as it allows to update 
the state recursively based on a probabilistic formulation. 
In particular, particle filters aim at approximating the pos­
terior probability density function of the state with a set of 
random particles, and their associated importance weights. 
The posterior density at time k can be approximated as [13] 

p(xfc|z1:fc) « J2s
S
=1

Wk)S^k - X ^ ) 

(s) (s) 

where wk is the weight associated to sample xjj. . Particu­
larly, in this work the SIR (Sampling Importance Resam­
pling) particle filter is used, which involves a resampling 
step at every time index as explained in [13]. 

In the proposed framework the measurement vector is 
given by the observed positions of the vehicles, zfc, delivered 
by the detection module explained in Section II. As for the 
system model, in contrast to usual random walk assumption, 
it is designed to be linear with constant velocity. This is in 
line with the locally smooth motion of vehicles in the road. 
Hence, the state vector of the system is composed of the 
position, x*fc = {x\, y\}, and velocity, ±\ = {i\,y\} of each 
one of the N tracked vehicles, i.e., xfc = {x\, y\, i\,y\}f=i-
On the other hand, the measurement model is defined as 

M M N 
p(zfc|xfc) = TJ p(zJ

fc|xfc) = W ^ [ a i j P i ( z J
f c | x | ) +auU(zlj] (2) 

j = l j=li=l 

Let us inspect this expression. First, the measurements are 
considered to be independent from one another, thus the joint 
probability density is the product of the individual densities. 

Besides, the probability density of each measurement is 
modeled by a mixture model [14]. In (2), the mixture model 
mixes distributions, Pi, with mixing coefficients a^. These 
are modeled as bivariate Gaussian distributions centered 
around x*fc. Indeed, each measurement might correspond to 
any of the existing vehicles, hence the use of a mixture 
model, in which each model, pi, gathers the probability that 
the measurement was generated by the i-th vehicle. However, 
note that the model in (2) includes an additional term given 
by a uniform distribution, U{-). This term is added (with 
mixing coefficient au) in order to model scattered noise, 
that is, to represent the probability that the measurement is 
actually produced by noise rather than by any of the vehicles. 

The mixing coefficients of the mixture model, OHJ, may be 
chosen arbitrarily as long as J2i=i aij+au = 1 V?. A natural 
decision is to make them proportional to the likelihood 
Pi(z3

k\x.\) of the vehicle i to which they are associated: 

N ( 

onj = (1 - au)pi{z{\¿k)/^jpi{z{\-x.tk) \ % ~ ' • • •' 

The designed mixture model allows that, given one mea­
surement, the likelihood of the state vector sums the probabi­
lity that each one of the vehicles in the state vector generated 
the measurement, rather than only considering the likelihood 
of the vehicle closer to the measurement, as done in typical 
rule-based approaches. In addition, the coefficient au weighs 
the importance of the scattered noise component, which will 
be tuned according to the expected measurement process 
noise, as explained in Section III-B. Both aspects maximize 
the flexibility of the observation model and its adaptivity to 
the measurements compared to classical methods. 

Given the motion and measurement models defined above, 
the operation of the SIR particle filter for every time step 
is summarized as follows. First, the particles from previous 
time point are propagated according to the system model. 
Then the weight of each particle is computed. In SIR, these 
weights are given by the likelihood in (2). Particles are 
resampled according to the procedure described in [13]. 
Finally, at each instant the vehicle position estimates are in­
ferred as the mean of the particles, i.e., xfc = ^- J2"=i xfc • 

B. Management of vehicle entries and exits 

In this work we propose to exploit the strength of the 
particle filter not only as a means for object tracking but 
also to manage the entry and exit of vehicles. For vehicle 
entries, the underlying idea is to hypothesize an extension of 
the state vector (that is, to hypothesize a new vehicle) when a 
new measurement arises. Specifically, suppose that at time k 
we have a measurement vector zfc. If any of the elements z3

k 

of the vector is not adequately represented by the current set 
of vehicles in the state vector, a transitory period is triggered. 
At the start of this period, a small subset of nr particles from 
the total pool of ns particles will be devoted to hypothesize 
the existence of a new vehicle. Namely, nr arbitrary particles 
(recall that after the resampling step all particles have the 
same weight) are eliminated and substituted by new particles 



with a larger dimension, N+Í. The state vector of these 
particles, denoted by a prime, comprises the mean estimate 
of the existing vehicles and a new element, x ^ + 1 , given by 
the new measurement zJ

k: 

During the transitory state, both iV-dimension and 
(iV+l)-dimension particles are propagated with the motion 
model. The weights of the particles are then evaluated 
according to the measurement model in (2). Naturally, the 
particles that better match the observed set of vehicles will 
have larger weights and thus dominate the resampling step. In 
particular, if incoming observations include a measurement 
for the hypothesized new vehicle, the (iV+l)-dimension parti­
cles (or simply the (iV+l)-particles) will have larger weights, 
therefore they will propagate faster and eventually outnumber 
the iV-particles. In contrast, if the hypothesized vehicle 
is not supported by incoming measurements, iV-particles 
will propagate over N+Í -particles, which will eventually 
fade away. The transitory period stops when the number of 
particles of either iV-dimension or (iV+l)-dimension falls 
behind a predefined proportion. At this point, all particles 
take the same dimension and the filter returns to stationary 
state. 

The interpretation of the particle filter behavior regarding 
new vehicle management is straightforward. Namely, the 
propagation of (iV+l)-particles is a consequence of the 
observation of persistent and time-coherent measurements in 
a specific region of the image, hence the eventual confir­
mation of a new vehicle. Conversely, the non-propagation 
of these particles implies spurious or non-coherent measure­
ments, which are effectively ignored by the particle filter, as 
requested, hence preventing the system from producing false 
detections. 

With regards to vehicle exits, these are inherently managed 
by the proposed tracker. Namely, a vehicle is tracked while 
its position inferred by the particle filter is within the region 
of interest, and it is removed from the tracked vehicle set 
whenever it abandons this region. 

As a final remark, note that the selection of the coefficient 
au in the mixture model in (2) is tightly related to the 
dimensionality of the state vector. This coefficient models 
the probability that measurements are produced by noise 
rather than by actual vehicles. In effect, the transitory state 
is triggered by the observation of measurements that are 
not well represented by the posterior pdf. These could be 
produced by new vehicles, or by artifacts in the measurement 
generation process. Hence, it is natural to account for this 
degree of uncertainty in the measurements by increasing 
the coefficient au. As a consequence, during the transitory 
state particles will slowly adapt to measurements, so that 
only consistent and persistent measurements will lead to the 
detection of new vehicles. In contrast, during stationary state, 
the measurements are in line with the posterior pdf, thus 
making the measurements process reliable and implying the 
reduction of the coefficient au. 

(a) (b) (c) 

Fig. 4. Results of the proposed motion-based segmentation for three 
different scenarios. The corresponding input image is provided in the upper 
row as a reference for each example. Note that differences (white) in the 
road plane correspond mainly to the regions of motion of the vehicles. 

IV. EXPERIMENTS AND DISCUSSION 

The proposed system has been tested for video 
sequences involving a wide variety of driving situations, in 
which it is proved to yield excellent results. Overall, an 
average detection rate of above 90% is obtained for a set of 
scenarios, including different illumination, weather and 
traffic conditions (except for severe rain and night-time, in 
which the rate decreases). The system operates at a frame 
rate of between 5 and 10 fps. 

Fig. 4 gathers some example results of the proposed 
motion-based segmentation. Specifically, it comprises the 
original image (upper row) and the obtained difference 
between aligned images (lower row) for three different 
scenarios. In all cases significant differences are observed 
in the regions of motion of the vehicles within the road 
plane (naturally, due to the perspective effect the region of 
differences is wider for near vehicles). Indeed, compared to 
classical methods for detecting vehicles, such as those based 
on vehicle structure (e.g., edges, symmetry, etc.) or applica­
tion specific features (e.g., analysis of vehicle shadows) the 
proposed method for detecting vehicles is more invariant to 
the particular scene conditions (e.g., weather, time of the day) 
since it is based on a feature inherent to the vehicles, i.e., 
motion. For instance, a method based on shadow detection 
would only detect vehicles overtaking the own vehicle once 
these vehicles are completely within the limits of the image, 
while an almost immediate detection is achieved with the 
proposed method (see Fig. 4 (c)). 

However, note the existence of artifacts caused by back­
ground elements. This is effectively solved by the designed 
tracking framework based on particle filtering. Consider 
the image sequence shown in the upper row of Fig. 5. A 
segmentation artifact in the right-hand side of the image at 
time k — 2 generates a set of particles containing an object in 
this zone (highlighted by a dashed rectangle). This artifact 
does not appear at times k — 1 and k, therefore the likelihood 
model of the particle filter penalizes the above-mentioned 
particles, which decrease at time k — 1 and finally vanish. 
Analogously, in the example in the lower row of Fig. 5, the 
measurement at time k — 2 triggers new particles. However, 
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Fig . 5 . M a n a g e m e n t of object entries performed by the particle filter. 
The state of each particle is represented by green dots . N e w hypothes ized 
vehicles during transi tory period are painted in pink and highl ighted with a 
dashed square. The red mark indicates the posi t ion est imate for each vehicle . 
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Fig . 6. Tracking for three example sequences is shown in the upper, midd le 
and lower row, respectively. Observe that in all cases appear ing vehicles are 
swiftly detected and and existing vehicle are correctly t racked. 

this measurement is generated by a vehicle entering in the 
left-hand side, thus it produces coherent measurements in the 
following time indexes. Consequently, particles comprising 
a track for this vehicle grow and finally the vehicle is 
confirmed. 

The positions of the vehicles are estimated as the mean 
of the particles. Results of the method are shown in Fig. 6 
for three different scenarios, proving its ability to reliably 
track multiple vehicles. Most remarkably, the predictive 
nature of the homography estimation process enables the 
system to operate for long stretches of time without new 
incoming measurement. Indeed, the homography predicted 
by the Kalman filter is available at every time step and 
can be used to attain image alignment and posterior vehicle 
detection. This is the case for the example in the lower row 
of Fig. 6, in which the predicted homography is used due to 
the lack of new measurements; however, correct tracking of 
the vehicles is kept with a small impact on the accuracy of 
the detections. 

V. CONCLUSIONS 

In this paper a full system for vehicle detection and 
tracking in highway environments given by an on-board 
camera has been presented. The system first detects vehi­
cles on the basis of successive image rectification using 
plane-to-plane homographies. The framework presented for 
homography estimation and image alignment has been 
proven to be robust to errors in the measurement process, 
thus providing reliable and accurate vehicle detection. On the 
other hand, a method for tracking of instantaneous vehicle 
detections has been presented on the basis of an adaptive 
multidimensional particle filter. This filter is able not only 
to provide robust tracking of the vehicles in the image, but 
also to efficiently handle entry and exit management. The 
combined detection and tracking strategy yields excellent 
results while circumventing the limitations of state of the 
art methods. 
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