
A Prediction- and Cost Function-Based Algorithm for

Robust Autonomous Freeway Driving

Junqing Wei, John M. Dolan and Bakhtiar Litkouhi

Abstract— In this paper, a prediction- and cost function-
based algorithm (PCB) is proposed to implement robust freeway
driving in autonomous vehicles. A prediction engine is built to
predict the future microscopic traffic scenarios. With the help
of a human-understandable and representative cost function
library, the predicted traffic scenarios are evaluated and the
best control strategy is selected based on the lowest cost.
The prediction- and cost function-based algorithm is verified
using the simulator of the autonomous vehicle Boss from the
DARPA Urban Challenge 2007. The results of both case tests
and statistical tests using PCB show enhanced performance of
the autonomous vehicle in performing distance keeping, lane
selecting and merging on freeways.

I. INTRODUCTION

Since the 1980s, autonomous driving has gradually be-

come a fast-developing and promising area. The abilities

of autonomous vehicles have been extended from simple

cruise control, among others, to adaptive cruise control, lane-

keeping, intelligent route planning, off-road navigation, and

interacting with human-driven urban traffic. Autonomous

driving technology has the ability to provide driver conve-

nience and enhance safety by avoiding some accidents due

to driver error. However, a highly robust and intelligent fully

autonomous distance keeping and merging vehicle that inter-

acts with human-operated traffic on freeways requires further

research and development. Therefore, the development of a

reliable and powerful autonomous vehicle control model is

a key in reaching the goal of fully autonomous driving on

freeways.

II. RELATED WORKS

In the 1990s, E.Dickmanns and his colleagues imple-

mented an autonomous driving platform based on their 4-D

approach to vision data processing [1], [2]. The NAVLAB

project at Carnegie Mellon University (CMU) has built a

series of experimental platforms which are also able to run

autonomously on freeways [3], [4]. In 2007, the DARPA

Urban Challenge provided researchers a practical scenario

This work was supported in part by General Motors through the GM-
Carnegie Mellon Autonomous Driving Collaborative Research Laboratory.
The authors also would like to thank the Tartan Racing Team in the DARPA
Urban Challenge, who built the vehicle control platform and the simulator.

J. Wei is with the Department of Electrical and Computer En-
gineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
junqingw@cmu.edu

J. M. Dolan is with the Robotics Institute and the Department of Electrical
and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA
15213 USA jmd@cs.cmu.edu

B. Litkouhi is with GM-CMU Autonomous Driving Collab-
orative Research Lab, GM R&D Center, Warren, MI 48090
bakhtiar.litkouhi@gm.com

Fig. 1. Autonomous Driver Model Development Approach

in which to test the latest sensors, computer technologies

and artificial intelligence algorithms [5]. Basic interaction

between autonomous vehicles and human-driven vehicles

was proven in low-density, low-velocity traffic.

In the Urban Challenge 2007, a rule-based driver model

was implemented to control the autonomous vehicle Boss’s

behavior [6]. Though the rule-based algorithm is relatively

easy to develop and verify, it is not robust enough to different

traffic scenarios. It is also difficult to extend and configure,

as there are a large number of rules which are correlated

with one another.

Learning algorithms such as Artificial Neural Networks

(ANN) have also been implemented in lane keeping and

adaptive cruise control. The major constraint of learning

algorithms is that they depend too much on training. There-

fore, no safety criteria can be verified. They also restrict

the autonomous vehicle’s ability to exceed a human driver’s

performance.

A market-based approach is also applicable to autonomous

vehicle control. Costs are computed and assigned to each

potential strategy, and the algorithm outputs the strategy

corresponding to the lowest cost. The market-based model

makes it easy to implement, maintain and check safety

criteria. However, there is no well-proven autonomous driver

model based on a market-based approach due to its relatively

high computational expense. In addition, most cost function-

based approaches depend heavily on the heuristic cost, which

is subjective and difficult to tie unambiguously to physical

parameters and models.

Based on previous research, we propose a comprehensive

approach to autonomous driver model development, which is

shown in Figure 1. Through this development process, our

autonomous driver model will be able to better interact with

human traffic by emulating human driving behavior. It also

retains the autonomous vehicle’s potential to exceed human

driver performance.

In the first step of the development process, a prediction-

and cost function-based algorithm for autonomous freeway

driving was created [7]. In [7], the autonomous driver model

2010 IEEE Intelligent Vehicles Symposium
University of California, San Diego, CA, USA
June 21-24, 2010

WeA1.3

978-1-4244-7868-2/10/$26.00 ©2010 IEEE 512

Fig. 2. Prediction- and Cost Function-Based Algorithm

was built by emulating a human driver’s decision process,

including prediction and evaluation. By using prediction, we

reduced the difficulty of building long-term heuristic costs.

The evaluation was based on a human-understandable cost

function library, which was easy to extend. The algorithm

was also highly reconfigurable so that it can be adjusted

to perform different driving styles from conservative to

aggressive.

The main advances of the current work with respect to [7]

are:

• an enhanced prediction model

• more representative and human-understandable cost

functions

• comprehensive statistical and case tests to verify the

algorithm

• parameter adjustment based on more rigorous case tests

Through these improvements, PCB gains greater reliability,

adaptablity, and robustness. In this paper, the parameters in

the algorithm are still adjusted manually by experiments and

some basic understanding of human driving. As the better

cost function library reduces the number of parameters in

PCB by 40%, it significantly simplifies both manual and

learning-based parameter adjustment and performance opti-

mization. The performance of PCB is also proven according

to case tests and statistical analysis.

III. AUTONOMOUS FREEWAY DRIVING CONTROL

MODULES

In PCB, we separate the freeway driving ability into

three modules, see [8]. These are the distance keeper, lane

selector and merge planner. The role of the distance keeper

is to keep a reasonable distance from the leading vehicle.

The lane selector outputs the intended lane, i.e., the lane

the autonomous vehicle wants to merge into. Whenever the

intended lane is different from the current lane, the merge

planner will be triggered. It adjusts the vehicle’s position and

speed to find a best merging opportunity.

IV. PREDICTION- AND COST FUNCTION-BASED

ALGORITHM

A. Algorithm Framework

A diagram of PCB is shown in Figure 2.

In the candidate parameter generation step, a set of candi-

date strategies is generated. In the distance keeper module,

for example, the generator produces 20 different acceleration

values that range from −3.0m/s2 to 1.8m/s2. Then the

strategy set and the map of the current moving vehicles

are sent to the prediction engine, which generates a series

of simulated scenarios in the following t seconds. The cost

function-based evaluator then begins to compute the cost of

each strategy for each scenario.

By using this mechanism, we successfully separate the

complicated behavior strategy generation process into two

relatively independent parts. The prediction engine only

considers how to accurately generate simulated scenarios,

while the cost function block implements and imitates a

human driver’s evaluation of a given scenario.

B. Prediction Engine

In general, when human drivers operate vehicles on the

freeway, they can interact efficiently with one another by

showing their intentions and also recognizing/predicting

other vehicles’ trajectories. This mechanism provides expe-

rienced human drivers enough time to prepare and make

suitable maneuvers in advance. To implement this look-ahead

ability in an autonomous vehicle, we built a prediction engine

in our driver model.

To accurately predict the vehicles’ movements, we need

to consider surrounding vehicles’ reactions to their own

microscopic traffic environment. For instance, if one vehicle

runs faster than its leader, instead of maintaining constant

velocity it will slow down as it gets close to it. We there-

fore introduce an interactive prediction kernel with basic

distance-keeping ability into this engine described in the

following algorithm, in which v(t) is the absolute velocity

at prediction time t, d(t) is the relative distance to the

host vehicle and DminSafetyDistance(i) is a precomputed

minimum safety distance to a leading vehicle for each

vehiclei.

1: Update autonomous vehicle’s state

2: v0(t + ∆t) = v0(t) + acmd∆t
3: Update surrounding vehicles’ states

4: for Each surrounding vehicle do

5: di(t + ∆t) = di(t) + (vi(t) − v0(t))∆t
6: Enforce restrictions

7: vi(t + ∆t) = min(vi(t + ∆t), SpeedLimit)
8: if Di,ilead

(t + ∆t) < DminSafeD(i) then

9: vi(t + ∆t) = leadingV ehicleSpeedi

10: di(t + ∆t) = dilead
− DminSafeD(i)

11: end if

12: end for

The prediction engine simplifies the modeling complexity

for producing agile reactions to complicated and hard-to-

predict traffic. By using the prediction engine, human-like

prediction ability is emulated in PCB, which helps select

better control strategies.

C. Cost Function-Based Evaluation

After predicting a number of scenario sequences corre-

sponding to these strategies, a cost is computed for each of

them. In the computation, all the predicted scenarios from

t = 0 to t = tpredictLength are evaluated, as shown in

Equation 1.

Cstrategy(i) =

tPredictLength∑

t=0

Cscenario(i,t) (1)

513

Fig. 3. Distance keeper progress cost: CDKpro(∆dgap), with vertices
(-25,1.5), (-15,0.9), (-5,0.14), (0,0), (10,0.14), (50,0.43), (100,0.7), (1000,2)

Sometimes, the surrounding vehicles’ actual behaviors are

different from the prediction engines estimate. Using this

mechanism, the strategy is selected according to not only

the predicted results, but current safety conditions, as well.

Therefore, it improves PCB’s robustness to prediction errors.

In most scenarios, the prediction engine helps improve the

performance of the control model without degrading the

safety.

1) Cost Function Parameterization: There are multiple

ways of cost function representation, including linear and

polynomial models, etc. In PCB, we use a vertices-based

cost function parameterization. For each cost function, a

set of coordinates (x0, y0), (x1, y1)...(xn, yn) is defined, in

which x0 < x1 < ... < xn. The cost function is then

linearly interpolated between neighboring vertices. With this

representation x0 and xn restrict the available input range,

which can be used as a safety criteria check. In the imple-

mentation, x0 and xn are determined by both the physical

constraints and the safety rules of the vehicle. The cost for

an unacceptable input will be infinite, and its corresponding

strategy will not be used. If there is no available strategy for

selecting, the autonomous driver model will command the

vehicle to slow down.

There are three kinds of costs built to evaluate the strate-

gies. They are the progress cost, comfort cost and safety

cost.

2) Progress Cost: The progress cost represents how well

a strategy does in finishing a given task by penalizing those

strategies which take longer to finish the task.

• Distance Keeper

The goal of the distance keeper is to keep the distance

as close as possible to ddesired, which is computed in

Equation 2, in which v is the current velocity of the

vehicle.

ddesired = Dmin + kvgainv (2)

The progress cost is then computed according to the dif-

ference between the current distance to the leading ve-

hicle (dcurrent) and the desired distance to it (ddesired),

which is ∆dgap. The distance keeper progress cost

CDKpro is shown in Figure 3, in which the gray area has

infinite cost. To make the distance keeper work when the

leading vehicle does not exist, a virtual vehicle running

at the speed limit is inserted at 150 meters away if there

is no leader in the lane. This prevents the progress cost

Fig. 4. Comfort cost: Ccomfort(acc), with vertices (-8,1), (-0.5,0.02),
(0,0), (0.5,0.02), (8,1)

from jumping a lot when the leading vehicle is close to

our maximum sensing range and is not well detected.

• Lane Selector

Its progress cost is based on the prediction of po-

tential time benefits from a merging maneuver. A

virtual destination is placed 200 meters away for us

to compute the estimated arrival time tarrival. An

alternative lane keeping prediction engine is built to

compute tarrival, which is described as the following

algorithm.

1: while distance traveled < 200m do

2: if leading vehicle distance > 20m then

3: Catch up with acc = 1.8m/s2

4: else

5: Follow the leading vehicle

6: end if

7: end while

Then a linear cost is built.

CLSpro = tarrival (3)

• Merge Planner

The merge planner’s rule is to execute some adjustment

and perform the merge at a reasonable opportunity.

Therefore, we define the merge planner progress cost

according to the merge execution time tfinish and its

finishing distance dfinish, as shown in Equation 4.

CMGpro = µ1tfinish + µ2dfinish (4)

3) Comfort Cost: While driving a car, experienced human

drivers will try to avoid large accelerations for greater com-

fort. Therefore, a comfort cost Ccomfort is built to represent

this logic, as shown in Figure 4.

4) Safety Cost: The safety cost of a scenario consists of

two terms: the clear distance cost and the braking distance

cost. The clear distance cost Cdistance penalizes moving too

close to surrounding vehicles. We first perform normalization

on the input clear distance, which makes the minimum

clear distance smaller when the vehicle speed is low. The

minimum clear distance for low speed is computed by

Equation 5.

dminClear = 2 + 0.5v (5)

dnorm = 15/min(15, dminClear) ∗ dinput (6)

The cost function of dnorm is shown in Figure 5.

514

Fig. 5. Clear distance cost: Cdistance(distance), with vertices (-1000,0),
(-50,0.1), (-30,0.2), (-15,1), (15,1), (30,0.2), (50,0.1), (1000 , 0)

Fig. 6. Braking distance cost: Cbrake(brakeDistance), with vertices
(0,1), (15,0.2), (1000,0)

However, this cost is not informative enough for us to

avoid collision in some situations, since it does not consider

the vehicles’ velocities. Therefore, another safety cost based

on the braking distance difference ∆dbrake between two

vehicles is computed.

∆dbrake = dlead + 1
2v2

lead/amaxdec − vfollow ∗
tresponse −

1
2v2

follow/amaxdec
(7)

In Equation 7, the remaining distance after braking is com-

puted. ∆dbrake smaller than 0 means that if the leading

vehicle begins to brake hard, we do not have enough space

to avoid the collision, which is obviously not acceptable. The

cost Cbrake based on ∆dbrake is shown in Figure 6. Then

the overall safety cost is computed using Equation 8:

Csafety = µ3Cbrake(∆dbrake) + µ4Cdistance(d) (8)

V. IMPLEMENTATION

A. Distance Keeper

In the PCB distance keeper, the candidate strategies are a

set of different accelerations, chosen as {−3.0, −2.4, −1.8,

· · · 0.0 · · · 1.2, 1.8} in this paper. For each acceleration

candidate, the prediction engine is run for 10 steps with a

0.6-second step length, which provides us 6 seconds look-

ahead ability. The cost for each scenario Csce is computed

using Equation 9.

Csce = µ5CDKpro + µ6Ccomfort + µ7CDKsafety (9)

In Equation 9, CDKpro is computed with Equation 3, and

Csafety is the safety cost of the leading vehicle. Then the

overall cost for each strategy is computed using Equation 1.

B. Lane Selector

For the lane selector, there are three candidate output

lanes: left(L), current(C) and right(R). Therefore, three

strategy costs are computed using Equation 11, in which

CLSsafety is the sum of the costs corresponding to each

car in the intended direction.

Cstrategy = CLSpro + µ8CLSsafety (10)

CLSsafety =

vehicles in{L,C,R}∑

i

Csafety(vehicle(i)) (11)

After computing the strategy costs, instead of directly com-

paring the cost of those strategies, a hysteresis block is built

to switch between strategies. For example, when the vehicle

is running straight, it will only select the left or right lane if

the benefit is larger than the hysteresis’s upper threshold. This

limits oscillation in lane selection. The hysteresis thresholds

for the left and the right lane changes are also different so

that the vehicle prefers left-overtaking when both left and

right lanes are available.

C. Merge Planner

The merge planner strategy consists of three parameters,

a1, a2 and tadj . Based on these three parameters, it will

first perform an acceleration a1 for 1
2 tadj and then a2 for

another 1
2 tadj seconds . For the accelerations a1 and a2,

we are using the same candidate set as the distance keeper.

Candidate set {0, 0.2, 0.4, · · · 6} is used for tadj . Using these

strategies, both the speed and the position can be adjusted

while looking for the best merge opportunity. The cost for

each merge strategy is computed with Equations 12 and 13,

in which CmergeSafety is the sum of safety costs of the host

vehicle and all the cars in the intended lane and Csafety is

the cost of the leading vehicle.

Cstrategy =

PredictLength∑

t=0

Csce(t) + µ9CmergeSafety (12)

Csce(t) = µ10CMGpro + µ11Ccomfort + µ12Csafety (13)

After adjustment, the merge planner need to trigger the

actual merging manuever. The basic rule is that whenever

the tadj of the best strategy is smaller than a threshold, the

vehicle will be commanded to perform a lane change. A

hysteresis block is also used here to avoid output oscillation.

D. PCB Model Summary

As already described, 6 different cost functions are built in

PCB with 17 vertices and 12 weight parameters. Compared

to the previous robust freeway driving algorithm developed

in [7], the number of parameters is reduced by around 40%,

which efficiently simplifies the parameter adjustment. With

the more human-understandable, heuristic and less redundant

cost functions, PCB is more robust and easier to configure.

VI. PERFORMANCE EVALUATION

Two different testing mechanisms were implemented to

evaluate the PCB’s performance. First, five case tests that

emulated different special traffic scenarios were built. The

case tests were designed to verify the PCB’s functionality

qualitatively and help us preliminarily adjust those parame-

ters. Then, an integration test combination of the case tests

on a 30 kilometer-long three-lane freeway enabled us to gain

515

Fig. 7. Lane Keeping with/without Leading vehicle, Speed Limit is
31.3m/s, Vlead = 27.6m/s

Fig. 8. Emergency Brake

statistical performance data on PCB. The statistics of ve-

locities, accelerations, distance to leading vehicle, etc. were

extracted from these test runs for a performance evaluation.

The parameters used in the tests were:
∆t = 0.6 NpredictStep = 10
Dmin = 5.0 kvgain = 1.14 µ1 = 8.0
µ2 = 2.0 µ3 = 1.0 µ4 = 2.0
µ5 = 50.0 µ6 = 10.0 µ7 = 10.0
µ8 = 0.01 µ9 = 200.0 µ10 = 1.0
µ11 = 1.0 µ12 = 100.0

A. Case Tests

1) Lane Keeping with and without Leading Vehicle: In

this test, the autonomous vehicle starts stationary and speeds

up gradually to keep a safe distance to the leader or achieve

the speed limit of the lane when there is no leading vehicle,

as shown in Figure 7.

2) Emergency Brake: This scenario is built to test the

autonomous vehicle’s response when the leading vehicle

does not behave as the prediction engine predicted. As shown

in Figure 8, the leading vehicle keeps constant velocity for a

few seconds, then suddenly brakes with its largest decelera-

tion. The velocity of the host vehicle and the distance to the

leader is shown in Figure 8. Through this test case, PCB’s

collision avoidance behavior is shown to be functional.

3) Forced Lane Change: This scenario is to test PCB’s

strategy when the vehicle is commanded to merge into the

other lane as soon as possible. The merge progress cost

CMGpro will push the vehicle to perform a lane change with

minimum adjustments. In the test scenario, the host vehicle

is moving at high speed in its own lane and is commanded to

merge into the neighboring lane, which has slow and dense

traffic. This scenario emulates, for example, the conditions

when we are close to our destination exit on a freeway. The

coordinate of Figure 9 is bound to traffic vehicles which

are of same and constant speed, so the circles show the

Fig. 9. Forced Lane Change

autonomous vehicle’s relative position, the color of which

represents the speed. PCB’s merge strategy is to decelerate

to a proper speed while looking for the best opportunity of

merging, which is reasonable and performs well.

4) Freeway Entrance : This test is to verify the algo-

rithm’s strategy of looking for an opportunity and entering

a freeway. The simulated vehicles in the neighboring lane

are of the same speed. The distances between them are of

Gaussian distribution. PCB causes the host vehicle to first

predict the potential gaps for it to merge into and then

accelerate to a proper speed to perform a smooth lane change.

To the extent that an autonomous vehicle’s sensors are good

at identifying the speed, position and dynamics of vehicles in

the neighboring lanes, its performance of entering a freeway

could be better than that of human drivers .

5) Vehicle Merge In/Out: In this scenario, the host vehicle

is running on a straight road with a few simulated vehicles

merging into/out of its lane in front of it. With the prediction

ability, the host vehicle is able to slow down properly before

the vehicle enters its lane and accelerate immediately when

it exits the lane.

B. Integration Tests

Several three-lane freeways were built to test PCB’s over-

all performance. Simulated human traffic capable of simple

distance keeping and lane changes was also added into

the simulator. Both velocity and distance between simu-

lated vehicles are of Gaussian distribution with parameters:

µv, σv, µd, σd.

We first compared PCB’s performance with the previous

robust freeway driving algorithm (RFD) [7] and the algo-

rithm we used in the Urban Challenge 2007 (UC07) [8].

The two previous algorithms are designed for driving less

than 30 mph , which is also the speed limit of the Urban

Challenge. We built a 20 kilometer-long road with a 30 mph

speed limit. For each algorithm, we ran the simulation with

µd = 40, 80, 120 and σd = 0.3µd. For each µd, the tests

were run five times to get the statistical result. The speed

parameters of the simulated traffic were µv = 10, σv = 3.

PCB performance in different scenarios and the comparison

between the current PCB, the previous PCB algorithm de-

veloped and the algorithm from Urban Challenge 2007 are

shown in Table I, in which NlaneChange is the number of

lane changes, accave is the average acceleration, tarrival is

the arrival time , tD<10m is the amount of time that the

distance to the leading vehicle is less than 10 meters and

tbrakeD<10m is the amount of time the braking distance is

less than 10 meters.

516

TABLE I

SIMULATION RESULTS WITH µv = 12m/s

UC07 RFD PCB

µd = 40, σd = 12
NLaneChange 151.0± 72.1 30.4± 2.9 33± 4.3
accave(m/s2) 0.80± 1.15 0.10± 0.02 0.10± 0.01
tarrival(s) 2476± 66 1964± 105 1980 ± 216
tD<10m(s) 0.65± 0.92 4.70± 1.55 0.00± 0.00
tbrakeD<10m(s) 0.00± 0.00 8.82± 0.42 0.00± 0.00
µd = 80, σd = 24
NLaneChange 93.2± 35.4 28.8± 2.8 38.0± 5.7
accave(m/s2) 0.75± 1.10 0.09± 0.34 0.11± 0.35
tarrival(m/s) 2199± 328 1924± 150 1736 ± 77
tD<10m(s) 0.05± 0.71 6.23± 6.64 0.00± 0.00
tbrakeD<10m(s) 0.00± 0.00 17.32± 11.03 0.40± 0.42
µd = 120, σd = 36
NLaneChange 124.6± 48.1 19.4± 1.5 29.4± 0.8
accave(m/s2) 0.77± 1.05 0.06± 0.24 0.07± 0.25
tarrival(m/s) 1992± 151 1853± 207 1684 ± 125
tD<10m(s) 0.00± 0.00 0.95± 0.49 0.00± 0.00
tbrakeD<10m(s) 0.42± 0.56 8.50± 4.67 0.55± 0.21

Table I shows that, compared to the Urban Challenge

algorithm (UC07), RFD and PCB provide higher average

speed with significantly fewer lane changes, which means

the lane change decision is smarter. Additionally, due to

the comfort cost, RFD and PCB prefer to output lower

acceleration while driving. In PCB, the number of param-

eters is reduced by 40% by using understandable and more

informative cost functions; however, the performance is not

sacrificed compared with RFD . In those tests with µd = 80
and µd = 120, PCB performs about 10 more lane changes

and arrives at the destination about 5 minutes earlier than

RFD, which means that PCB is able to circumvent low-

speed vehicles by performing more intelligent lane changes

and merging maneuvers. In the previous freeway driving

algorithm, there was no braking distance computed in the

safety cost. Therefore, there are about 30 seconds in the test

with braking distance less than 10 meters, which could be

dangerous. In PCB with consideration of braking distance,

these situations are effectively eliminated.

The high-speed performance of the PCB algorithm was

also evaluated with another integration test. A 40 kilometer-

long road with a 65 mph speed limit was built to simulate the

highway traffic. We also ran these tests with three different

traffic environments: µd = 40, 80, 120, σd = 0.3µd, µv =
20, σv = 6. The results are shown in Table II.

Neither the UC07 nor RFD is able to pass the high-speed

driving test. The algorithm in Urban Challenge does not have

efficient prediction ability, so it can not slow down early

enough to avoid collisions at high speed. The RFD does not

take the velocity of vehicles into account while evaluating

the safety. Therefore, when the speed limit increase from

30miles/hour to 65miles/hour algorithms, they are not

functional anymore. From Table II, we see that PCB can

be used for high-speed freeway driving with different traffic

distributions .

TABLE II

PCB ALGORITHM SIMULATION RESULTS WITH µv = 20m/s

µd = 40 µd = 80 µd = 120
NLaneChange 28.5± 9.2 40.0± 5.7 46.5± 3.5
accave(m/s2) 0.28± 0.50 0.34± 0.50 0.36± 0.60
tarrival(s) 1966 ± 221 1974 ± 95 1761 ± 39
tD<10m(s) 0.00± 0.00 0.00± 0.00 0.00± 0.00
tbrakeD<10m(s) 59.3± 74.3 141.2± 24.6 95.4± 55.9

VII. CONCLUSION

In this paper we proposed an extended Prediction- and

Cost function-Based algorithm (PCB) and showed its ability

to perform freeway driving in autonomous vehicles. With a

more efficient prediction engine and human-understandable

and informative cost functions, the overall performance of

freeway driving is improved compared to previous algo-

rithms. This algorithm is also able to control the vehicle

at high speed on freeways. The algorithm was tested in five

case tests designed to verify its functionality and around 500

kilometers of integration tests with different speeds and traf-

fic environments to evaluate its performance. The tests show

that PCB has better robustness, smoothness and intelligence

in controlling autonomous vehicles behaviors on freeways.

In future work, we will compare PCB’s performance with

that of human drivers and test it using autonomous vehicle.

Based on that, further improvements and optimization can

be made allowing the autonomous driver exceeds human

driver performance with the help of autonomous controller’s

smaller response time and better sensing ability. In summary,

PCB has strong potential in implementing and improving

autonomous vehicle freeway driving ability.

REFERENCES

[1] E. D. Dickmanns, “Vehicles capable of dynamic vision: a new breed of
technical beings?” Artificial Intelligence, vol. 103, no. 1-2, pp. 49–76,
Aug. 1998.

[2] R. Gregor et al., “Ems-vision: a perceptual system for autonomous
vehicles,” IEEE Journal of ITS, vol. 3, no. 1, pp. 48–59, March 2002.

[3] D. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” in Advances in Neural Information Processing Systems 1,
D. Touretzky, Ed. Morgan Kaufmann, 1989.

[4] C. Thorpe, M. Herbert, T. Kanade, and S. Shafer, “Toward autonomous
driving: the cmu navlab. i. perception,” IEEE Expert, vol. 6, no. 4, pp.
31–42, Aug. 1991.

[5] C. Urmson et al., “Autonomous driving in urban environments: Boss
and the Urban Challenge,” Journal of Field Robotics, vol. 25, no. 8,
pp. 425–466, 2008.

[6] C. Baker and J. Dolan, “Traffic interaction in the Urban Challenge:
Putting boss on its best behavior,” in International Conference on

Intelligent Robots and Systems (IROS 2008), 2008, pp. 1752–1758.
[7] J. Wei and J. M. Dolan, “A robust autonomous freeway driving

algorithm,” 2009 IEEE Intelligent Vehicle Symposium (IV2009), 2009.
[8] C. R. Baker and J. M. Dolan, “A case study in behavioral subsystem

engineering for the Uuban Challenge,” IEEE RAM Special Issue on

Software Engineering in Robotics, 2008.

517

