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Abstract— Cameras are getting smaller and cheaper. So a
cost-effective usage of multi-camera systems in vehicles gets
more and more attractive. In many cases it is desirable to cover
the whole environment all around the vehicle. But often design
restrictions and energy consumption do not allow constellations
of cameras with overlapping field of views. However, for a com-
mon and geometric usage of the extracted information, e. g. in
structure from motion tasks, it is necessary to know the relative
alignment of the cameras, which are the extrinsic calibration
parameters. This paper adresses the extrinsic calibration of
a multi camera rig with non-overlapping field of views on a
mobile platform. As the field of views do not necessarily overlap,
common calibration methods based on corresponding image
points between the camera views will fail. This problem can
be overcome by using the mobiltiy of the platform. A pattern-
based method for extrinsic calibration of the camera rig on a
mobile plattform is presented.

I. INTRODUCTION

Over last years multi camera applications in vehicles

became more and more popular as the costs of the sensor

production decreased drastically. Multiple sensors can be

used to cover a wider field fo view, as in [2], to the point of

full omnidirectional vision (fig. 1). However, in many cases it

is not possible to cover the full environment or to guarantee

overlapping field of views. This is because restrictions in

design, energy consumption and physical capacity have to

be considered.

To be able to use the full range of possibilities that go along

with such a sensor constellation, the relative adjustment

of the sensors must be known. The extrinsic parameters

between each camera can be described as an Euclidean

transformation. Then, the informations that are extracted

from the single cameras can be merged and referenced in

a common coordinate system. This might be very useful for

reconstruction, object detection or attention guidance tasks.

This paper adresses the problem of determining the extrinsic

calibration parameters between the cameras. The proposed

solution uses a flexible adjustment of a set of well-known

patterns to perform an offline calibration.

A. Related Work

The topic of calibrating camera networks without overlap-

ping field of views has mostly been adressed in the context

of rigid multi-sensor networks.

Kumar et al. [5] present a two-step approach to calibrate a

multi-camera set extrinsically. First, they calibrate each cam-

era intrinsically. Then, the extrinsic parameters are estimated

Fig. 1. Example of a vehicle with partially and nonoverlapping field of
views.

using a common calibration pattern. They overcome the need

for all cameras to see the calibration object by allowing

them to see it through a mirror. They use the fact that the

mirrored views generate a family of mirrored camera poses

that uniquely describe the real camera pose.

Rahimi et al. [8] simultaneously localize and track (SLAT)

a person walking through a rigid multi-sensor network.

By assuming a motion model for the target, which means

prior knowledge about the person’s dynamics, they close the

gap between the field of views of the cameras. They are

calibrating the network of cameras by aligning each cameras

ground-plane coordinate system with a global ground-plane

coordinate system.

Other approaches use the mobility and the motion of the

cameras explicitely. Esquivel et al. [3] defined a constraint

purely based on the egomotion of each single camera. The

extrinsic parameters are determined by simply using the tra-

jectories of the cameras. Hence, the quality of the calibration

result depends strictly on the quality of the motion estimation

algorithm. It turns out that the calibration needs rotational

motion to be able to calculate the translational components

of the extrinsic parameters. So, this calibration suffers due

to the almost purely planar motion of the camera-carrying

vehicle. A planar motion does not allow the determination

of longitudinal distances between the cameras. A practical

calibration approach must overcome this drawback. The most

common technique for a robust calibration is the usage of
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well-known calibration objects.

Lamprecht et al. [6] calibrate a non-overlapping two-camera

rig on a vehicle. The calibration runs online. They use the

motion of the vehicle and tracked patterns. Traffic signs

serve as calibration objects. Their solution shows strong

sensitivity concerning the accuracy of the localization of the

host-vehicle.

B. Proposed Solution

Basically, the goal adressed in this paper is to find a

solution to calibrate a mobile rig quick and with little effort.

Furthermore, we want to be able to easily run a recalibration,

even when the vehicle is somewhere outside the test area.

In principle, if a well-known calibration pattern is used that

is simply big enough to cover all cameras (just like a big,

hollow cylinder), the rig could be calibrated by projecting

the known 3D points onto the images and minimizing the

projection error. But in practice, it is difficult to arrange such

an environment because some kind of “calibration garage”

under laboratory conditions is needed. To be able to perform

a calibration on-site, the suggestion in this paper is to use

several handy objects that are placed in the scene. The

patterns and their arrangement is not fully arbitrary. They

must be uniquely identifiable and they should be placed so

that at least two neighboring patterns are visible and two

cameras see a pattern each from some point of view. This

point will be further discussed in section 2. The mobility

of the rig is used to determine the relative alignment of

the patterns as well as the extrinsic camera parameters. The

calibration is performed by moving the rig in front of the

patterns (fig. 2). Because the structure of the patterns is

well-known and hence their 3D positions can be determined

reliably, the calibration is not restricted by any motion. Once

this alignment is known, we can consider all the single

patterns as a common big one and use this composite pattern

to determine the extrinsic camera parameters. The geometric

constraints are based on the projection error of the object

points and hence very simple and straight forward.

This kind of calibration has some benefits (especially from

the viewpoint of a developer). Although a sufficiently big

place is needed to perform this kind of calibration (the

rig/vehicle must move in front of the pattern arrangement),

it might be easier to find a free area rather than to drive

to the next calibration garage or back to the laboratory and

loose valuable time for data acquisition and test runs. By

performing a stepwise calibration, a global optimization over

all measured data to determine all pattern/camera transfor-

mations in one single calculation step can be avoided.

Furthermore, a concept is presented, how the acquired image

data can be evaluated and organized during the acquisition

process. This might be necessary because the driver might

like to know when to stop the calibration while he is driving

in front of the patterns. This is the case when enough data

has been acquired to calibrate all the patterns’ positions as

well as the cameras extrinsics among each other.

Fig. 2. Calibration scheme. After M is known, the extrinsics C of the
cameras Cm, Cn can be calibrated. The parameters A can be calculated
from the projections of the well known patterns Pi, Pj .

Fig. 3. MCMXT calibration patterns.

II. A THREE-STEP CALIBRATION PROCEDURE

The whole calibration routine is structured as follows:

First, the intrinsic camera parameters are calculated using

a standard pattern-based calibration routine, as in [9]. This

process is called Cal0. Second, the Euclidean parameters

Mij that describe the transformations between the patterns

is determined, where

Mij =

(

Rij tij

0T 1

)

4×4

(1)

is a homogeneous 4×4 transformation matrix with rotation

R and translation t. This extrinsic pattern calibration is

called Cal1. Finally, when the intrinsic camera parameters

and the relative alignement of the patterns are known, the

extrinic camera paremeters Cmn can be estimated (Cal2),

with

Cmn =

(

Rmn tmn

0T 1

)

4×4

. (2)

A. The Pattern

For the following approach the pattern must fulfill three

criteria: It must be uniquely identifiable, it must be detectable

in real-time (at least 1Hz for a reasonable usage in practice)

and the 3D position and orientation Aim ∈ R
4×4 of the

pattern Pi relative to the camera Cm (see fig. 4 and 5)
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Fig. 4. Relative position of two pattern visible in one camera (Cal1).

Fig. 5. Extrinsic camera parameters with known pattern alignement Mij

(Cal2).

must be reliably determinable. Last criteria is easily achieved

by using a planar pattern with at least four points, as in

[9]. To fulfill the first two criteria we use the so called

MCMXT-patterns [4]. This pattern was designed to be re-

liably detectable in real-time, e. g. on crash test dummies.

The chamfers in the outer circle are used to identify the

patterns uniquely. Currently there are about 128 different IDs

available.

B. Determination of the Pattern Configuration

To determine the Euclidean parameters Mij the squared

projection error is minimized. This is the distance between

the measured image points and the projections of the 3D

points in the respective coordinate systems of the patterns.

At this point it is important that the pattern pair (Pi, Pj)
is visible in one camera Cm at one time. Two neighboring

patterns have to be close enough to each other so that they are

visible in a single camera view. Hence, a chainwise pattern

configuration is suggested.

The determination of the patterns’ parameters is executed

in a pairwise manner. The homogenous point ṽ of a vector

v = (v1, ..., vd)
T ∈ R

d is given by ṽ = (v1, ..., vd, 1)T ∈
R

d+1. The projection of the pth point of pattern Pi in the

coordinate system of camera Cm, Ymip
∈ R

3, is defined as

a function π : R
4 → R

2 via the intrinsic camera matrix

Km =





fxm
0 cxm

0 fym
cym

0 0 1



 : (3)

πm(Ỹmip
) := xmip

, (4)

where KmYmip
=: (X ′, Y ′, Z ′)T and xmip

=

(X′

Z′
, Y ′

Z′
)T .

With π and the known Euclidean parameters Ak
im,Ak

jm,

that describe the transformation between camera and pattern,

and the unknown transformation matrix Mij , we can define

an error function fPat. Mij can hence be determined using

a LM-optimization [7] to minimize the constraint

fPat(Mij) =
M
∑

p

τ
∑

k

(

xk
mjp

− πm(Ak
imM−1

ij X̃jp
)

)2

+

M
∑

p

τ
∑

k

(

xk
mip

− πm(Ak
jmMijX̃ip

)

)2

(5)

for all τ time respective measurement steps and M points

per pattern. Notice that Mij is constant for all k ∈ {1, ..., τ}.

Here, the square of a vector is the dot product. To initialize

Mij for the LM-optimization one can set

Minit
ij := Ak−1

jm Ak
im (6)

for any k ∈ {1, ..., τ}. Optionally, Minit
ij can be chosen to

be the average of Ak−1

jm Ak
im for all k.

C. Extrinsic Camera Calibration

Once the pattern alignement is known, we can calibrate

the cameras quite similar to the way we did before with

the patterns. When a pattern Pi is visible in camera Cm

and pattern Pj is visible in camera Cn at time k, we

can determine the extrinsic alignment between Cm and Cn

(fig. 5). The intrinsic matrices Km and Kn, the pattern

alignment Mij as well as the transformations between the

camera and the pattern coordinate system Ak
im and Ak

jn are

assumed to be known for τ measurements.

Analogously to (5) and (6), an error function with respect to

Cmn can be formulated as

fCam(Cmn) =
M
∑

p

τ
∑

k

(

xk
njp

− πn(CmnAk
imM−1

ij X̃jp
)

)2

+

M
∑

p

τ
∑

k

(

xk
mip

− πm(C−1
mnAk

jnMijX̃ip
)

)2

(7)

with an initialization

Cinit
mn := Ak

jmMijA
k−1

im (8)

D. Determining the Transformation between Pattern and

Camera

Zhang [9] proposes a monocular calibration method that

determines the intrinsic camera parameters as well as the

extrinsic parameters that describe the transformation between

pattern and camera. This section will shortly sum up the basic

principle of determining the extrinsic transformation Aim.
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Given a rotation matrix Q = (q1q2q3), a translation vector

c and an intrinsic camera matrix K, the projection of a

homogeneous 3D point X̃p = (X, Y, Z, 1)T is given up to

scale by

λxp = λ





u

v

1



 = K[q1 q2 q3 c ]X̃p. (9)

The calibration contributed in this paper deals with planar

calibration patters. So all p points are assumed to lie on a

plane. Then we can reformulate (9) as follows:

λxp = K[q1 q2 q3 c ]









X

Y

0
1









p

= K[q1 q2 c ]





X

Y

1





p

.

(10)

So we can define the homography

H = K[q1 q2 c ] = [h1 h2 h3 ]. (11)

H can be estimated with at least four point correspon-

dences between the pattern and the image plane (see e. g.

[1]). As the intrinsic parameters are assumed to be known,

the extrinsic transformation is given by

q1 = λK−1h1

q2 = λK−1h2

q3 = q1 × q2

c = λK−1h3

(12)

with

λ =
1

K−1h1

=
1

K−1h2

. (13)

The resulting rotation parameters can be used for a further

refinement to numerically calculate a rotation matrix Q⋆ that

fulfills the claim Q⋆T Q⋆ = I by minimizing the Frobenius

norm

minQ⋆ ‖Q⋆ − Q‖
2

F

(see [9] for further details).

III. DATA ACQUISITION

This section covers the question: When do we have to

stop data acquisition? More precisely, when was enough

date acquired so that Cal1 and Cal2 can be executed.

This part is quite important to avoid multiple calibration

sessions. Because without an automatic data management it

may happen, for example, that after a session the acquired

data is not sufficient to determine the extrinsic parameters

between two patterns. Hence, the whole session would have

to be repeated.

There are definitely several possibilities to manage the

captured data. Here, a method is proposed that simply

increases entries of an adjacency matrix J: One for the

pattern (JPat) and one for the cameras (JCam). To acquire

the data for the pattern calibration Cal1 one can proceed

as follws (the data acquisition for the extrinsic camera

parameters Cal2 is analogous):

The upper right matrix is initialized with zeros.

Each time two patterns Pi, Pj are visible in view Cm,

JPat

(

min(i, j),max(i, j)
)

is incremented by 1. If Pi is

visible in Cm and Pj in Cn, JCam

(

min(m,n),max(m,n)
)

is incremented by 1. The data acquisition can be stopped

when every column (1, ..., N − 1) has at least one entry

≥ K. K is the predefined minimum number of views

that must be acquired for the calibration. Thinking of a

graph where the patterns/cameras are vertices, every vertex

vi is connected to a vertex vj with i > j. This means

that each vertex is reachable from any other vertex of the

graph. So, the acquired data is enough to determine the

extrinsic parameters between every pattern and every camera.

Once JPat is known, the computation of the transforma-

tion between the patterns that have a K-entry in JPat can

be done directly by minimizing (5). The calculation of all

the other transformations is then done iteratively:

As transformation M0,1 (that is the edge P0 → P1) must

be known (given by the structure of the adjacency matrix),

the transformations are determined by proceeding from left

to right in the matrices.

There are two cases to distinguish. Whether the row index of

a K-entry in JPat in column j is j−1 (or in other words: K

is on a “step” in JPat), or it is not. In the latter case, given

Mi,j with j − i > 1, we can determine the corresponding

step-transformation as follows:

Mj−1,j = Mi,jM
−1

i,j−1
(14)

Proceeding from left to right through JPat guarantees that

Mi,j−1 in the previous column is already known. This leads

to the first case. Given Mj−1,j we can calculate Mj−k−1,j

iteratively for all k = 1, ...j − 1:

Mj−k−1,j = Mj−k,jMj−k−1,j−k (15)

Furthermore we have Mi,j = M−1

j,i and Mi,i = I4×4. To

calculate all transformations C̃m,n it can be proceeded in the

same way with JCam.

IV. RESULTS

A. Simulated Data

To investigate the influence of noise on the accuracy of

the calibration process, test series were run with simulated

data for a two-camera rig. Hence, the calibration error ǫ is

defined as the square root of the mean squared projection

error (RMSE) according to (5) and (7):

ǫPat =

√

fPat(Mij)

M · τ
(16)

ǫCam =

√

fCam(Cmn)

M · τ
(17)
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