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Fusion of Telemetric and Visual Data from Road Scenes
with a Lexus Experimental Platform

Igor E. Paromtchik, Mathias Perrollaz, Christian Laugier

Abstract— Fusion of telemetric and visual data from traffic  build a probabilistic model for each beam layer indepen-
scenes helps exploit synergies between different on-boas#n-  dently. The stereo camera is assumed in a “rectified” geomet-
sors, which monitor the environment around the ego-vehicle -5 configuration, that allows us to compute a disparitpma

This paper outlines our approach to sensor data fusion, hich i valent t tial th di . |
detection and tracking of objects in a dynamic environment. which IS equivaient to a partial three-dimensional repnese

The approach uses a Bayesian Occupancy Filter to obtain a tation of the scene. The disparity map computation is based
spatio-temporal grid representation of the traffic scene. Vé have  on the double correlation method [12], which has two major

implemented the approach on our experimental platform on a  advantages: a better matching over the road surface and
Lexus car. The data is obtained in traffic scenes typical of usan an instant separation between “road” and “obstacle” pjxels

driving, with multiple road participants. The data fusion r esults . . . h
in a model of the dynamic environment of the ego-vehicle. The without using any arbitrary threshold. The computation of

model serves for the subsequent analysis and interpretatioof ~ the occupancy grid is directly performed in the disparity
the traffic scene to enable collision risk estimation for impoving ~ space associated with the disparity map, thus, preserkiang t
the safety of driving. intrinsic precision of the stereo camera.

| INTRODUCTION The partially Qqc!qded areas of the scene are mc_)nitored by

means of our visibility estimation approach. Consider & cel
Sensor fusion has been used successfully in automotiven the u-disparity plane. LeP(C.) denote the confidence

applications [1], [2], [3], [4]. This paper focuses on datef ¢ being occupied,P(V.) be the probability ofc being
fusion from telemetric sensors (lidars) and stereo-vidign yisible, and P(R.) be the confidence of containing the
means of the Bayesian Occupancy Filter (BOF) [5], [6]. Theoad surface. The occupancy probability of aels
environment is represented by a grid [7], [8], and the BOF
provides to assign probabilities @Bll occupancy and cell P(O;) = [P(Ve)- P(C) - (1 - Pp)

velocity for each cell in the grid. The preprocessing of stereo +P(Ve) - (1= P(Ce)) - Prn @
images results in a disparity map. The probabilistic models +(1 = P(Ve))-0.5]- (1 = P(Re)),
of a lidar and a stereo camera are used. where Py, and Py, are the false positive and false negative

_The data fusion is performed in the BOF with the probaprobabilities of the stereo matching algorithm. Then, the u
bilistic grids computed from the real data from the lidarsjisparity occupancy grid is transformed into a Cartesias gr

and stereo-vision. The clustering and tracking algorithror its use in the BOF. This probabilistic model of the stereo
identifies individual objects in the scene in front of thecamera is described in detail in [13].

ego-vehicle [9]. The data fusion, detection and trackirgy ar
required for estimation and prediction of collision riskr fo B. Fusion and Filtering
the ego-vehicle [10] and are integrated in our conceptual At each time step, the probabilities of cell occupancy and
framework for analysis of dynamic scenes [11]. cell velocity are estimated by means of Bayesian inference
Il BAYESIAN SENSOR FUSION ywth the BOF [5], [6]: T_h|s is a recursive algorithm _contam—
ing two steps: prediction and estimation (correction). The
The Bayesian Occupancy Filter (BOF) is used for datprediction computes tha priori distribution, and the esti-
fusion from the lidars and stereo-vision. The BOF operatasation uses the prediction result and the current obsenati
with a four-dimensional grid representing the environmentrom the sensors to compute theposteriori distribution.
Each cell of the grid contains a probability distribution of Let 7, = Z! denote an observation from a sengoat
the cell occupancy and a probability distribution of thel celtime ¢, andZ = [Z; - - - Zs] be a set of observations frof
velocity. The probabilistic models of a lidar and a steregensors. Let?(O.. A..) denote thea priori probability for a
camera are developed, in order to compute occupancy griésill ¢, whereP(O,) is the occupancy probability ané(A.)
which are used as observations for the BOF. is the antecedent (velocity) probability. In this contetkie
A Sensor Moddls prediction step propagates.the probability distributioflgell
occupancy and cell velocity of each cell and obtains the
The lidar model is beam-based [8]. It includes four layergrediction P(O, A.). Let P(O. A.|Z) denote thea pos-
of beams and assumes each beam to be independent. {fori probability obtained according to the observations.

In the estimation (correction) step,(O. A. | Z) is updated
The authors are with the National Institute for ComputereSce and ( ) W( ¢ c| ) P

Control, INRIA Grenoble Rhéne-Alpes, 38334 Saint Ismiedéx, France by taking into account the observationyieIded by theS
igor.paromtchik@inrialpes.fr Sensors.



At the input of the filter, the occupancy grids provided by The data association module aims to solve the problem of
the sensors are merged according to the following equatioambiguous observation (multiple tracked objects, ovedap
ROIs) in the clustering module. Assume there Ar@bjects
associated with a single cluster, whekeis a number we
know exactly. The cause of the ambiguity is twofold: (i)
numerous objects are very close to each other and the
and thea posteriori probability estimate is obtained as observed cluster is the union of observations generated by
P(O. A.) - P(Z] 0. A.) N diff_erent objectsf, and (iiyV different o_bjects correspond

, (3) to a single real object and the observations must be merged
P(2) into one.

where P(Z) is a uniform probability distribution. The prob- We employ a re-clustering strategy to deal with the first
ability of cell occupancyP (O, |Z) and the probability of Situation and a cluster merging strategy for the second one.
cell velocity P(A.|Z) are computed by marginalization The re-clustering aims to divide the cluster infé sub-
and are used for the next prediction step. Note that tHausters and associate them with tNeobjects, respectively.
prediction step assumes a constant velocity of objects, aR@cause the numbeY is known from the prediction step,
an internal parameter of the BOF serves to take into accoudtk-means algorithm is applied [14].

the corresponding prediction error, when a constant vigloci  The cluster merging is based on a probabilistic approach.

S
P(Z|0. Ac) =[] P(Zi| O Ae), (2)

i=1

P(O.A.|Z) =

assumption does not hold. Whenever an ambiguous associatign between two tracks
T; and T} is observed, a random variablg; is updated
I1l. FAST CLUSTERING AND TRACKING to indicate the probability ofl; and T; being parts of

) , . a single object. The probability valueB(F;; | S;;) and

Our Fast Clustering and Tracking (FCT) algorithm serve§)(Fi‘ | —S;;) are the algorithm parameters which are
to retrieve an object level representation from the esthat cons%ant witﬁ regard té and j. Similarly, the probability
grids and to track the objects’ trajectories [9]. It opesadie P(S;; |-~F;;) is updated when no ambiguity betwedh

an object representation level and contains three modales;, |4 % q

X e X j is observed. Then, by thresholding the probability
clustering module, a data association module, and a trgckl@ (S:;), the decision of merging the tracks and T; can
and tracks management module. ! /

i ) o be made by calculating the Mahalanobis distance between
The clustering module combines the probabilities of thgya Now we arrive at a set of clusters which are associated

cell occupancy/velocity estimated by the BOF with th&yit, the objects being tracked without ambiguity. Then, the
prediction for each object being tracked by the tracker, i.§acking and tracks management module uses a general tracks

a region of interest (ROI). We then try to extract a clustefanagement algorithm to create and delete the tracks, and
in each ROI and associate it with the corresponding objegise a Kalman filter to update their states [15].
There could be a variety of cluster extracting algorithms,

however, we have found that a simple neighborhood-based
algorithm provides satisfactory results: the eight-nbiyh
cells are connected according to an occupancy threshodd The Lexus Platform

and the velocity distribution is employed to distinguiste th ) ) )

objects that are close to each other but move at different OUr experimental plaform is built on a Lexus LS600h
velocities. The output of this module leads to three possibfar, shown in Fig. 2. The car is equipped with a TYZX
cases, as shown in Fig. 1: (i) no object is observed in the RGitereo camera [16] situated behind the windshield, two IBEO
(i) unambiguous observation with one and only one clustdsUx lidars [17] placed inside the frontal bumper, and an
extracted and implicitly associated with the given objacg  XSens IMU combined with GPS [18]. The on-board DELL

(i) ambiguous observation, where the extracted clusser Fomputer with an NVidia graphics processing unit (GPU) is
associated with multiple objects. used for collecting and processing of the sensor data and

the risk assessment. The visual and telemetric data are used
concurrently for a preliminary qualitative evaluation.

IV. EXPERIMENTAL RESULTS
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Fig. 1. The possible cases of clustering result: no objectenied, Fig. 2. Our experimental platform on a Lexus car, with a TYZ%reo
unambiguos observation, and ambiguous observation camera behind the windshield and two IBEO Lux lidars inside frontal
' bumper



The TYZX stereo camera has a baseline ofc22 a res-
olution of 512x320 pixels, and a focal length of 410 pixels.
The IBEO Lux lidar provides four layers of up to 200 impacts
at a sampling period of 261s. The maximum lidar detection
range is about 20@n, the angular range is 100and the
angular resolution is 0% We use two lidars to monitor the
area in front of the car. The observed region is 40in

length and 40m in width, a maximum height is 2n, and
the cell size of the grid is 0.2x0.2. | [H] DI:D m:l

The user interface is based on the Qt library and it provides
access to several parameters of the system, e.g. filtering
disparity computation, BOF. The Hugr middleware [19]
allows recording and synchronizing of the data from differe
sensors as well as replay capability.

Note that the data fusion with the BOF requires calibration
of the extrinsic parameters of the sensors in the common
coordinate system. Thanks to the BOF and a grid resolution
with a cell size of 0.2x0.2n, a slight calibration error has
little impact on the final grid after data fusion. The followi

parameters are set for the occupancy grid computation from
stereo-vision:Py, = 0.01 and Py,, = 0.05.

B. Occupancy Grids and Sensor Data Fusion

We discuss our concept on an example of the data obtainec
with our Lexus platform on urban roads with multiple traffic *
participants. Fig. 3-a shows an image of such a traffic
scene, when approaching a crossroad. The BOF is used t
merge the data from the on-board sensors, which monitor th
environment: two lidars (Fig. 3-b and Fig. 3-c) and the siere
camera (Fig. 3-d). This results in a grid representatiomef t
local environment in front of the car. The grid is shown in
Fig. 3-e, where the black color indicates the occupied areas
the white color corresponds to the unoccupied space, an
different levels of the grey intensity represent the occupa
probability of other areas. The occupancy grid in the u-
disparity plane, corresponding to the data in Fig. 3-d is
shown in Fig. 3-f. The yellow rectangles in Fig. 3-a show
the objects, which are correctly detected and tracked: a bus
a bicycle, cars, and the infrastructure elements.

One of the advantages of using the BOF for a grid repre-
sentation in comparison with the static grid-based appresc
is the estimation of velocities of cells in the BOF. Since the
velocity estimation is taken into account in the clustering
stage, it results in distinguishing between two objectscivh
move close to each other at different velocities, e.g. adiécy
and a car in the left half of Fig. 4-a are separated correctly
into two different clusters. i d : A

A limitation of our current implementation is concerned —
with a constant velocity assumption, that does not hold I ,] . . If
during a sharp turn. This assumption can lead to over-

segmentation of objects, e.g. the cells correspondingeo tfig- 3.  Approaching a crossroad: (a) a traffic scene imagesrevithe
front of th in Fia. 4 h timated locit hi rectangles indicate the detected and tracked objects,dtl aepresentation
ront o e car in Fg. ave an estimated velocity w IChrom the left lidar (lower scanning layer), (c) a grid reetation from the

differs from that of the rear of the car. Nevertheless, @ght lidar (lower scanning layer), (d) a grid represemtatifrom stereo-
solution is to increase the frequency of data processilgg, eVision, _(e) a_grid representation after data fusion, (f) anupancy grid in
by means of implementing the BOF in hardware as a systerfic Udisparity plane

on-chip (SOC), or to estimate the motion of the ego-vehicle

by means of its proprioceptive sensors.

4




Fig. 4. Entering a crossroad: (a) a traffic scene image, witereectangles indicate the detected and tracked objdxitss ¢rid representation from
a left lidar, (c) a grid representation from a right lidar) (d grid representation from stereo-vision, (e) a grid repnéation after data fusion

Fig. 5 gives an example of telemetric data obtained with motorcycle and a bicycle behind the bus are correctly
the two on-board lidars, where the laser impacts are plottetbtected and separated because of the velocity estimation,
onto the camera images (red dots correspond to the left lidais seen in Fig. 7-e.
and the green dots correspond to the right one). There areVarious objects are present in the traffic scene in Fig. 8,
four scanning layers in the vertical direction for each dida where the bus is detected and is separated into two objects
The laser impacts with the road are filtered out thanks to thgecause the lidars’ data is affected by laser impacts with th
fusion of the multiple layers, as seen in Fig. 6-e. The lidargear wheels of the bus, and the stereo-vision does not movid
have overlapping viewfields, that provides to detect calyec sufficient accuracy at such a large distance. Note that the
the distant objects, e.g. two pedestrians in Fig. 6. accuracy of lidars remains constant over the distance ewhil
the accuracy of stereo-vision becomes poor at long range
(i.e. telemetric data is given more confidence relative ® th
visual information in this case). One can observe that two
pedestrians, crossing the street in Fig. 8, are detected as a
single object because they walk together at the same speed.

Fig. 9 shows another advantage of data fusion, that is due
to a broad viewfield provided by the two lidars. While the
truck in the right side of the scene is hardly visible for the
stereo camera, it is still detected from the lidars datages s
in the grid representation after data fusion in Fig. 9-e.

The above results also show that the effect of stereo-
vision is significantly lower than that of the lidars on the
resulting occupancy grid. This is due to a perception range
constraint because of a small baseline of the stereo camera.
Nevertheless, the stereo-vision remains valuable because
of its potential for objects recognition, classificatiomda
visual tracking. The accuracy of stereo-vision is suffidien
high at distances upto 1 to enable detection of objects.
Additionally, stereo-vision is an inexpensive alternatito
multi-layer lidars for production cars.

C. Computation time

Fig. 5. An example of the multi-layer telemetric data repreed by laser Two critical stages of the sensor fusion have been imple-
impacts (colored dots) from the two on-board lidars mented on GPU: the BOF and the stereo image processing,
including matching and occupancy grid computation. In com-
Note that the height of the rectangles in Fig. 3-a ang@arison to the high computational cost of the BOF, the cost of
Fig. 4-a is set empirically to 1.8n for the visualization the FCT algorithm can be neglected [6], [9]. The BOF being
purpose. The constant height can become a problem designed to be highly parallelizable, it runs on GPU NVidia
visualize tall objects, e.g. a bus in the scene, or in the ahse GeForce GTX 480 in 20ns, without specific optimization.
small objects. The width of rectangles equals twice thedhte The complete processing chain for a lidar (including the BOF
standard deviation,,, of the objects positions obtained fromand the FCT algorithm) is capable of running at26. The
the FCT algorithm. This provides a correct visualization ofmplementation of our stereo image processing on the GPU
the width of frontal objects, while it is not currently adegdt allows us to perform the matching process im6 and the
to visualize non-frontal objects, e.g. the bus in Fig. 7-aoccupancy grid computation in Orks.
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Fig. 6. Advancing at a crossroad: (a) a traffic scene imagerevthe rectangles indicate the detected and tracked spjegta grid representation from
a left lidar (lower scanning layer), (c) a grid represeotatfrom a right lidar (lower scanning layer), (d) a grid reg@etation from stereo-vision, (e) a
grid representation after data fusion

d e

Fig. 7. Leaving a crossroad: (a) a traffic scene image, wheredctangles indicate the detected and tracked objedts, @inid representation from a
left lidar (lower scanning layer), (c) a grid representatfoom a right lidar (lower scanning layer), (d) a grid regestion from stereo-vision, (e) a grid

representation after data fusion

Fig. 8. Moving on a straight road: (a) a traffic scene imageenetthe rectangles indicate the detected and tracked shjBjta grid representation from
a left lidar (lower scanning layer), (c) a grid representatirom a right lidar (lower scanning layer), (d) a grid reggetation from stereo-vision, (e) a
grid representation after data fusion
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Fig. 9. Waiting at a pedestrian crossing: (a) a traffic scemege, where the rectangles indicate the detected and dratiects, (b) a grid representation

from a left lidar (lower scanning layer), (c) a grid represgion from a right lidar (lower scanning layer), (d) a griepresentation from stereo-vision,
(e) a grid representation after data fusion



V. CONCLUSION

[13] M. Perrollaz, J.-D. Yoder, C. Laugier. “Using Obstaaled Road Pixels
in the Disparity Space Computation of Stereo-vision basecli@ancy

We discussed our approach to sensor fusion of telemetric Grids”, Proc. of the IEEE Int. Conf. on Intelligent Transportation

and visual data with the BOF for a grid representation of

Systems, Madeira, Portugal, 2010.
C. M. Bishop. “Pattern Recognition and Machine LeagfijrSoringer,

; : . 14
the traffic environment for the ego-vehicle. The approach ] 2006.
was implemented and tested on our experimental platform @15] G. Welch, G. Bishop. “An Introduction to the Kalman Eiit, http:

a Lexus car. The experiments were conducted in scenarigs //www.cs.unc.edu/

~welch/kalman/kalmanintro.html
TYZX, http://www.tyzx.com/products/cameras.html

typical of urban driving, \_Nith muItip_Ie road participar_ns.[l?] IBEO Lux Manual, http:/www.ibeo-as.com/english/
The examples of data fusion were discussed to explain the products_ibeolux.asp

advantages and indicate potential pitfalls. The expertaien [18] Xsens — MTi-G
results proved the feasibility and relevance of our apmoac[19]

Manual, http://www.xsens.com/en/
general/mti-g
CyCab Toolkit, http://cycabtk.gforge.inria.fr

The probabilistic approach to sensor fusion and envirorimen
modeling is part of our conceptual framework, which serves
to estimate and predict collision risks for the ego-vehicle

The experimental platform will be used to create a database

to allow for benchmarking, quantitative evaluation and eom
parison of alternative approaches.
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