
Online Visualization of Noisy 3D Point Clouds:

From Monocular Image Sequences to Synthetic Views

Frank Pagel and Jochen Ring

Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB)

Autonomous Systems and Machine Vision

76131 Karlsruhe, Germany

{frank.pagel, jochen.ring}@iosb.fraunhofer.de

Abstract— This paper addresses the generation and visu-
alization of noisy 3D point clouds. The goal is to extract 3D
information from image sequences in real-time and to transform
the resulting noisy point clouds into a representation with
dense surfaces and an intuitive character. Therefore a bridge
is built from image sequence analysis to computer graphics. A
point cloud is calculated from a single camera by using state
of the art algorithms for egomotion estimation and dense 3D
reconstruction. Due to inaccuracies in the measurement process
and hence of the resulting depth maps, a degree of uncertainty
of the 3D data is defined. This additional information can be
used to filter the point cloud in space and time. We present
an approach to filter and polygonize weighted point clouds and
visualize it by mapping image texture on the resulting surface.

I. INTRODUCTION

In this paper we discuss the question, how a synthetic

view can be generated in real-time from a camera (or a

set of cameras) so that the resulting view can be used

by human operators for navigation purposes. There is a

tendency to capture the complete environment of vehicles,

e. g. for precrash applications, pedestrians or moving objects

detection. The big advantage of generating virtual views is

that the operator is no longer bound to the original camera

views. So, gaps between the field of views can be closed

continously by panning the virtual camera. This is especially

then of eminent importance if the cameras cover a field

of view that is not visible for the client, for example the

rear view. Synthetic views could also be used in the field

of robotics for remote navigations. The more cameras are

connected the more it gets relevant to handle the incoming

amount of image information. To illustrate the problem, just

imagine a screen split into eight pieces that display the views

of the eight cameras that are placed all around the car. A

human operator might be overstrained with this amount of

information.

To generate synthetic views of a virtual camera with an

arbitrary point of view from an image sequence it is nec-

essary to know the 3D structure of the observed scene.

As 3D reconstruction with one or more cameras became a

popular research area in the last decade, these techniques can

be used to extract 3D information from the image stream.

Unfortunately, depth maps are noisy in practice and in most

cases a simple online-display of the 3D points would lead

to even more confusion. Continuity of the 3D structure

is an important point and a big problem, because small

errors in motion estimation can cause big changes in the

calculated point cloud between two consecutive time frames.

The resolution and hence the accuracy of the point cloud

depends on the velocity of the camera, too. So, a way must

be found that handles gaps in the 3D data, noise and outliers

of 3D points as well as the blurred 3D structure. This blurring

effect could be caused by the mentioned inaccuracies in

motion estimation and it could occur if point clouds from

several sources are merged.

A. Related Work

In the field of egomotion a lot of research has been done

over the last few years. Pollefeys [1] presented a stratified

approach to metric self calibration. Although the approach

seems to perform well it is very difficult to implement this

algorithm on a standard PC hardware to run in real-time.

Another solution was shown by Davison [2]. The core of

this approach, called MonoSLAM, is the online creation of

a sparse but persistent map of natural landmarks within a

probabilistic framework. The algorithm runs very fast with

about 30Hz on standard PC hardware.

One of the most recent work in this research area is the

preemptive 5-point solution of Nister [3]. Roughly spoken,

egomotion estimation is reformulated into a problem of

solving a 10th degree polynomial. As the algorithm is based

on an estimation of the essential matrix with only five point

correspondenes the algorithm is predestinated for robust

preprocessing steps. The algorithm runs in real-time.

There are many algorithms and approaches to calculate 3D

depth information from two calibrated images with known

epipolar geometry. Dang et al. [4] used a block matching

algorithm. Block matching is one of the most popular algo-

rithm in commercial stereo systems because of its simplicity.

Since the disparities are searched sequentially for each pixel

or feature, these algorithms are highly error-prone to periodic

patterns.

Collins [5] presented an approach especially designed for

parallel processing architectures and multi camera stereo

applications. A plane is simply swept through 3D space. By

back-projecting the points on the swept plane onto the image

plane a pixelwise error can be calculated. Hence, the depth

resolution is restricted by the number of planes in space.

Birchfield and Tomasi [6] calculated a minimal cost path

through a matrix where each entry relates to a distance

2010 IEEE Intelligent Vehicles Symposium
University of California, San Diego, CA, USA
June 21-24, 2010

TuE1.30

978-1-4244-7868-2/10/$26.00 ©2010 IEEE 436

measure between a pixel in the left image and a pixel in

the right image via dynamic programming. Boykov et al. [7]

minimized an energy function to find the globally optimal

assignment for each pixel. Both dynamic programming and

energy minimization result in dense depth maps and they

consider the image information linewise depending on the

epipolar geometry.

The work of Hirschmüller [8] seems to be the most promising

approach. It approximates a 2D global optimization by

performing an energy minimization along several 1D paths

across the image. This is also the algorithm that is used in

this paper.

In our approach handling noisy 3D data is important, too.

Some approaches solved this problem by a 3D point regis-

tration. Merrell et al. [9], for example, propose a solution

to register point clouds in a multi camera system with over-

lapping field of views. They perform a two stage approach

by first calculating potentially noisy, overlapping depth maps

and then fusing these maps to yield a higher accuracy and

less redundancy.

Zhao et al. [10] present an approach to align continuous

video to 3D sensor data. They adjust a point cloud computed

from the video onto a point cloud directly obtained from a 3D

sensor. The registration via Iterative Closest Point techniques

(ICP) requires a highly accurate point cloud.

When modeling the scene from single depth maps (e. g.

from stereo cameras), depth can be considered as a function

of the image coordinates f : R
2
→ R with f(x, y) 7→ Z.

Because the 3D structure is accumulated over time the

function f cannot be used anymore to describe the scene.

This is the reason why Delaunay-triangulation [11] is not

applicable in this approach. As the point clouds are meant

to be merged with 3D points generated from other cameras’

data the influence of noise cannot be neglected. This makes

the given task much more complicated.

Many visualization approaches perform upon structured

grids. Marching Cubes (MC), as in [12], is a popular grid

based visualization technique. MC visualizes 3D data in the

sense of a divide and conquer algorithm using uniform and

cubic grid cells. MC examines the values of the grid vertices

and provides a lookup table which abstracts intersection

cases of a surface and a grid cell. These vertex values are

compared to a threshold called isolevel. Using the isolevel,

3D volumes could be separated with 3D isosurfaces by

thresholding the volume’s values.

The MC algorithm in [12] is only capable of producing

sharp features like corners and edges if they conform to

vertices and edges of the underlying grid. To overcome this

drawback Schaefer et al. [13] generated a grid which is dual

to an octree. The vertices of the dual grid are the real 3D

features. This enables the modified MC to output surfaces

containing sharp features. In [13] the dual grid is based on an

octree quantization. Whereas volume quantization seems to

be reasonable to our visualization algorithm, using an octree

would be too expensive to meet real-time concern because of

the noisy 3D data. So we decided to compute a grid which

is dual to a homogeneous 3D space. We call this space voxel

space. Unlike an octree, once constructed, the voxel space

needs no further topology adjustment.

B. Proposed Solution

This paper only considers a monocular, calibrated im-

age sequence (although the basic principles would work

for calibrated multi-sensor applications, too). Our approach

proceeds as follows:

The Euclidean egomotion of the camera is estimated using a

robust iterated extended Kalman filter [14]. Therefore sparse

optical flow fields must be extracted. Any other egomotion

algorithm would basically work, too. Of course, the better

the egomotion (which means the more precise the estimation

over time) the more accurate are the point clouds in 3D

space. One reason we chose this approach was the implicit

calculation of a covariance of the motion parameters.

Once the transformation parameters between two frames are

known, algorithms from the field of stereo vision are used

and adapted to calculate a disparity respective a depth map.

To quantize the uncertainty of the reconstructed 3D point

cloud each pixel is weighted using a logarithmic function

based on the costs for the disparities for that pixel. This step

is important as even globally optimized dense depth maps

remain uncertain due to the scene structure (homogeneous

regions, periodic patterns, etc.) and noise.

Then the resulting weighted point cloud is quantized in a

homogeneous grid in 3D space as voxels and temporarily

filtered. This filter step is important to handle noise effects,

to merge several point clouds and to enlarge the field of

view by predicting the voxels, even when parts of the scene

leave the field of view of the camera. Within the grid it is

possible to apply the marching cubes algorithm that generates

consistent surfaces. Finally, texture from the image stream is

projected onto the 3D surface.

II. 3D DATA EXTRACTION

A. Egomotion Calculation

Assuming a static background the motion of the camera

is considered as a Euclidean motion (fig 1). Therefore the

motion between two time frames is modeled via a rotation

matrix R(α, β, γ) with RT R = RRT = I and a translation

vector t = (tx, ty, tz)
T , with

Xk+1 = RT Xk − RT t, (1)

where Xk ∈ R
3 is a point in the coordinate system of

camera ck at time k.

The egomotion estimation is based on a robust iterative

extended Kalman filter (RIEKF) as in [14]. The robust

preprocessing is necessary because moving objects or

outliers induce deviant motions and must therefore be

rejected. The filter can be initialized e. g. by performing

an estimation and a factorization of the essential matrix

(as in [3]). Sparse optical flow vector fields are used to

determine the rotation and translation of a calibrated camera.

More precisely, we use point triples
〈

pt−2
i ,pt−1

i ,pt
i

〉

to

minimize the epipolar and trifocal constraint. Additionally,

437

438

Fig. 4. Top: Estimated disparity map from a forward moving camera
(blue=0, red=64). Bottom: Depth map (red=close, blue=far away). The
region around the epipole is cut out.

scene point is calculated via triangulation with the known

intrinsic and motion parameters (Fig. 4). Keep in mind

that this reconstruction approach returns wrong results for

independently moving objects because the assumed epipolar

geometry is different for these objects.

C. Weighting the Data

Although SGM generally performs very well, there are

scenes where stereo algorithms simply deliver bad disparity

estimations (Fig. 6). This might be the case, if the epipole is

inside the image or the image contains large homogeneous

regions or periodic patterns. Then, we would like to know

which pixels are reliable and which are not. As SGM delivers

a cost for each pixel p and each disparity from 0 to dmax−1
we can use these costs to define a function (Fig. 5)

ω
(

Cmin(p)
)

= b · log

(

a ·

(

Cmax(p) − Cmin(p)
)

)

(5)

with
a := 1

Cmax(p)−C2nd(p)−ǫ
,

b := 1
log(a·Cmax(p)) .

Cmin(p) is the minimum SGM cost at pixel p (which

belongs to the current disparity d(p)). C2nd(p) and Cmax(p)
are the second smallest and the biggest cost at p respectively.

ω fulfills the constraints ω(0) = 1, ω(C2nd(p) + ǫ) = 0 and

ω(Cmax(p)) → −∞.

So, we have two effects: First, the smaller the distance

between Cmin and C2nd the smaller is ω and therefore the

weaker the certainty of d(p). Second, on the other hand, if

distance C2nd − Cmin is still small but Cmax gets bigger

the function gets steeper and ω is bigger, too. Hence, when

Cmax is big relative to Cmin this ω(Cmin) rewards minimum

costs even if it is likely that they belong to a wrong disparity.

Fig. 5. Weight function ω (Cmin(p)) ∈ (0, 1].

ǫ > 0 is simply a value to avoid ω = 0. One should keep in

mind that although ω is used as a weight for the 3D points

it basically says nothing about the quality of the 3D point.

Even more it is a degree of certainty of the disparity in the

image domain.

III. 3D DATA PROCESSING

A. The Voxelfilter

Errors in depth calculation are hardly avoidable when the

3D point cloud is estimated from a monocular image with

an online processing algorithm. Here, online means that the

data is processed continously. The amount of data from the

past, that can be considered to refine the measurement, is

strongly restricted by computational resources. This is a big

disadvantage compared to approaches like global bundle ad-

justment optimizations where a whole image sequence could

be considered to find an optimal solution for both camera

motion and the 3D scene structure. As the motion estimation

itself is defective because of the noisy measurement process,

the resulting point cloud will also be erroneous. This leads

to a fuzzy 3D structure over time. This effect gets even

worse when the depth maps are fused with point clouds

from other cameras where calibration errors additionally

complicate the data fusion. Furthermore, the different base

lines between two consecutive frames due to different camera

motion velocities lead to different depth resolutions which

can also be interpreted as threedimensional noise.

Instead of registering all points between two time steps or

different sources, we chose a solution that is quite simple

and takes account of the weights of the point cloud. The

space is quantized by homogeneous 3D grid cells, so called

voxels. As our goal is an intuitive online visualization rather

than the generation of exact surfaces, this loss of accuracy

is acceptable. Even more, this quantization significantly

reduces the amount of data and hence computation time and

can be used to polygonize the surfaces.

Initially, the 3D points within a single cell are averaged. So

each cells has its own mean position and weight. At the

next time step, this mean can be predicted using the known

motion information of the camera.

At each prediction step the weight of the voxel is multiplied

by a “history factor” ρ ∈ [0, 1). This factor effects that

439

440

IV. RESULTS

Fig. 8 shows some results from a sequence (scene in

Fig. 2) with filtered voxels. The weighted mean of each

homogenous grid cell (which is a vertex of a dual grid cell)

is connected with the means of the neighboring cells. As one

can see, the rough scene structure is alreaday visible.

Fig. 9 shows results after MC and texture mapping was

applied. As can be seen, there is still space for improving

the quality of the online generated 3D model. Although

there is still clutter around the objects, the scene structure

is well observable. An attached smoothing step could help

to design the scene more intuitive. The voxel filter tracks

the 3D structure even when no data is available from the

reconstruction step. In the textured views, an additional light

source and render step could help to enforce the visual 3D

effect.

The bottleneck in our application was the 3D reconstruction.

The computation time of voxel filtering and dual grid com-

putation as well as marching cubes and texture mapping is

altogether less than 250 ms.

V. CONCLUSIONS

A. Summary

We presented a framework for an online generation of syn-

thetic views from monocular image sequences. The process

chain starts with an egomotion estimation based on sparse

image features and flow triples. These image features are

processed within a robust iterative extended Kalman filter

to estimate the Euclidean motion of the camera. Once the

motion is known, a SGM stereo approach is used to generate

weighted depth maps. These weights are important for multi-

sensor fusion and temporal accumulation of point clouds

respective the scene structure. The resulting point cloud is

quantized and filtered in a homogenous grid. Hence, a simple

but effective method could be used to temporally filter 3D

data. Based on the weighted means of the grid a dual grid is

created which is used to run a marching cubes algorithm. As

a result polygonized surfaces are available to map the image

texture. The whole chain is designed to run in real-time and

hence delivers an online 3D visualization of the scene.

B. Future Works

The contributed framework is generally designed for multi

camera applications. Hence, we are going to build up a cal-

ibrated multi sensor rig. By fusing the monocular generated

and filtered point clouds of at least four cameras around a

vehicle, we hope for an almost omnidirectional field of view.

This offers new possibilities in driver’s navigation and online

scene exploration.

Further algorithms can be attached to reduce clutter and

to smooth surfaces. Another important step to increase the

quality of the visualization is the integration of a specific

ground floor model. There are several possibilities, e. g. via

an offline calibration or a dynamic model. Finally, some work

could be invested to render the scene or to generate artificial

scene parameters, e. g. lighting conditions, to increase the

visual 3D effect.

To come closer to the goal of real-time processing, current

development is done to speed up the algorithms and to

implement parts of it on hardware like GPUs and DSPs.

Currently, the bottleneck is the stereo processing. But as

real-time capable hardware implementations have already

been realized, we are confident to yield significant speedups.

The visualization and voxel filtering itself is quite fast and

predestinated for parallel processing.

REFERENCES

[1] M. Pollefeys, “Self-calibration and metric 3d reconstruction from
uncalibrated image sequences,” Dissertation, 1999.

[2] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” in IEEE Transactions on Pattern

Analysis and Machine Intelligence, no. 6, 2007, pp. 1052–1067.
[3] D. Nister, “An efficient solution to the five-point relative pose

problem,” in IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2004.
[4] T. Dang, C. Hoffmann, and C. Stiller, “Fusing optical flow and stere-

odisparity for object tracking,” in Proc. of the 5th IEEE International

Conference on Intelligent Transportation Systems, 2002, pp. 112–117.
[5] R. T. Collins, “A space-sweep approach to true multi-image matching,”

in Proc. of the IEEE Conference on Computer Vision and Pattern

Recognition, 1996, pp. 358–363.
[6] S. Birchfield and C. Tomasi, “Depth discontinuities by pixel-to-pixel

stereo,” International Journal of Computer Vision, vol. 35, pp. 1073–
1080, 1999.

[7] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate eenergy
minimization via graph cuts,” Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, Tech. Rep., 2003.

[8] H. Hirschmüller, “Accurate and efficient stereo processing by semi-
global matching and mutual information,” in Proc. of the IEEE

Conference on Computer Vision and Pattern Recognition, 2005, pp.
807–814.

[9] P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J.-M. Frahm,
R. Yang, D. Nister, and M. Pollefeys, “Real-time visibility-based
fusion of depth maps,” in IEEE International Conference on Computer

Vision, 2007.
[10] W. Zhao and S. H. D. Nister, “Alignment of continuous video onto 3d

point clouds,” in IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2005.
[11] S. Fortune, Voronoi diagrams and Delaunay triangulation. Du, D.-

Z.; Hwang, F.: World Scientific, Computing in Euclidean Geometry
(Lecture Notes Series on Computing 1), 1992.

[12] W. E. Lorensen and H. E. Cline, “Marching cubes: A high reso-
lution 3d surface construction algorithm,” in Proceedings of ACM

SIGGRAPH, 1987.
[13] S. Schaefer and J. Warren, “Dual marching cubes: Primal contouring

of dual grids,” in Proceedings of Pacific Graphics, 2004.
[14] F. Pagel, “Robust monocular egomotion estimation based on an iekf,”

in Canadian Conference on Computer and Robot Vision, 2009.
[15] P. Steingrube, S. K. Gehrig, and U. Franke, “Performance evaluation

of stereo algorithms for automotive applications,” in Proceedings of

the 7th International Conference on Computer Vision Systems, 2009.
[16] I. Ernst and H. Hirschmüller, “Mutual information based semi-global

stereo matching on the gpu,” in Int. Symposium on Visual Computing,
2008.

441

Fig. 8. Filtered dual grid structures from the scene in Fig. 2. The epipole in the original views (right column) is cut out.

Fig. 9. Two stills from the test sequence (Fig. 2). Top: Original views (the epipole is cut out). Middle: Polygonized reconstruction after Marching Cubes.
Bottom: Textured scene.

442

