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Abstract— The knowledge about lanes and the exact position
on the road is fundamental for many advanced driver assistance
systems. In this paper, a novel iterative histogram based
approach with occupancy grids for the detection of multiple
lanes is proposed. In highway scenarios, our approach is highly
suitable to determine the correct number of all existing lanes
on the road. Additionally, the output of the laserscannner
based lane detection is fused with a production-available vision
based system. It is shown that both sensor systems perfectly
complement each other to increase the robustness of a lane
tracking system. The achieved accuracy of the fusion system,
the laserscannner and video based system is evaluated with
a highly accurate DGPS to investigate the performance with
respect to lateral vehicle control applications.

I. INTRODUCTION

The information about the position of the vehicle on

the road is the basis for several applications. In particular,

for highly automated driver assistance systems, such as the

BMW emergency stop assistant [1], it is fundamental to

have an accurate and robust in-lane localization to derive the

parameters required by a lateral vehicle controller, but also

to have detailed information about the position and number

of adjacent lanes to enable complex driving strategies, such

as lane change maneuvers.

A popular approach is the detection of longitudinal lane

markings. Once they have been extracted, it is assumed that

they define the drivable path on the road and include the

overall important information about the lanes. In the past

decades, extensive research has been done in the field of lane

detection. Most authors use vision to extract lane markings.

Today, vision based algorithms perform very well even in

difficult situations (inconsistent texture of the road surface

or inconspicuous markings) and provide stable results which

can be used for lateral vehicle control. A comprehensive

overview can be found in [2], [3]. However, all vision based

approaches suffer the typical problems of passive camera sys-

tems. Under certain situations, for instance during dynamic

changes of ambient brightness, direct sunlight or shadow

patterns on the road surface, the detection of lane markings

using vision can be extremely difficult [3]. Furthermore,

the limited horizontal field of view of automotive video

sensors makes it almost impossible to detect neighboring

lane markings, which are far away from the ego vehicle.

Unlike video sensors, laserscanners actively emit a signal
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and operate by the measurement principle of time-of-flight.

Todays automotive laserscanners have a wide horizontal field

of view and multiple vertical layers to compensate for pitch

motions. Some of these vertical layers scan the road surface

in front of the vehicle and detect targets right above or on

the ground. While in-vehicle camera sensors provide dense

measurements for lanemarking feature extractions, automo-

tive laserscanners only yield quite sparse measurements from

a flat observation angle (Fig. 1). Hence, one of the key

challenges in laserscannner based lane detection is to extract

the measurements which are caused by the lane markers

(signal) and distinguish them from the measurements cre-

ated by the road pavement (noise). Previous work done to

laserscannner based lane detection are [4], [5], [6], [7] and

[8]. However, none of these approaches combine both the

reliable detection of parameters required by a lateral vehicle

controler —such as the offset, heading and curvature of the

lane— and the detection of neighboring lanes. In this paper,

a novel iterative histogram based approach with occupancy

grids for the detection of multiple lanes is proposed. The

algorithm performs a global optimization and can deal with

sparse and noisy measurements to provide lane information

even at maximum noise levels. Furthermore, it is shown

how to utilize a spectral analysis in the frequency domain

to distinguish between solid and dashed road markings to

obtain a consistent road model. Additionally, the output

of the laserscannner based lane detection is fused with a

production-available vision based system. It is shown that

both sensor systems perfectly complement each other to

achieve a robust and continuous lane detection.

II. LASERSCANNNER BASED LANE DETECTION

In this section, a brief introduction to the measurement

principle of laserscannner based lane marking detection is

first given. Then, the computation of an occupancy grid

to model and track arbitrary laserscannner ground reflec-

tion measurements is discussed. In the main part, a global

iterative histogram optimization algorithm for the robust

parameter extraction of lane markings is proposed. Finally, it

is shown how to build a consistent road model from extracted

lane markings.

A. Measurement Principle

Unlike cameras, laserscanners do not directly measure

the brightness contrast between the white or yellow lane

markings and the road pavement. As previously mentioned,

they actively emit a signal and record its echo. Whether an

echo is returned or not, depends on a variety number of

properties. For instance such as the distance to the target, the
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distribute among multiple bins of Hi instead of falling into a

specific bin ki. Similarly for γ, each deviation of the optimal

heading parameter causes a degeneration of the histogram

Hi. This fact can be exploited to define a cost function q(Hi)
which rates each histogram according to its distribution.

q(Hi) =

d
∑

i=−d

ki(ck, αl)
2 (10)

The sum over the squares of ki is used to give a higher

weight to histograms which have all probabilities distributed

in a minimum set of bins. Fig. 6 shows the results of the cost

function (10) for different variations of the curvature and the

heading. It is visible that there exists a maximum q(Hopt)
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Fig. 6. Results of the cost function q(Hi) for γ = −4◦ . . . 4◦ and c =
−0.0001 . . . 0.0001m−1

which represents the optimal parameter combination of ck
and γl. Thus, the problem to find the heading and curvature

of the road becomes a non-linear parameter optimization

problem. Due to the computational burden, it is not feasible

to evaluate the cost function q over all possible combinations

of ck and γl. A modified version of the iterative Nelder-

Mead simplex optimization algorithm [15] is used to obtain

the optimal histogram Hopt. At each iteration, the algorithm

computes a set of 3 histograms (parameter space plus one) in

a simplex order and rates them according to the cost function

(10). The Simplex algorithm is fast, deterministic and robust

to local minima. After a sufficient number of iterations the

Simplex algorithm converges to the maximum and remains

stable and a total number of 5-8 iterations at each timestep

is sufficient to keep track of the curvature and heading

of the road. In order to allow the optimizer to evaluate a

new parameter combination after it has converged to the

maximum, the simplex has to be widened after each new

measurement or position update. Once the optimal histogram

has been estimated, single lanes can be extracted from Hopt.

This entire process can be divided into three main parts:

Local maxima detection, single marking classification and

checking for road constraints.

1) Local Maxima Detection in the Histogram: In order to

identify the indices i of the bins which are likely to represent

the position of an existing lane marking, each bin ki has to

be compared with a threshold function. Since Hopt can be

perturbed by local random noise, a simple global threshold

function is not suitable. Furthermore, different types of lane

markings (solid or dashed) can have different heights of

bins and have to be treated separately when using a global

threshold. Therefore, a signal-to-noise-ratio (SNR) for each

bin ki in a predefined vicinity u . . . s is used to generate valid

lane marking hypothesis. We define the SNR of a single bin

ki as:

vl = max(k−u, . . . , k−s)

vr = max(ks, . . . , ku)

SNR(ki) = 20 lg

(

ki

max(vl, vr)

)

(11)

If the SNR of a specific bin ki is above a certain threshold,

ki is accepted as a valid marking hypothesis. Furthermore,

once the single peaks have been identified we can interpo-

late between ki−1, ki and ki+1 to obtain an accuracy for

the offset which is higher than the previously chosen cell

resolution of m. Since the accumulated measurements in m

are Gaussian, Hopt is Gaussian too and a performed sub-

pixel computation between adjacent bins (circular paths) can

improve the accuracy by a factor of 2-3.

2) Single Marking Classification and Checking for Road

Constraints: Since not all marking hypotheseses belong to

valid road markings, it is necessary to verify each single

marking in the context of a global road model. As a first

step, each single marking has to be classified into one

of two classes: solid or dashed. All solid lane markings

usually indicate no-passing zones which can be exploited

to derive the road edges. This information is also of high

importance to safely derive driving strategies such as lane

change maneuvers.

The classification is performed by a threshold test based

on spectral analysis in the frequency domain. To do so, all

probabilities p(x, y) which previously have been assigned to

the bin ki are considered as a discrete signal S along the

corresponding circular path Kr in m. This signal gives a

curvature and heading compensated discrete representation

of each lane marking in m. In an ideal case, the period

of the signal S conforms to a rectangle function if the

marking is likely to belong to the class dashed. Otherwise,

in case of a solid marking the period of S is infinity. The

period of the signal S can be obtained from the auto-power-

spectrum which is the squared absolute value of the Fourier

transformed signal S (Eq. 12 and 13). This approach leads

to good results even in case of incomplete markings with

several gaps.

F (ωn) =

N
∑

k=1

e−i ωn tkf(tk) (12)

Sxx(ωn) = |F (ωn)|
2 (13)

After the classification step, single lane markings can be

assigned to lane hypotheseses by checking the geometric

constraints such as the minimum and maximum width for a

possible valid lane. The offset y for each lane hypothesis is

computed by the average of the sub-pixel corrected position

972



of the bins kleft and kright:

yi =
kleft + kright

2
(14)

Finally, the lane permutation with the highest aggregated

SNR is chosen as the valid road. Fig. 7 shows an example of

a valid road with 3 adjacent lanes, which have been extracted

from the given occupancy grid. Besides its robustness to

noise, one of the key benefits of the proposed algorithm is its

low computational complexity. The iterative histogram-based

estimation of the lane parameters including the classification

step takes less than 10 ms for a grid with a dimension of

256 × 256 cells on a Intel R©Core2
TM

Quad processor with

2.5 GHz.

Fig. 7. Example for a valid road with 3 lanes which have been extracted
from a given occupancy grid with a cell size of 0.2 m. It can be seen that
even the right lane, which is occluded in the video image, can be detected.

III. FUSION

In the previous section, a novel histogram based algorithm

for the detection of multiple lanes was introduced. In this

section, the output of the laserscannner based lane detection

is fused in a high-level fashion with the parameter output

of a state-of-the-art in production available vision based

system for lane detection. The main goal of this fusion is

to significantly improve the robustness of a lane tracking

system where a single sensor system might fail because of

its sensor characteristics.

A. Parameter Fusion

To combine the output of both systems, a standard Kalman

filter [12] was used. In our case, the video based system

only provides information about the ego-lane and therefore

the state vector (15) follows the definition of a single lane

in (7) where c is the curvature, γ the heading angle, y the

offset to the center of the lane and w the width of the lane.

x̂ =
[

y w γ c
]T

(15)

Using a constant velocity model, the dynamic model is given

as follows:
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where T is the timestep, v the velocity and Ψ̇ the yaw rate

of the ego-vehicle. In order to account for multiple lanes

detected by the laserscanner, a low-pass filter to filter the

width w of each adjacent lane was used. Unlike the offset, it

is independent of the ego-movement and does not require a

dynamic model. Finally, extended lane information available

from standard navigation maps including the actual number

of lanes is used to remove outliers and temporary lanes, such

as acceleration lanes.

IV. RESULTS

In the first part of this section, the output parameters of

the laserscannner, video and fusion system are compared to

a digital map as reference. In the second part, the ego-lane

availability of all systems on highway scenarios including

the total number of lanes is investigated.

A. Accuracy

The accuracy of the output parameters offset, heading and

curvature has been evaluated using an inertial platform with

differential GPS and a highly accurate digital map on a test

track. The inertial platform provides position measurements

with an accuracy of 1-3 cm at an update rate of 100 Hz.

Additionally, it delivers the actual orientation of the vehicle

with an accuracy of 0.05− 0.1◦. To ensure a high accuracy

of ground truth, the digital map has been computed virtually

first and then used as a template to create the lane markings

on the pavement. The test track had a total length of 2000 m

and the average velocity was 100 km/h. Fig. 8 depicts the

estimation errors of the three output parameters offset y,

heading γ and curvature c in comparison to the digital map

as ground-truth. The cell-size used for the occupancy grid

was set to 0.2 m with a front view of 30 m and a back view

of 15 m. In table I the results are summarized by the root

mean square error RMS in comparison to the ground truth. It

TABLE I

ESTIMATION ERRORS OF THE PROPOSED ALGORITHM

RMS

y (m) γ (◦) c (m−1)

Laser. 0.034 0.06 0.0001

Video 0.046 0.12 0.0001

Fusion 0.037 0.07 0.0001

can be seen that all parameters have an acceptable amount of

error with respect to lateral vehicle control applications [16].

The proposed histogram based algorithm for lane detection

achieves an accuracy which is comparable to the output of a

video based lane detection system. In case of the offset and

the heading it even outperforms the video based system.

B. Availability

Beside the accuracy, the overall availability of the param-

eters offset, heading and curvature is of high importance

for lateral vehicle control tasks. The availability has been

evaluated on several freeway sections in the area of Munich,

covering a total length of 85.33 km. Table II outlines the

achieved results for the video, the laserscannner and the
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Fig. 8. Accuracy of the output parameters offset y, heading γ and curvature
c in comparison to the digital map as ground-truth.

TABLE II

DETECTION RATE

Distance (km) Time (s) Video (%) Lidar (%) Fusion (%)

85.33 2652.56 99.48 98.53 100.00

fusion system. The video based, as well as the laserscannner

based system, achieves good results with a detection rate

above 98%. While the failures of the video based system are

mostly caused by ambient brightness changes or shadows

on the road surface, the failures of the laserscanner based

approach result from bad SNR ratios between the road

markings and the surface. The fusion as a combination

of both sensor systems achieves a detection rate of 100%
which is an outstanding result. The laserscanner provides the

required parameters for lateral control in cases where the the

video based system has failed and vice versa. Additionally,

the estimated number of lanes with respect to the feasibility

of automated lane change maneuvers has been evaluated. For

safety reasons, lane change maneuvers shall be only executed

if all existing lanes have been detected correctly. For 97.56%
of the time, the detected number of lanes was correct and in

2.44% it was less then the existing number of lanes.

V. CONCLUSION

A novel iterative histogram based approach with occu-

pancy grids for the detection of multiple lanes was proposed.

It has been shown that our approach provides an accuracy

which is comparable to a video based system for lane detec-

tion and is highly suitable to determine the correct number of

all existing lanes on the road. The robust detection of several

lanes enables thus lane keeping and lane change maneuver

functionalities. Furthermore, it has been proven that a video

and laserscannner based system perfectly complement each

other to achieve a robust and continuous lane detection.
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