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Abstract— We present and evaluate a novel scene descriptor
for classifying urban traffic by object motion. Atomic 3D flow
vectors are extracted and compensated for the vehicle’s egomo-
tion, using stereo video sequences. Votes cast by each flow vector
are accumulated in a bird’s eye view histogram grid. Since we
are directly using low-level object flow, no prior object detection
or tracking is needed. We demonstrate the effectiveness of the
proposed descriptor by comparing it to two simpler baselines
on the task of classifying more than 100 challenging video
sequences into intersection and non-intersection scenarios. Our
experiments reveal good classification performance in busy
traffic situations, making our method a valuable complement
to traditional approaches based on lane markings.

I. INTRODUCTION

Vision-based intersection detection and recognition [10],

[26], [23], [20], [9] is an important task for advanced driver

assistance systems and autonomous driving. However, it is

also highly difficult for several reasons.

First, nature’s diversity in appearance is hard to capture

using a computer algorithm: While large and small intersec-

tions exist, they may be marked or unmarked. Traffic lights

and signs may or may not be present. Also, the surrounding

scenery can be either natural (e.g., trees and bushes) or man-

made (e.g., buildings and brigdes).

Second, the tilted installation angle of wide angle car-

mounted cameras offers rich details in the cars vincinity, but

only little details at the region of interest (at distances ≥ 15
meters).

Third, other vehicles, which show up in a variety of

different colors and shapes, often occlude major information

sources of the scene such as lane markings. Hence, ap-

proaches based solely on lane markings are not applicable to

busy traffic situations, which make up for most of the inner-

city scenarios. A typical ’intersection’ and ’non-intersection’

image frame is depicted in figure 1, demonstrating the

aforementioned difficulties.

In recent years, much research has been conducted in

vision based road geometry estimation and tracking [3], [29],

[18], [5], [28], [6], [2], [8], [27], [22], [24]. However, most

of the approaches use features based on lane markings and

assume an unobstructed view onto the road, which is often

not the case in innercity scenarios. Furthermore a simple

road model based on splines or clothoids is used, which does

not naturally allow for representing more complex multi-lane

scenarios like intersections.

In contrast to our approach, [16], [17], [13] exploit digital

road maps to generate road models which are mapped

(a) Intersection scenario

(b) Non-intersection scenario

Fig. 1. A typical intersection and a typical non-intersection scenario.

The task of detecting intersections is aggravated by the diversity in scene
appearance, the tilted installation angle of the camera and large occlusions,
which mainly caused by other traffic participants. Approaches solely based
on lane markings will fail in such situations.

into the scene and matched against road features in the

images, also assuming an unobstructed view onto the road.

In [25] feature maps based on aerial images are generated

for the same purpose. Deductive inference is used in [19],

in combination with description logic to narrow down the

space of plausible intersection hypotheses.

In [30] a Kalman-filter based tracking system is presented,

which tracks vehicles and pedestrians at intersections. How-

ever, in their scenario a static camera on top of a building

was used, making position estimation less noisy than in

our setting, where depth estimates have to be deduced from

disparities and the observer is moving.

In [23] road border discontinuities and lane markings are

estimated to detect intersections from imagery. In [9] simple

intersections without traffic are recognized by detecting road

clothoids and their intersecting lines. An active camera setup

is proposed in [20] for the same task. First classification

approaches were conducted in [26], where color appearance

has been used to segment the shape of the road in a rectified

view into several intersection types using a binary support
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Fig. 2. System overview. By matching feature points and computing the vehicles egomotion using visual odometry we extract motion compensated 3D
flow vectors from stereo video sequences (left). Flow vectors from the last 100 frames are accumulated into one common coordinate system and projected
onto the ground plane (middle). A histogram grid is extracted by feature-based voting and serves as input to classification (right). Note that the right
turning vehicle is not present at the first frame of the sequence which is shown on the left for illustration purposes.

vector machine. [10] employs super-pixel segmentation to

construct feature sets, which are fed into a boosting-based

classifier to distinguish between different road types and

detect cars, pedestrians and crossings.

In this paper, we present a descriptor for traffic classi-

fication which is easy to compute and complementary to

existing lane-marking based approaches. Instead of focusing

on lane-markings and curbstones, we robustly compute the

flow of scene objects like bicycles, pedestrians and cars. This

’object flow’ is accumulated in a local 2D map from which

histogram grid features are computed, based on a voting

scheme. Unlike the map-mosaicing approach proposed in

[12], this allows for a memory-efficient implementation,

since only a sparse set of vectors has to be stored tem-

porarily. Using a large margin classifier, we find optimal

boundaries for classifying these features into the two classes

’intersection’ and ’non-intersection’ without prior streetmap

knowledge.

II. SYSTEM OVERVIEW

Figure 2 gives an overview over our system: First, sparse

image features are extracted and matched sub-pixel accu-

rately against spatially and temporally neighboring frames. A

robust egomotion approach (section III) yields the extrinsic

motion parameters between consecutive frames, which are

used for extracting motion compensated 3D object flow

vectors from the feature matches. We accumulate these

vectors into a local map, containing approximately the last

100 frames. Voting, based on the object flow position and

orientation finally gives a global histogram grid descriptor

which is fed into a Support Vector Machine for classification

(section IV). Our approach is evaluated on more than 100

video sequences (section V). We conclude this paper with

an outlook on future work.

III. VISUAL ODOMETRY

Due to our assumption of a moving observer, static parts

of the scene have to be compensated for the egovehicle’s
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Fig. 3. Camera configuration. This figure illustrates the geometrical
relations of our stereo-camera-rig at two consecutive time steps. The origin
of the world coordinate frame is denoted by OW .

movement. The computation of egomotion further allows

for registering object flow vectors into a local map. In our

experiments we use a time span of 10 seconds, corresponding

to ≈ 100 image frames.

Figure 3 shows the configuration of our moving stereo-

camera-rig at two consecutive time-steps. Without loss of

generality, the world reference frame coincides with the

camera coordinate frame of the previous right camera. Using

this assumption, the pose of the left camera with respect to

the right camera is given by the extrinsic calibration of the

stereo camera rig {RC , tC} which is assumed to be fixed

and known. Note that self-calibration methods like [7] could

be used to relax this assumption. The poses of the current

cameras with respect to the previous right camera ({RR, tR}
and {RL, tL}) are defined by the unknown egomotion and

the extrinsic calibration parameters.

To parameterize the camera motion, i.e. the orientation

of the right camera coordinate frame with respect to the

world reference frame, we use a translation vector t =
(tX , tY , tZ)

T
and a rotation matrix R (Θ,Φ,Ψ) which is a



concatenation of rotations around the coordinate axis of the

world reference frame. With the knowledge of the egomotion

(VX , VY , VZ , ωX , ωY , ωZ)
T

and the time difference ∆T this

transformation is readily given.

A. Trifocal Constraints for Egomotion Estimation

As can be seen from figure 3, the projection matrices of all

cameras {PR,k−1,PL,k−1,PR,k,PL,k} can be computed

based on the calibration and the egomotion of the stereo rig.

The geometric relationship between three of these cameras,

i.e. both cameras at frame k − 1 and one of the cameras at

frame k respectively, can be expressed by the trifocal tensor

T [15]. This tensor encapsulates the projective relations

between three views of a scene. Its entries are determined

by

T qr
i = (−1)

i+1
· det





∼ ai

bq

cr



 , (1)

where ∼ ai represents matrix PA without row i and bq

and cr are the q-th row of PB and the r-th row of PC

respectively. Given the trifocal tensor and matching image

points xA ↔ xB in two images, the corresponding image

point xC in the third image can be determined using the

point-line-point transfer [15]. This transfer can be expressed

by a non-linear mapping via xj,k = hj (Tj ,xR,k−1,xL,k−1)
with j ∈ {R,L} defining the current camera.

Thus, the relationship between the trifocal tensor and point

correspondences in three images can be used to determine

the egomotion of the stereo rig.

In a first step, we use a Laplacian-of-Gaussian (LoG)

approximating interest point detector (e.g., CenSurE [1]) to

quickly detect blob-like features in the current and previous

stereo pair {IR,k−1, IL,k−1, IR,k, IL,k}.

Second, we extract MuSURF (modified upright SURF) de-

scriptors [1] and match them using the l1-norm for robustness

and efficiency. Only reliable correspondences which match

in a loop (xL,k−1 ↔ xR,k−1 ↔ xR,k ↔ xL,k ↔ xL,k−1)

are kept. Note that we are using rotation-variant features

since exaggerated roll motion between consecutive frames

is unlikely.

Third, a bucketing [31] technique is used to reduce the

number of features. This results in several advantages: On

one hand, the number of correspondences is reduced, hence

also the computational complexity of the filtering algorithm.

On the other hand, all image features are approximately

uniformly distributed over the image plane. This is important,

since far features are crucial for reliably estimating the

angular velocity and near features guarantee an accurate

estimation of the longitudinal vehicle velocity. Furthermore,

bucketing guarantees that no biasing towards features on

independently moving objects is present, which results in

a more stable motion estimation especially in highly dy-

namic environments. The remaining feature points located

on independently moving objects as well as false feature

correspondences are rejected in an iterative manner using

an iterated Extended Kalman-Filter (IEKF) described in the

following section.

B. ISPKF based Motion Estimation

To reduce the impact of noisy measurements and to in-

clude knowledge about the dynamic behaviour of the vehicle

we use a Kalman Filter based state estimation. Because of the

non-linearities in the mappings induced by the trifocal tensor

we use an Iterated Sigma-Point Kalman-Filter (ISPKF),

which linearizes the observation model. For discrete-time

systems [14], the state and observation model are given by

yk+1 = f (yk) + wk (2)

zk+1 = h (yk+1) + vk+1. (3)

Here, h (.) is the non-linear measurement equation as

described in section III-A, w and v are the system

noise and measurement noise, respectively. The state y =
(VX , VY , VZ , ωX , ωY , ωZ)

T
is defined by the egomotion of

the vehicle and the measurements z are the locations of the

matched feature points in both current images. Since we are

making a constant velocity assumption we have f (y) = y.

Compared to non-iterative filtering, the application of an

ISPKF yields two central benefits: First, the linearization

error can be reduced which results in more accurate motion

estimates. Second, we eliminate feature correspondences not

consistent with the current estimate by applying RANSAC

on a random subset of the features. In a final step, all inliers

are used. More details can be found in [21].

IV. OBJECT FLOW

This section describes how we compute the object flow by

extracting 3D flow vectors. Note that our method is related

to the approach proposed in [11], however we do not employ

Kalman filters to track single features over time, but rather

project atomic flow vectors onto the ground plane (i.e., bird’s

eye perspective). The flow is further processed in a voting-

based procedure to give the final histogram descriptor which

is used for classification.

A. Local Flow Accumulation and Filtering

Since we are using a stereo system with dispari-

ties estimated at sub-pixel accuracy, we can use tri-

angulation to map the already extracted image features

xL,k−1,xR,k−1,xR,k,xL,k,xL,k−1 (section III) to 3D

points Xk−1,Xk with X ∈ R
3. Without loss of generality

we define those points in the coordinate system of the right

camera. To compensate for the observer’s motion and to

separate the static scene part from dynamic objects, 3D

points from frame k − 1 are mapped into the coordinate

system of frame k according to

X+

k−1
=

(

Rk−1→k tk−1→k

)

(

Xk−1

1

)

(4)

where {Rk−1→k, tk−1→k} denotes the vehicle’s egomotion

between frames k− 1 and k. The 3D flow vector at frame k



is finally given by

ξ3D
k =





Xk

Xk − X+

k−1

∆Tk−1→k



 ∈ R
6 (5)

with time difference ∆Tk−1→k. The first 3 elements of ξ3D
k

represent the flow vector’s location (in meters) in frame k’s

coordinate system and the last 3 elements are its velocity (in

meters per second). To account for outliers and static objects

in the scene we apply three additional steps:

First, we reject all flow vectors for which the compensated

optical flow (reprojection into the image plane) does not

exceed 8 pixels. We further keep only flow vectors which

are positioned at plausible distances (5-50 meters). Last, we

limit the flow vector speed to values between 0.3m
s

and 30m
s

.

This filtering step is illustrated in figure 2 (left).

Since disparity depth estimates are usually highly sensitive

to calibration errors and noisy at large distances, a 3D median

filter is adopted at each frame with a kernel size of 3
meters. Finally, temporal integration is achieved by building

a local 2D map. To this end, all flow vectors ξ3D from the

last 10 seconds are projected into one common coordinate

system, namely the current one at frame k, making use of the

egomotion estimates from section III. Knowing the camera’s

pitch and roll angle, we project the aggregated flow vectors

into 2D (bird’s eye perspective), giving N object flow vectors
{

ξ2D
i = (pi

x, pi
z, v

i
x, vi

z)
T
}N

i=1
at position pi = (pi

x, pi
z)

T and

with velocity vi = (vi
x, vi

z)
T . Figure 2 (middle) illustrates

the object flow vectors extracted from a typical intersection

scenario.

B. Voting-based Flow Description

Since our final goal is classification, a fixed-sized de-

scriptor must be extracted from the variable-sized object

flow vectors described in the previous section. We tackle

this problem by employing a voting scheme, in which each

flow vector casts votes for its own direction on a fixed 2D

grid of size Mx × Mz . Flow vectors are sparse, but can

be extrapolated to a certain extend. Thus we decided for

anisotropic voting weights according to the motion direction

(see figure 4). In the following, we denote the grid loca-

tions by
{

qj = (qj
x, qj

z)
T
}Mx×Mz

j=1
. In order to accumulate

all votes, each grid point j is represented by a histogram

hj ∈ R
Mθ , quantizing the object flow into Mθ orientations.

Thus, the proposed descriptor becomes a vector of size

Mx × Mz × Mθ.

Every object flow instance ξ2D
i = (pi

x, pi
z, v

i
x, vi

z)
T at

position pi casts one vote for its orientation vi to each

histogram hj on the grid, located at qj = (qj
x, qj

z)
T .

The weight of each vote w(q, ξ2D) depends on the grid

point q and the flow ξ2D itself via

w(q, ξ2D) = exp
{

−(q − p)TW(q − p)
}

∈ [0..1] . (6)

Here W ∈ R
2×2 is defined by its eigenvalue decomposition

W = RΛRT (7)

time t

time t-1

measured
object flow

point in
descriptor grid

voting weight
contour levels

basis

Fig. 4. Illustration of the voting procedure. This figure depicts the votes
casted by an object flow vector at position p = (0, 15)T on a grid of size
Mx = Mz = 16. The size of the circles and the constant-level countours
illustrate the weight of the vote each grid point receives for the orientation
of the measured object flow.

with

R =

(

r1 r2

r2 −r1

)

Λ =

(

1/λ2
1 0

0 1/λ2
2

)

. (8)

Λ and W are mathematically similar and R is a orthonormal

change-of-basis matrix, defined by the orientation of the

respective object flow ξ2D:

r1 =
vx

√

v2
x + v2

z

r2 =
vz

√

v2
x + v2

z

(9)

Here, the parameters λ1 and λ2 control the longitudinal and

lateral influence of each flow vector.

The weight calculation step is illustrated in figure 4 for

one single flow vector and a grid of size 16 × 16. After

accumulating the votes from all object flow vectors, each of

the Mx ×Mz histograms hj is individually normalized (i.e.,

divided) by max(10, max(hj)). Concatenating all histograms

finally yields the object flow descriptor

d = (h1, ...,hMx×Mz
) , (10)

a vector of size Mx×Mz×Mθ. Figure 2 (right) illustrates an

object flow descriptor with Mx = Mz = 16, where the arrow

directions represent Mθ = 8 canonical histogram orientations

and the arrow lengths depict the relative number of votes for

each orientation.

V. EXPERIMENTS

A qualitative assessment of the proposed method is given

in figures 5,7. Figure 7 depicts in each row two frames of

the sequence, the extracted object flow and the computed
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Fig. 5. Object flow of a lane change maneuver. This figure depicts the
object flow field of a preceding car. While the first car changes lanes from
the left to the right, the observer changes lanes in the opposite direction.

descriptor using different scenarios. Note that not only a

binary classification, but also regressing different intersection

types should be possible and promises worthwhile avenues

for future research. Figure 5 shows the egovehicle, its motion

computed using the visual odometry approach described in

section III and the object flow of a preceding vehicle. Both

vehicles perform a lane change in the opposite direction of

each other. While some outliers remain, most flow vectors

are correct.

To evaluate the proposed descriptor quantitatively, we

recorded 113 grayscale video sequences using our car-

mounted stereo rig at a framerate of 10 fps, with 1382×512
pixels and an opening angle of 90 ◦. Each sequence contained

approximately 10 seconds, which was empircally found to

be well suited for our method. We manually classified the

sequences into 65 positive (intersections) and 48 negative

(non-intersections) examples.

For comparison, two baselines were created: The first

baseline, called ImageFlow 2d accumulates sparse optical

flow vectors of the left camera in a single histogram with

eight bins corresponding to eight canoncial directions in

the image. The second baseline, called ObjectFlow 2d is

essentially the same, except that the optical flow vectors in

the image were compensated for the vehicles egomotion prior

to histogram voting, using the technique described in section

III. The idea behind both baseline algorithms is to capture the

main optical flow direction in the image: A high horizontal
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Imageflow 2d

Objectflow 2d

Objectflow (w=2,s=2)

Objectflow (w=3,s=5)

Objectflow (w=5,s=10)

Objectflow (w=15,s=30)

Method (w,s) TP TN FP FN Precision Recall

Img.Flow 2d 54 32 16 11 0.77 0.83
Obj.Flow 2d 62 36 12 3 0.84 0.95
Obj.Flow (2,2) 58 48 0 7 1.00 0.89
Obj.Flow (3,5) 61 48 0 4 1.00 0.94
Obj.Flow (5,10) 63 48 0 2 1.00 0.97
Obj.Flow (15,30) 60 48 0 5 1.00 0.92

Fig. 6. Classification results. This figure illustrates our classification
results on 113 recorded sequences for both baselines (ImageFlow 2d and
ObjectFlow 2d) and our method (ObjectFlow) with 4 parameter sets, varying
the size of the exponential voting kernel w and the grid step size s.

optical flow ratio should be expected at intersections while

non-intersection scenarios are supposed to produce mainly

vertical flow vectors in the image. However, both baselines

make no use of depth information, except for compensating

the egomotion (ObjectFlow 2d).

To account for the high dimensionality of the ObjectFlow

descriptor proposed in section IV, we extended the training

set by shifting all examples by ±2 meters in the x/z plane.

Sure enough, we did not include the translated instances of

the test data into the training set of the respective run for

fairness reasons.

For classification we employed a soft-margin support vec-

tor machine (SVM), making use of the libsvm library [4]. A

linear kernel was chosen to avoid overfitting due to the high-

dimensional nature of the feature space (Mx × Mz × Mθ).

Since the number of recorded scenarios (113) is relatively

small compared to the high-dimensional feature space, leave-

one-out cross-validation was employed.

Figure 6 shows the result of our experiments in terms of

true positives, false positives, true negatives, false negatives,

precision and recall. Here a ’true positive’ denotes a correctly

detected intersection. We compare the two baselines to our

method using four sets of histogram grid parameters. The

parameter w adjusts the influence area of the exponential

voting kernel from equation 8 via

λ1 = 3w λ2 = w (11)
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Fig. 7. Results on 2 non-intersection and 3 intersection sequences. Each row depicts one scenario: The left column shows two image frames of the
left camera, the middle column displays the extracted object flow from a bird’s eye perspective (unit: meter) and the right column depicts the histogram
grid descriptor using a step size of s = 5 meters.



and s is the histogram grid step size, e.g. s = 2 in figure 4

and s = 5 in figure 7.

While the ImageFlow 2d and ObjectFlow 2d baselines

perform quite well already, adding depth information clearly

helps in discriminating intersection scenarios versus non-

intersection scenarios. For all parameter sets of the Ob-

jectFlow descriptor no false positive has been reported.

The false negative rate differs slightly among the parameter

settings with the lowest rate for w = 5 and s = 10.

We believe that this ’averaging’ parameter set is mainly

preferred as a consequence of the relatively small amount

of training examples. Still, all results clearly indicate the

benefits of stereo-based measurements with a precision of

1.0 and a recall ≥ 0.89. Our system currently runs on a

single CPU core at about 2 frames per second. Since the most

computationally expensive part is feature matching, real-time

can be achieved with a GPU or FPGA-based feature matcher.

VI. CONCLUSION AND FUTURE WORK

In this paper a complementary novel descriptor for vi-

sually classifying traffic motion into intersection and non-

intersection scenarios from within a moving vehicle has

been proposed and evaluated against two baseline algorithms.

Our findings indicate that including depth information into

the classification process clearly outperforms classifiers with

image based motion features. Though our results are promis-

ing, we intend to include more image sequences to the

training data base in the future. Further, we plan to inves-

tigate other features for matching as well as combining the

complementary object flow features with road based ones

into local maps. Robustly fitting road topography models

to this data promises valuable directions for future research

towords advanced driver assistance systems and autonomous

driving in difficult urban scenarios.
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