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Probabilistic Localization Method for Trains

Oliver Heirich, Patrick Robertson, Adrián Cardalda Garcı́a, Thomas Strang, Andreas Lehner

Abstract— The localization of trains in a railway network is
necessary for train control or applications such as autonomous
train driving or collision avoidance systems. Train localization
is safety critical and therefore the approach requires a robust,
precise and track selective localization. Satellite navigation
systems (GNSS) might be a candidate for this task, but
measurement errors and the lack of availability in parts of
the railway environment do not fulfill the demands for a safety
critical system. Therefore, additional onboard sensors, such as
an inertial measurement unit (IMU), odometer and railway
feature classification sensors (e.g. camera) are proposed. In this
paper we present a top-down train localization approach from
theory. We analyze causal dependencies and derive a general
Bayesian filter. Furthermore we present a generic algorithm
based on particle filter in order to process the multi-sensor
data, the train motion and a known track map. The particle
filter estimates a topological position directly in the track
map without using map matching techniques. First simulations
with simplified particular state and measurement models show
encouraging results in critical railway scenarios.

I. INTRODUCTION

Train localization systems are required for general train
control, automatic train driving or collision avoidance. Cur-
rent developments of a collision avoidance system for trains,
named RCAS1 [1], requires a robust and precise localization
solution. Train localization can either be achieved by onboard
sensors [2], [3], [4], or sensors with additional infrastructure
in the railway environment, such as balises on tracks [5].
We focus on the onboard train localization method, where
sensor data is combined with a track map and a train motion
model. Onboard train sensors are global navigation satellite
system receivers (GNSS), inertial measurement units (IMU),
odometry and railway feature classification sensors [6], [7].

In contrast to map matching methods [2], [3], our approach
is based on a particle filter, which spreads particles exclu-
sively in the topological domain. We provide a top-down
approach from theory, derive a general Bayesian filter as well
as a generic particle filter for train localization. We propose
the particle filter because railway topology requires a highly
nonlinear transition model. We present encouraging results in
situations with parallel tracks and switches from simulations
of a particular implementation.

We discuss general map-based train localization and state
of the art train localization sensors in Sec. II. We analyze the
causal effects of physics for probabilistic train localization
(Sec. IV) and derive a general Bayesian filter (Sec. V). A
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generic particle filter implementation is derived in Sec. VI
and the algorithm is given in (Sec. VII). Sec. VIII contains a
particular implementation with simplified models and simu-
lation results.

II. TRAIN LOCALIZATION

The goal of train localization is to estimate the train
position in the track network by topological coordinates. This
topological position is defined by a unique track ID R and
a track length variable s. The origin of that length has to
be defined for direction dir of the train related to the track.
A positive direction points away from the origin, a negative
towards the origin. The topological pose is a triplet of track
ID, length and direction and defines the train position and
attitude in topological coordinates unambiguously:

Ptopo = {R, s, dir}. (1)

The challenge of a map-based train localization is reliable
track selective localization with availability in scenarios
where parallel tracks and switches occur.

A. Train Localization Sensors

1) GNSS: Satellite navigation allows the absolute deter-
mination of positions in the geographic coordinate system
without additional sensors and special prior knowledge about
the actual position. The two main drawbacks of GNSS for
railways are limited availability and relative low accuracy.
An ideal condition for GNSS positioning is a direct line
of sight from the antenna to the available satellites with no
other objects in the vicinity. In the railways environment, this
condition is not always given in tunnels, below bridges and
station roofs and in dense forests where signals are blocked.
In these scenarios, GNSS positioning may not be available or
at least has a decreased accuracy due to the disadvantageous
constellation of the visible satellites. The accuracy is also
reduced by multipath effects which may be present over
long distances. The railways environment contains a large
amount of metallic structure such as tracks and power lines
and the receiving antenna will in proximity to buildings,
trees and other obstacles close to the track. A robust and
precise localization can not be achieved by using GNSS only.
A critical but frequent railways localization problem is the
presence of parallel tracks. The distances of these parallel
tracks are usually smaller than the GNSS accuracy. The
limited availability of GNSS, the accuracy and the inability to
measure in the topological domain do not cover the demands
for a safety-of-life system such as collision avoidance.



2) IMU: An advantageous and complementary sensor
is the inertial measurement unit (IMU). It combines the
measurement of 6 different sensors by measuring three-
dimensional translative accelerations and three-dimensional
rotation turn rates of the train. The IMU provides continued
data at a certain frequency. Inertial measurements suffer
from errors such as sensor biases which are not constant
over time and called drift. One conventional approach is the
computation of attitude, speed and position [8] of a train.
Therefore, the measurements are integrated once or twice.
The drift causes high errors in the results because the errors
sum up in every integration step. A different approach to
apply an IMU is the measurement of the track’s effects on
the pose of the train. In previous work [9] we analyzed the
position dependent geometric track characteristics measured
by an IMU while the train is moving. The curvature of a track
is stored as track geometry in a digital map. A train position
with the known geometry from the map is compared with
the measurements. As a result, the best matching positions
in the track network can be derived. The big advantage of
that method is the lack of integrations.

3) Odometer: The odometer measures relative distance
and velocity of the train, by counting wheel increments and
measuring the period. Odometers suffer from errors of the
velocity or relative distance measurements due to wheel slip
in acceleration and deceleration phases and due to a changing
wheel radius of worn tread [10]. Doppler radars for trains
provide information about train velocity and displacement
based on a different sensing method and errors occur due
to different rail target conditions. By integrating the velocity
for travel distance measurement, these errors sum up.

4) Feature classification sensors: The feature sensors
measure and classify a specific high-level characteristic of
the railway environment. A position can be derived in
combination with feature information from the digital map.
An important feature sensor is the switch detector, which
is able to recognize switches. These detectors are often
advanced with a switch way detector, which determines the
travel direction towards the switch and the track way. Other
classifiers may recognize parallel tracks, platforms, station
roofs, railway signs and signals, power masts, bridges or
tunnel entrances. These classifiers can be built up by camera
based vision sensor [6] or magnetic sensor based on eddy
current [4]. An eddy current sensor works as a metal detector
and senses changes in the metallic structure of the tracks with
its coils. Feature classification sensors suffer from errors like
missed detection or false detection.

B. Track Topology

Tracks are connected by switches, crossings or diamond
switch crossings. A track R is defined between connections,
i.e. it contains no switch or crossing. This definition ensures,
that a track R is always true one-dimensional with no other
access than the track begin or track end. A switch connects
three tracks, a crossing four tracks. According to the travel
direction and switch way position, a track splits up into two

other tracks when passing a switch facing and two tracks
merge into one track by passing trailing.

C. Track Geometry

As railway tracks are fixed to the earth, any position on
the tracks represent as well an absolute geographic position.
The geometry of a track at a certain position is given by
the attitude and the changes of the attitude over position.
The track attitude contains heading ψ, bank φ for the lateral
inclination and slope θ for the longitudinal inclination. The
changes of the attitude over track position are curvature
dψ
ds , bank change dφ

ds and slope change dθ
ds . A train will

be forced to take the designated geographic positions and
geometric track features while being on a certain track
position. According to the train traveling direction, the signs
of the attitude and its derivations are changing.

III. TRAIN LOCALIZATION MODEL

A. Train State

We define a train state Pk, which contains a discrete
data set indexed by the discrete time step k. The data is
topological pose Ptopo

k , geographic position Pgeo
k , the attitude

Patt
k by the attitude angels (φk, θk, ψk) and Pturn

k is the turn
velocity of the train (φ̇k, θ̇k, ψ̇k). The train state is:

Pk ={Ptopo
k ,Pgeo

k ,Patt
k ,P

turn
k } =

{Rk, sk, dirk, latk, longk, altk, φk, θk, ψk, φ̇k, θ̇k, ψ̇k}.
(2)

B. Train Motion

The train motion is one-dimensional due to constrains of
the rail tracks and we define the motion state Uk by along
track acceleration s̈k, velocity ṡk and a traveled distance ∆sk
in the time between k − 1 and k:

Uk = (∆sk, ṡk, s̈k)>. (3)

The train motion model computes the transition in the time
between k − 1 and k of ∆sk, ṡk, s̈k and the process noise
ν s̈k. The motion transition function fmotion is defined by:

Uk = fmotion(Uk−1, ν
s̈
k) =

ṡk−1∆t+ s̈k−1
∆t2

2
ṡk−1 + s̈k−1∆t
s̈k−1 + ν s̈k

 . (4)

Further, the output of this train motion model is limited
by train specific parameters, such as maximum velocity,
acceleration and deceleration.

C. Digital Map

The digital map contains position relevant information for
the localization procedure. The map contains information of
topological, geographic and track geometric data and further
information about the track net, track IDs and connections
such as switches, crossings or dead endings. The position
of a train standing on a certain track can be described
either by topological or geographic position. A reasonable
representation for railway navigation is the topological coor-
dinate frame. As most sensors cannot directly measure in the



topological system, the map contains additionally geographic
and geometric track representation. The geographic and
geometric information of a particular position is provided
by the digital map and referenced by the topological pose:

geographic track position
track geometry

}
= fmap(Ptopo

k ). (5)

In practice, the map is organized by a list of tracks. Ev-
ery track contains a unique track ID R, connections and
track data parametrized to the one-dimensional position s
of the track. The geographic and geometric track data is
stored by supporting points of any kind of continuous graph
representation. There are many methods of representing a
continuous function by discrete points. The simplest might be
the polygonal line approximation, which interconnects points
with lines. More advanced methods for the geographic track
representation use spline approximations [11].

D. Transition Model

Trains move exclusively on railway tracks. The digital map
contains information about these tracks and therefore the
transition model includes the map. A train state transition
happens at every time step k in the topological coordinate
frame. The new topological pose Ptopo

k is calculated from the
previous pose Ptopo

k−1 and the traveled distance ∆sk:

Ptopo
k = fmap(Ptopo

k−1,∆sk). (6)

At any switch passing facing for example, the transition
gets nonlinear and splits in two possibilities. Afterwards, the
remaining train states are updated with information from the
digital map:

{Pgeo
k ,Patt

k ,P
turn
k } = fmap(Ptopo

k , ṡk). (7)

The train turn rates Pturn are calculated from track geometry
and velocity by [9]:

φ̇ =
dφ

dt
=
dφ

ds

ds

dt
=
dφ

ds
ṡ, (8)

θ̇ =
dθ

ds
ṡ, (9)

ψ̇ =
dψ

ds
ṡ. (10)

Finally, Eq. (6) and Eq. (7) are combined to one transition
function:

Pk = fmap(Pk−1,Uk). (11)

IV. PROBABILISTIC TRAIN LOCALIZATION

A probabilistic approach computes the estimates of the
train state Pk, which contains all states a train can take at
the time step k. We denote Uk as the one dimensional train
motion. The sensor measurements of time k are described by
Zk and Ek are measurement errors which are persistent over
at least two time steps. Examples are multipath errors of the
GNSS, drift of inertial sensors, calibration errors and wheel
slip of the odometer or feature sensors. White Gaussian
sensor noise is independent over time and not part of Ek.
Finally, the physical railway environment including the track
network is time invariant and denoted by M.

A. Dynamic Bayesian Network

A dynamic Bayesian network (DBN) visualizes causal
dependencies of effects in a directed acyclic graph [12].
In Fig. 1 we draw the DBN for two time steps of a train,
which is equipped with erroneous sensors and the causal
dependencies are shown by pointers. From the DBN we

Fig. 1. Dynamic Bayesian network

can see, that the train state Pk is directly dependent to
the last train state Pk−1, the 1D train motion Uk and the
railway environment M. The railway environment is time
invariant and has a strong influence on the train states caused
by the tracks. The dependency of Pk to Pk−1 and Uk to
Uk−1 can be explained by physical effects. A train can not
change its position, speed or attitude randomly between two
time steps because of the inertia of train mass and limited
speed, acceleration and turn rates. The train has onboard
sensors for localization purposes, which measure physical
characteristics of the train states. The measurements Zk are
directly dependent to the train states Pk and independent
from the last measurements.

B. Multiple Sensor Measurements

The measurements are split into three different groups
ZU
k , ZP

k and ZM
k . ZUk is dependent to train motion, the train

state and to sensor errors and refers to acceleration and
turn rate measurements of the IMU (ZIMU) and to velocity
measurements by the odometer (Zodo):

p(ZU
k |{PUE}k) =p(ZIMU

k |Uk,Pk,EIMU
k )·

p(Zodo
k |Uk,Eodo

k ).
(12)

Dependent sensor errors EIMU are e.g. biases due to cal-
ibration errors or drift and Eodo are calibration errors or
wheel slip. ZP

k is dependent on the train state and the sensor
errors and typical sensors are position sensors such as GNSS
(ZGNSS) and the dependent errors (EGNSS) are multipath
errors for instance:

p(ZP
k|{PE}k) = p(ZGNSS

k |Pgeo
k ,EGNSS

k ). (13)

ZP
k and ZU

k are independent of M and measures only Pk di-
rectly. With the fact that the train is dependent on the railway
environment or tracks respectively, the railway environment



will have some influence on these measurements through the
train states. ZM

k is dependent of the railway environment M
represented for example by feature sensors (Zfeature) such as
camera vision or eddy current sensors. The dependent sensor
errors (Efeature) are calibration errors for instance:

p(ZM
k |{PE}k,M) = p(Zfeature

k |Ptopo
k ,Efeature

k ,M). (14)

These sensors measure features directly in the railway en-
vironment with different position than the train. The feature
measurements are as well dependent to the train position in
order to be near enough to the feature i.e. within the sensing
distance.

C. Localization Posterior

The probabilistic localization posterior is the estimation of
all train states over time P0:k, all train motions U0:k and all
measurement errors E0:k given all measurements Z1:k and
the track network M:

p(P0:k,U0:k,E0:k|Z1:k,M). (15)

This localization estimation problem is highly nonlinear
because of the discrete distribution of the tracks Rk. In order
to solve the localization with a Bayesian filter, this posterior
is factorized in the next section.

V. DERIVATION OF THE BAYESIAN FILTER

The Bayesian filter is derived from the dynamic Bayesian
network (Fig. 1) and the localization posterior from Eq. (15).
The purpose of the derivation is a factorized solution in a
recursive form for the Bayesian filter implementation. The
train states P0:k, motion states U0:k and the sensor errors
E0:k are estimated, given all the measurements Z1:k and
the railway environment M. We denote P0:k,U0:k,E0:k as
{PUE}0:k to save space and rewrite the posterior:

p(P0:k,U0:k,E0:k|Z1:k,M) = p({PUE}0:k, |Z1:k,M).
(16)

First, we write the posterior in a Bayesian formulation:

p({PUE}0:k|Z1:k,M) =

p(Zk|{PUE}0:k,Z1:k−1,M) · p({PUE}0:k|Z1:k−1,M)

p(Zk|Z1:k−1,M)
.

(17)

The denominator is only a normalizing constant and can be
neglected for a Bayesian filter. The posterior factorization is
not exact anymore and the posterior is only proportional to
the nominator. We denote the proportional formulation by ∝
and write for the posterior:

p({PUE}0:k|Z1:k,M) ∝
p(Zk|{PUE}0:k,Z1:k−1,M) · p({PUE}0:k|Z1:k−1,M).

(18)

From the first factor of Eq. (18), unnecessary conditions
such as previous measurements Z1:k−1, previous train states

P0:k−1 and previous errors E0:k−1 are removed because of
conditional independences as expressed in the DBN (Fig. 1):

p(Zk|{PUE}0:k,Z1:k−1,M) = p(Zk|{PUE}k,M) =

p(ZM
k |{PE}k,M) · p(ZP

k|{PE}k) · p(ZUk |{PUE}k).
(19)

The second factor of Eq. (18) is factored by product rule to
achieve a recursive formulation. Finally, unnecessary condi-
tions on states are removed by making use of the Markov
condition and conditional independences:

p({PUE}0:k|Z1:k−1,M) =

p({PUE}k|{PUE}k−1,M) · p({PUE}0:k−1|Z1:k−1,M).
(20)

The second factor of Eq. (20) is the posterior of the last time
step and an implementation algorithm operates recursively
by using the previous output as input of the new time step
computation. The first factor of Eq. (20) is factorized again
and independent conditions are removed:

p({PUE}k|{PUE}k−1,M) =

p(Uk|Uk−1) · p(Pk|Pk−1,Uk,M) · p(Ek|Ek−1).
(21)

A. General factorized localization posterior

The factorized general posterior can now be completed by
inserting Eq. (21) in Eq. (20) with Eq. (19) into Eq. (18):

p({PUE}0:k|Z1:k,M) ∝
p(ZM

k |{PE}k,M) · p(ZP
k|{PE}k) · p(ZU

k |{PUE}k)︸ ︷︷ ︸
sensor likelihoods

·

p(Uk|Uk−1)︸ ︷︷ ︸
1D motion model

· p(Pk|Pk−1,Uk,M)︸ ︷︷ ︸
train state transition

·

p(Ek|Ek−1)︸ ︷︷ ︸
sensor errors transition

· p({PE}0:k−1|Z1:k−1,M)︸ ︷︷ ︸
recursion

.

(22)

The posterior is now in a general factorized form.

VI. GENERIC PARTICLE FILTER IMPLEMENTATION

For the Bayesian filter implementation we chose a particle
filter for the estimation of the posterior Eq. (22), because of
the discrete distribution of the tracks. A particle filter rep-
resents probability density functions by appropriate particle
distributions with appropriate weights of Np particles [13].
The posterior is represented by

p({PUE}0:k|Z1:k,M) ≈ {xi0:k, w
i
0:k}

Np

i=1, (23)

where xi0:k is the i-th particle with its weight wi of Np
particles and xi0:k is one sample of the posterior of all time
steps until k. As described in [13], particles are generated
from a function which is easy to calculate, called the proposal
function:

xi0:k ∼ q({PUE}0:k|Z1:k,M). (24)

Afterwards these particles are weighted [13]. The weights are
proportional to the fraction posterior over proposal function:

wik ∝
p({PUE}0:k|Z1:k,M)

q({PUE}0:k|Z1:k,M)
. (25)



A. Recursive Proposal Density

The proposal density is practically generated and sampled
to obtain the particle distribution. Further, a proposal density
in recursive factorization is desired:

q({PUE}0:k|Z1:k,M) =q({PUE}k|{PUE}0:k−1,Z1:k,M)·
q({PUE}0:k−1|Z1:k−1,M)︸ ︷︷ ︸

recursion
(26)

Now, we design the proposal function. We are free to choose
any method of spreading particles in our domain. If we
choose badly, there would be too less or even no particles
near the actual truth. We define (=̂) our proposal function:

q({PUE}k|{PUE}0:k−1,Z1:k,M)=̂

p(Ek|Ek−1) · p(Uk|Uk−1) · p(Pk|Pk−1,Uk,M).
(27)

p(Ek|Ek−1) is the sensor error process model and calculates
the transition of an error of one time step. The transition
p(Pk|Pk−1,Uk,M) is calculated from the map, by the old
topological position, velocity and a distance traveled between
the time steps. The distance and velocity are computed with
Eq. (4) by the train motion transition p(Uk|Uk−1) and a
sampled process noise.

B. Particle Weights Update

The particle weights are derived from Eq. (25). The poste-
rior Eq. (22) is divided by the proposal Eq. (27) in Eq. (26):

wik ∝
p(ZM

k |{PE}k,M) · p(ZP
k|{PE}k) · p(ZU

k |{PUE}k)

1

·
p(Uk|Uk−1) · p(Ek|Ek−1) · p(Pk|Pk−1,Uk,M)

p(Uk|Uk−1) · p(Ek|Ek−1) · p(Pk|Pk−1,Uk,M)

·
p({PUE}0:k−1|Z1:k−1,M)

q({PUE}0:k−1|Z1:k−1,M)︸ ︷︷ ︸
recursion = wi

k−1

∝ p(ZM
k |{PE}k,M) · p(ZP

k|{PE}k) · p(ZU
k |{PUE}k)

· wik−1.
(28)

Finally the weight is computed recursively of the old weight
and the sensor likelihoods Eq. (12)-Eq. (14):

wik ∝ wik−1 · p(ZIMU
k |Uk,Pk,EIMU

k ) · p(Zodo
k |Uk,Eodo

k )

· p(ZGNSS
k |Pgeo

k ,EGNSS
k ) · p(Zfeature

k |Ptopo
k ,Efeature

k ,M).
(29)

VII. SUMMARY OF THE GENERIC ALGORITHM

1) Initialize all Np particles to U0 = (0, 0, 0), E0 and
Pi,topo

0 to suitable initial distribution and get the re-
maining pose from the map Pik = fmap(Pi,topo

0 , 0).
2) For every time step k:

a) Draw samples from the train acceleration, assign
it to Np particles and compute train motion Uik
by Eq. (4).

b) Compute train state Pik = fmap(Pi,topo
k−1 ,U

i
k)

c) Compute sensor error transitions p(Eik|Eik−1).

d) Weight all Np particles according to eq. (29).
e) Perform resampling if necessary

A suitable initialization distribution of 1) is either a uniform
distribution of topological positions over the hole track
network or the particles are initialized on tracks in a certain
vicinity of the first GNSS position measurement.

VIII. PROOF OF CONCEPT

A. Particular Implementation

As a proof of concept of the proposed generic algorithm,
we implement a simplified 2D train model because trains
experience only small bank and slope angles. The IMU is
ideally aligned with the train axes and Zax measures the
longitudinal train acceleration:

Zaxk = hax(Uk) + νax = s̈+ νax . (30)

The measurement function hax links the train state with
the measurements. In our planar world, the measured train
body turn rate is approximately the yaw rate: ωzk ≈ ψ̇k. A
moving train turns in curves and is affected by a turn rate
and centrifugal acceleration in lateral direction while moving
with a velocity ṡ:

Zayk = hay (Pk,Uk) + ν
ay
k =

dψ

ds
· ṡ2
k + ν

ay
k , (31)

Zωz

k = hωz (Pk,Uk) + νωz

k =
dψ

ds
· ṡk + νωz

k . (32)

The curvature dψ
ds is stored in the digital map and depen-

dent on the actual topological position: fmap(Ptopo
k ). For

the particle filter implementation we use Gaussian models
N (x|m,Σ) for the measurement models, where x is the
argument, m the mean and Σ the covariance. Instead of the
process noise, we sample directly from the train acceleration
measurement model Eq. (30). The computation of the pro-
posal function of step 2a) (Sec. VII) samples accelerations
from a Gaussian measurement model:

s̈ik ∼ N (hax(Uik)|Zaxk , σ
2
ax). (33)

The train motion Uik is calculated by Eq. (4), followed
by step 2b). For the measurement model we implement a
likelihood function by a Gaussian distribution. The sensor
likelihood function calculates how likely a measurement fits
to the estimation. We define for the GNSS measurement:

p(ZGNSS
k |{PE}k)=̂N (Pi,geo

k |ZGNSS
k ,ΣGNSS). (34)

For the IMU measurements ay and ωz we define:

p(Zayk |{PUE}k) =̂ N (hay (Pik,U
i
k)|Zayk , σ

2
ay ), (35)

p(Zωz

k |{PUE}k) =̂ N (hωz (Pik,U
i
k)|Zωz

k , σ2
ωz

). (36)

B. Simulation Results

In the first example we demonstrate how the particles
converge to the true position. Therefore a train is mov-
ing on a single track in Fig. 2. The train motion and the
sensors (GNSS and IMU) are simulated. The localization
algorithm gets noisy measurements of position with 1Hz
and accelerations and turn rates with 10Hz. The particle



Fig. 2. [Top] Geometric track constructed from straights and curves.
[Bottom] Visualized particle distribution of track position estimate over time.

filter does not have a knowledge of the start position and
initializes the first particle distribution with 400 particles by
an uniform distribution over the hole track. As seen in Fig. 2,
the particles condense over time to the correct topological
pose. At the beginning, the particles are spread over the hole
length of 400 meters. The GNSS is weighting at every second
and the particles are resampled. Over time, the particles
converge to the truth. Two converging steps are at 16 and
at 34 seconds, when the train passes changes of the track
curvature and the inertial sensor likelihoods weight according
to the track geometry. In order to show these effects, the
GNSS deviation is set to 20 meter in this example. The
particles are able to convert much quicker with lower GNSS
deviations as in Fig. 2. The second example shows a track
network with four tracks in Fig. 3. The train starts at track

Fig. 3. [Top] Track network with four different tracks. [Bottom] Track
probabilities of the train position.

R1, moves over R2 and finally to R4. The probabilities of
the estimated train positions on one track are shown in Fig. 3.
At the start, particles are uniformly distributed over the hole
track network and every track shows the probability of 1

4 th.
The particles converge quickly to R1 and the train moves
towards the left switch. The probabilities of R2 and R3 rise
up when the first particles are split at the switch. At the

switch, p(R3) is slightly higher because some particles are
ahead the train and better weighted when the train is still on
the straight track R1. As soon as the train turns on R2, lateral
acceleration and turn rate measurements weight p(R3) low
and p(R2) high.

IX. CONCLUSIONS

We have proposed a top-down train localization approach
from theory and provided a causal analysis of effects for
the train localization and sensor measurements. We have
presented a derivation the Bayesian recursive filter as well as
a generic particle filter implementation. In order to proof our
concept, a simplified particular implementation is given. First
simulations shows a convergence of the particle estimates as
well as a track selective train localization in scenarios where
switches and parallel tracks occur.

Advantageous extensions are an implementation of 3 di-
mensional measurements model of an inertial measurement
unit (IMU) and dependent sensor error models as well as
sensor likelihood models for feature sensors. The digital map
is here ideal, i.e. the data is complete and exact. Future work
can focus on localization with map uncertainties.
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