
Motion-without-Structure: Real-time Multipose Optimization for
Accurate Visual Odometry

Henning Lategahn, Andreas Geiger, Bernd Kitt, Christoph Stiller
Institute of Measurement and Control

Karlsruhe Institute of Technology
Karlsruhe, Germany

{henning.lategahn, geiger, bernd.kitt, stiller}@kit.edu

Abstract— State of the art visual odometry systems use
bundle adjustment (BA) like methods to jointly optimize motion
and scene structure. Fusing measurements from multiple time
steps and optimizing an error criterion in a batch fashion seems
to deliver the most accurate results. However, often the scene
structure is of no interest and is a mere auxiliary quantity
although it contributes heavily to the complexity of the problem.
Herein we propose to use a recently developed incremental
motion estimator which delivers relative pose displacements
between each two frames within a sliding window inducing
a pose graph. Moreover, we introduce a method to learn the
uncertainty associated with each of the pose displacements. The
pose graph is adjusted by non-linear least squares optimization
while incorporating a motion model. Thereby we fuse mea-
surements from multiple time steps much in the same sense as
BA does. However, we obviate the need to estimate the scene
structure yielding a very efficient estimator: Solving the non-
linear least squares problem by a Gauss-Newton method takes
approximately 1ms. We show the effectiveness of our method
on simulated and real world data and demonstrate substantial
improvements over incremental methods.

I. INTRODUCTION

Many environmental perception methods for robotics re-
quire a precise estimate of the vehicle’s motion. Among
these, are mapping algorithms [2], detection and tracking
of moving objects [3], scene understanding [7] and many
more.
Common choices for ego motion estimation include iner-
tial sensors such as accelerometers and gyroscopes, Global
Navigation Satellite System (GNSS) or wheel encoders.
Inertial sensors providing highly accurate motion information
may become prohibitively expensive for certain applications.
GNSS may suffer from shadowing in street canyon like
environments and wheel encoders may operate falsely on
slippery ground.
Estimating ego motion from stereo cameras is an appeal-
ing alternative, especially since camera systems are already
widely spread in robots and cars. They do not suffer from
shadowing, are mostly independent of the ground structure
and are low priced. Moreover, they make up an excellent
complement to the aforementioned systems. Furthermore,
many vision algorithms benefit from motion estimates de-
rived from image streams since it supersedes the need for
time synchronization between motion sensors and cameras
which may become an art by itself.
Nowadays, state-of-the-art visual odometry systems use bun-

dle adjustment (BA) [17], [1], [14], [11] or computationally
efficient approximations thereof. All measurements of a
sliding window are considered jointly and the ego motion and
scene structure is estimated in a batch fashion. The key to
accuracy lies in the joint optimization of measurements over
multiple steps in time. Despite progress in exploiting sparsity
patterns of the estimation problem and increasing computa-
tional power which led to first real time implementations it
seems wasteful to estimate the entire scene structure for a
mere motion estimate. BA like methods perform in real time
only on extensive computing hardware whereas the proposed
method potentially runs on low power computers due to its
low complexity.
Herein, we propose a method that estimates the motion of
a stereo camera by non-linear least squares optimization
without estimating the scene structure. Measurements from
multiple time steps are jointly optimized and ego motion
is inferred. Our method does not needlessly estimate the
3D positions of any image features. We estimate pose dis-
placements between each two frames in a sliding window
by the method proposed in [6]. Figure 1 illustrates the
pose displacement estimates graphically. The core of our
method consists of interpreting pose displacement estimates
as measurements and adjusting the thus induced pose graph
by non-linear least squares optimization. Thereby we obviate
the need to estimate scene structure which otherwise would
heavily contribute to the complexity of the problem. Fur-
thermore, we show how constraints imposed by the vehicle
dynamics can be integrated into our estimation algorithm by
considering a motion model.
Since pose displacement estimates are highly heteroscedastic
we introduce a regression method that efficiently provides
pose displacement estimation uncertainties. The regression is
trained by a Monte Carlo (MC) simulation. The introduction
of this regressor is another main contribution of our work.
Adjusting a pose graph without estimating scene structure
is very efficient. Our implementation uses a Gauss-Newton
optimization and takes approximately 1ms to converge. In
experiments we show an increase in accuracy over a purely
incremental baseline [6].
The remainder of the paper is structured as follows. In
Section II we review related work. The algorithm is detailed
in Section III. Thereafter experimental results of simulated
and real world data are given in Section IV before concluding

Fig. 1: Relative pose displacements zij are computed from
stereo vision between poses pi and pj . Poses within a sliding
window of length M are thereafter adjusted by non-linear
least squares optimization. M = 4 in this example graph.
The bold arrow is the ego motion h(p̂3, p̂4) which is the
output of our algorithm after adjusting the graph.

in Section V.

II. RELATED WORK

Many approaches to estimating the vehicle’s ego motion
from stereo cameras [6], [8], [10] are incremental in nature.
The motion is computed for each consecutive image pair and
accumulated over time. Usually an error term describing the
fit of motion and point matches is minimized. These methods
are characterized by low computational complexity. How-
ever, their accuracy is somewhat limited and ego positions
drift rather severely over time.
Better results are usually obtained by Simultaneous Local-
ization and Mapping (SLAM) like approaches [15], [4], [13],
[5]. SLAM is the problem of computing a map of previously
unknown terrain while simultaneously localizing the robot
within the map. Thereto, a set of landmarks (associated
with salient features in the image), the current ego velocity
and position are stacked into one single vector which is
sequentially estimated from point correspondences by e.g.
Extended Kalman Filters (EKFs). Fusing measurements from
multiple time steps has increased the accuracy considerably.
However, the use of EKFs has shown some disadvantages:
The state covariance may diverge due to linearization errors
[9] and landmark associations are irreversible. State updates
of landmark miss associations are inevitably “baked” into
the state vector causing catastrophic results. Therefore the
computer vision front end which provides point matches
is of utmost importance in practical implementations. In
contrast, the system presented here merely requires feature
correspondences between two frames and does not depend
on feature tracks.
Today the best performing systems are bundle adjustment
(BA) like methods [17], [1], [11]. The scene structure and
ego motion is estimated such that the reprojection error of
all point features onto all camera images is simultaneously
minimized. Jointly optimizing scene structure and ego mo-

tion improves over the down sides of EKF like methods as
mentioned above. Linearization errors are mitigated. The key
seems to be the joint consideration of measurements of a
given time window. However, the scene structure is often
only a means to an end and discarded immediately thereafter.
We propose to estimate motion by joint optimization of
measurements over multiple time steps without computing
scene structure, hence yielding a lean minimization problem.
Using pose displacements induced by registering laser scans
to build large maps has been recently proposed by Konolige
and co-workers in [12]. The work aims at building large 2D
maps of the environment and no focus is laid on motion esti-
mation. In our work we are using stereo cameras exhibiting a
completely different sensor characteristic. The displacements
between poses are estimated by non-linear least squares
optimization (see [6]). This however bears the problem
of accurately and efficiently providing pose displacement
uncertainties. We solve this issue by learning a covariance
matrix data base from training imagery which we query
during online computation. Unlike [12], we integrate motion
constraints imposed by vehicle dynamics into our estimation
process. Finally we compare different parameterizations of
our method to an incremental baseline in simulations and
real world situations.

III. EGO MOTION ESTIMATION

Our method computes the ego displacements between each
pair of poses within a sliding window of length M . Thus a
connected pose graph as depicted in Figure 1 is induced.
An edge of the graph labeled zij is the ego displacement
estimated between poses pi and pj . After pairwise pose
displacements are estimated within a window of length M
the pose graph is adjusted yielding the current ego motion.
First an overview of our method is given before describing
each part more thoroughly.

A. Overview

We use the constant turn rate and acceleration (CTRA)
model which was shown to be the best performing model
among the curve linear models investigated in [16]. Therefore
one such pose is defined by its position, orientation, linear
and angular velocity and linear acceleration, thus pi =
(xi, yi, θi, vi, ai, ωi)

T . Hence our poses are two dimensional
and contain no height information. The state transition equa-
tion of the CTRA model is denoted by the function f(·)
and is given below. During motion estimation we exploit
that pose pi+1 should not deviate much from its predicted
position f(pi).
The displacements are computed by the method proposed
in [6] which is briefly reviewed in Section III-B. The ego
displacement between pose pi and pj is denoted by zij =
(∆xij ,∆yij ,∆θij)

T and is relative to pose pi. For the ego
displacement between poses pi and pj without error we have∆xij

∆yij
∆θij

 =

RT (θi)

[(
xj
yj

)
−
(
xi
yi

)]
θj − θi

 (1)

=: h(pi, pj) (2)

where R(θi) is a 2× 2 rotation matrix of angle θi. For two
given poses pi and pj the function h(pi, pj) computes the
relative displacement according to the right hand side of (1).
The rotation matrix RT (θi) is required to transform global
poses into displacements relative to pi as it is provided by
the displacement estimator. We use the same nomenclature
as [12]. After all pairwise ego displacements within a sliding
window are estimated the ego motion estimation is launched.
The goal is to find poses such that two poses pi and pj have
a relative position h(pi, pj) that does not deviate much from
its estimated displacement zij .
All poses of a sliding window of length M can now be
estimated by considering the following error term consisting
of error terms imposed by the motion model and error terms
imposed by the estimated ego displacements

e′(p0, . . . , pM) =

p1 − f(p0)
p2 − f(p1)
· · ·

pM − f(pM−1)
z01 − h(p0, p1)
z02 − h(p0, p2)

· · ·
z0M − h(p0, pM)
z12 − h(p1, p2)

· · ·

(3)

with x0 = y0 = θ0 = 0 of pose p0 fixed to the origin. Terms
of the form pi+1−f(pi) penalize motion that is incompatible
to the motion model whereas terms of the form zij−h(pi, pj)
penalize deviations from the estimated displacement.
Assuming e′ ∼ N (0, C) leads to the following minimization
problem

p̂0, . . . , p̂M (4)

= arg min
p0,...,pM

e′(p0, . . . , pM)TC−1e′(p0, . . . , pM)︸ ︷︷ ︸
=E

 (5)

such that x0 = y0 = θ0 = 0. Any non-linear optimization
method can be used to minimize the squared Mahalanobis
distance E. Here we employ Gauss-Newton optimization.
Determining the covariance matrix C is crucial and its
derivation is postponed until later. Our algorithm outputs
the ego motion from the immediately preceding pose to the
current pose which is h(p̂M−1, p̂M), see also Figure 1.

B. Point Matching and Ego Displacement

In order to obtain 3D poses between temporally adjacent
stereo pairs, we follow the method proposed in [6], as
it is easy to implement and efficient at the same time.
First, interest points are extracted in two consecutive stereo
pairs using blob and edge kernels in combination with
non-maximal-suppression. Next, feature descriptors are built
from local gradient patterns and matched efficiently between
the four images using SIMD instructions. Since the stereo
camera setup is assumed to be calibrated, we are able to
project all features from the previous frame back into 3D
via triangulation. The 6D rigid motion between the current

and the previous frame is then recovered by the minimizer
of the reprojection errors of the features in the current frame.
To account for outliers the procedure is wrapped into a
RANSAC sampling scheme with 50 iterations. Both, feature
matching and pose estimation, take less than 50 ms on a
single CPU core. For details we refer the reader to [6]. The
6D motion estimate is projected onto the road plane to obtain
the pose displacement (∆xij ,∆yij ,∆θij).

C. Motion Model

Since we are interested in recovering camera poses of a
car like robot, we incorporate prior knowledge in form of
a motion model to stabilize the estimation results. A good
overview of many curve linear models can be found in [16]
and references therein. Errors resulting from highly dynamic
driving maneuvers such as drifting can often be neglected as
the typical operation mode is not in this dynamic range.
The CTRA model [16] assumes constant turn rates and accel-
erations. Violations of this model (i.e. change in acceleration
and turn rate) are modeled by appropriate noise terms. The
model predicts poses as

f(xi, yi, θi, vi, ai, ωi) =

xi + ∆xi(∆t)
yi + ∆yi(∆t)
θi + ωi∆t
vi + ai∆t

ai
ωi

 (6)

with

∆xi(∆t) =
1

ω2
i

((viωi + aiωi∆t) sin(θi + ωi∆t) (7)

+ai cos(θi + ωi∆t)− viωi sin θi − ai cos θi)

and

∆yi(∆t) =
1

ω2
i

((−viωi − aiωi∆t) cos(θi + ωi∆t) (8)

+ai sin(θi + ωi∆t) + viωi cos θi − ai sin θi)

where ∆t denotes the time lag. Hence the current vehicle
state can be predicted from the preceding dynamic state
of the vehicle. Note that ∆xi(∆t) of (7) is substantially
different from ∆xij of (1).
We assume the state of the vehicle to evolve according to

pi+1 = f(pi) + εi (9)

with εi ∼ N (0, Qi). Here, εi captures the change in turn rate
and acceleration.

D. Adjusting the Pose Graph

The pose graph as induced by the constraints of the motion
model and the pose displacements zij is adjusted to minimize
the squared error E in (5). To this end, the auxiliary function

e(v0, a0, ω0, p1, . . . , pM︸ ︷︷ ︸
=x

) = Se′(x) (10)

with STS = C−1 being the Cholesky decomposition of the
precision matrix C−1 of e′ is introduced. The final estimate
is the minimizing argument of

e(x)T e(x) = e′(x)TC−1e′(x). (11)

To minimize (11) we use the Gauss-Newton method. An
initial guess xk=0 is used to linearize e around xk yielding

e(x) ≈ e(xk) + SE′(xk)∆xk (12)

where E′(xk) is the Jacobian of e′ evaluated at xk. The
increment ∆xk minimizing the squared L2-norm of the
linearized version of e (12) is found by solving

E′(xk)TST e(xk) = −E′(xk)TC−1E′(xk)∆xk (13)

for ∆xk. A new iteration starts by setting xk+1 = xk +
∆xk and we stop iterating when ||∆xk|| < τ or when a
maximum number of iterations is reached. Note that we do
not require robust sampling schemes at this stage, since all
correspondence outliers have already been eliminated during
pose displacement estimation (see Section III-B).
The initial guess x0 is found by accumulating the pose
displacements zi i+1 for i = 0, . . . ,M − 1 starting from
pose (x0, y0, θ0) = (0, 0, 0) which is the solution of the
incremental method. Accelerations and linear velocities are
set to zero whereas the angular velocities are set to ωi =
0.0001. This initialization speeds up the solver by one
iteration compared to a zero initial guess. In practice we note
that our optimization always returns the global optimizer x
using this initialization.
In the following we describe the assembly of the covariance
matrix C of e′. C is block diagonal with the following entries

C =

(
Q 0
0 P

)
(14)

Q =

Q0 0 · · ·
0 Q1 · · ·
...

...
. . .

QM−1

 (15)

P =

P01 0 · · ·
0 P02 · · ·
...

...
. . .

PM−1 M

 (16)

For pose transition pi+1 = f(pi) the covariance Qi captures
the model violation (cf. (9)). The pose displacement between
poses pi and pj is given with accuracy Pij and is derived
from the point matches between the two images (details given
below). The diagonal elements of C describe the certainty of
the elements of (3). The block diagonal structure of C can
be exploited when computing the Cholesky decomposition
S of C−1.

E. Noise Covariances Qi and Pij
The pose transition covariance Qi is computed by

Qi = FiDF
T
i (17)

where F = ∂
∂xf denotes the Jacobian of f evaluated at pi

and D = diag(σ2
x, σ

2
y, σ

2
θ , σ

2
v , σ

2
a, σ

2
ω) is a diagonal matrix.

σ2
x, σ

2
y, σ

2
θ and σ2

v are kept very low (however non-zero to
assure non-singularity of Qi) whereas σ2

a and σ2
ω are vehicle

specific, in our case σa = 1m/s2∆t and σω = 30◦π/180◦∆t
with ∆t being the time lag.
The certainty of the ego displacement zij can vary consid-
erably depending on the characteristic of the point matches
between the two images. Therefore it is crucial to provide a
faithful approximation of the measurements covariance Pij .
Otherwise uncertain ego displacements contribute as much
as certain displacements, hence polluting the estimate.
Since the computation of the ego displacements from point
matches involves iterations, error propagation from point
match uncertainties to ego displacement uncertainties can
not be employed. We address this problem by running MC
simulations to build a covariance data base. We store these
covariance matrices together with feature vectors extracted
from the image. Regression based on these features is then
used to retrieve an appropriate matrix from the data base for
every pair of frames during online computation.
We use one sequence for training and one for testing. From
the training sequence we compute the pose displacement
covariance for a few thousand representative pairs of poses.
For one such displacement between poses i and j we
compute the point matches between the images of poses
i and j denoted by M. Thereafter many thousand copies
M0, . . . ,MK of M are produced and all feature matches
are disturbed by isotropic Gaussian noise with σ = 0.5px.
Finally the ego displacement zk for each such copy Mk is
computed. The covariance matrix stored for this particular
pair of poses is the empirical covariance of z0, . . . , zK .
The feature vector is composed of the bins of a histogram
computed from all disparity values of the source image i. For
larger displacements nearby points are not matched anymore
which leads to filling up the lower bins of the histogram.
Smaller displacements are characterized by larger disparity
values in the source image. The overall number of points also
contributes to the certainty of the displacement estimate. For
the experiment a histogram size of 20 was used.
As regression we refrain from using computationally expen-
sive method such as Gaussian Processes and use nearest
neighbor regression for computational efficiency. For a query
feature vector, we take the covariance associated with the
most similar feature vector in the training set. As similarity
metric we employ the L2 norm. Thereby the time to query
a feature vector is negligible for a moderate sized (approx.
2k samples) training set.

IV. EXPERIMENTS

We have conducted two types of experiments. First a
simulation was run to assess the proposed method under ideal
conditions. Second, our method was tested on real data.

A. Simulation Experiments

From (9) it is easy to generate a simulated trajectory from
any given initial state p0. Figure 2 shows one such generated

Fig. 3: The standard deviations of the motion error of a simulated trajectory are given. From left to right: σ∆x, σ∆y, σ∆θ.
The window length M is varied. The green curve (circle) shows the error of the incremental method. The yellow curve
(squaress) show the error of our method without a motion model whereas the blue curve (triangles) depicts the error of our
method with a motion model. The numbers are given in meters, meters and radians (left to right).

Fig. 2: A simulated trajectory of approximately 1.4 km. Red
denotes ground truth, blue denotes the trajectory as estimated
by our method and green is the accumulation of consecutive
ego displacement estimates (without pose adjustment).

trajectory. After trajectory generation, the relative poses be-
tween pose couples within a sliding window can be computed
by (1). Setting zij = h(pi, pj) + δij with δij ∼ N (0, Pij)
finally provides simulated pose displacement measurements.
We set Pij = P constant for all i, j in our simulation.
P was computed by projecting a set of 3D points into two
consecutive frames and running a MC simulation as detailed
in Section III-E. Thereby P is a faithful approximation of a
pose displacement uncertainty.
As depicted in Figure 2 the trajectory can be recovered by our
proposed method. The red path indicates ground truth, blue
is the estimated trajectory by adjusting the pose graph and
green is the accumulation of consecutive pose displacements.
Green is the trajectory as it would have been estimated
by a pure incremental motion estimator. The pose adjusted
trajectory (blue) is more accurate and exhibits a lower drift
than the non-adjusted counter part (green).
To validate our method more thoroughly we have run the

simulation with 1000 poses and varying parameters and
compared the estimated motion to the ground truth motion.
The motion error is expressed by the empirical standard de-

viations σ∆x, σ∆y, σ∆θ of the displacement error. Moreover,
we have run the simulation without a motion model. That
is, we have only considered the bottom part of (3) which is
associated with the pose displacements only. The results for
different lengths M of the sliding window are given in Figure
3. The error of the incremental method is given in green
(circle). Since no poses are adjusted this error is independent
of the window length M . The error of our method using no
motion model is shown in yellow (squares) whereas the error
of our proposed method including a motion model is shown
in blue (triangles).
The results show that increasing the number of poses which
are adjusted increases overall accuracy. This holds true for
the case with and without a motion model. Including the
proposed motion model further improves the accuracy. In all
cases, we clearly outperform the incremental baseline.

B. Real World Data

Our method was tested on a sequence of a circular
trajectory of approximately 500m. The end of the trajectory
matches the beginning of the trajectory. Our test vehicle is
equipped with a stereo camera rig with a base length of 57.5
cm. The image size after rectification is 1350× 370 pixels.
The opening angle of the cameras are 90 degrees. Image
points are detected and matched as detailed in [6]. We have
matched at most 100 points between any two image pairs.
The ego displacement is computed as described in Section
III-B.
Accumulating the ego displacements of all consecutive
frames leads to the trajectory shown in blue in Figure 4.
This accumulation exhibits a heavy drift. It seems that the
rotation angles are insufficiently estimated by the method.
The red path shows the reconstructed trajectory obtained by
using the proposed method with M = 4 and no motion
model. Incorporating the motion model constraint leads to
the result shown in green. The results are in accordance to
the simulated data. Adjusting the pose graph improves the
outcome considerably. Integrating a motion model further
improves results.
Finally we have run the system with motion model but
without regressing the covariance matrix. Instead the pose
displacement covariance was set to a fixed pose displacement

Fig. 4: Results of a real trajectory of approximately 500m.
The incremental motion estimator is shown in blue. Green
denotes the trajectory as computed by our method. Using no
motion model yields the red trajectory. The cyan trajectory
is obtained by our method when not using the regression for
the pose displacement covariances. Ground truth is underlaid
in gray.

covariance for all frame couples. The resulting trajectory is
depicted in cyan in Figure 4. This clear deterioration over the
use of the regression stems from the fact that uncertain pose
displacements are overrated. The ground truth is underlaid
in gray.

It shall be noted here that the method to compute ego
displacements produces much better results when match-
ing more image points (few thousands as apposed to one
hundred). Results are given in [6]. However, herein we
demonstrate the improvements by fusing multiple ego dis-
placements. The image processing front end consisting of
interest point detection and matching as well as the ego
displacement computation is much faster with fewer points.
Computing ego displacements for 100 points takes 3 ms.
For each new image frame M ego displacements need to be
computed to set up the pose graph (see Figure 1). Adjusting
the pose graph of the specified size requires only 0.5 ms
even when including the motion model. Note that this is
independent of the feature matching front end. For each
frame the pose graph needs to be adjusted only once. All
times are achieved on a single CPU core. State-of-the-art BA
methods achieve frame rates (≈̂100ms) at best on heavily
parallelized computing hardware. The bottle neck of our
computation right now is the image processing front end.
We intend to improve upon this in the future.

V. CONCLUSION AND FUTURE RESEARCH

Herein we have demonstrated how pairwise ego displace-
ments between frames within a sliding window can be used
to compute the ego motion of a robot or vehicle. To this
end the motion estimation was cast into a non-linear least
squares problem incorporating a CTRA motion model. The

covariance of the ego displacement estimate was provided
by nearest neighbor regression.
Experiments with simulated and real world data from our
testing vehicle show that the pose adjustment increase accu-
racy. Moreover, the motion model further improves upon the
results. Adjusting a pose graph takes 0.5ms on a single CPU
core while BA runs much slower. This makes our approach
particularly interesting for mobile applications where low
power consumption is crucial.
Developing a point matching front end that is tightly coupled
with the motion estimator is ongoing research. The motion
estimated for the current pose may be used to restrict
the search space of point matches of foregoing images.
Moreover, the large displacement of image features for large
displacements needs to be addressed. Furthermore we intend
to extend the proposed motion estimator into a full SLAM
system akin to [12].

REFERENCES

[1] M. Agrawal and K. Konolige, “Rough terrain visual odometry,” in
Proceedings of the International Conference on Advanced Robotics
(ICAR), 2007.

[2] H. Badino, U. Franke, and R. Mester, “Free space computation using
stochastic occupancy grids and dynamic programming,” in Workshop
on Dynamical Vision (ICCV), 2007.

[3] A. Barth and U. Franke, “Estimating the driving state of oncoming
vehicles from a moving platform using stereo vision,” Intelligent
Transportation Systems, IEEE Transactions on, vol. 10, no. 4, pp.
560–571, 2009.

[4] A. Davison, I. Reid, N. Molton, and O. Stasse, “MonoSLAM: Real-
time single camera SLAM,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, pp. 1052–1067, 2007.

[5] H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and
mapping (SLAM): Part I the essential algorithms,” Robotics and
Automation Magazine, vol. 13, no. 2, pp. 99–110, 2006.

[6] A. Geiger, J. Ziegler, and S. C., “Stereoscan: Dense 3d mapping in
real-time,” in IEEE Intelligent Vehicles Symposium, June 2011.

[7] A. Geiger, M. Lauer, and R. Urtasun, “A generative model for 3d urban
scene understanding from movable platforms,” in Computer Vision and
Pattern Recognition (CVPR), Colorado Springs, USA, June 2011.

[8] A. Howard, “Real-time stereo visual odometry for autonomous ground
vehicles,” in Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on. Ieee, 2008, pp. 3946–3952.

[9] S. Julier and J. Uhlmann, “A counter example to the theory of simul-
taneous localization and map building,” in Robotics and Automation,
2001. Proceedings 2001 ICRA. IEEE International Conference on,
vol. 4. IEEE, 2001, pp. 4238–4243.

[10] M. Kaess, K. Ni, and F. Dellaert, “Flow separation for fast and robust
stereo odometry,” in IEEE International Conference on Robotics and
Automation (ICRA), 2009, pp. 3539–3544.

[11] K. Konolige, M. Agrawal, and J. Sola, “Large-scale visual odometry
for rough terrain,” Robotics Research, pp. 201–212, 2011.

[12] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, and
R. Vincent, “Sparse pose adjustment for 2d mapping,” IROS, Taipei,
Taiwan, vol. 10, p. 2010, 2010.

[13] T. Lemaire, C. Berger, I. Jung, and S. Lacroix, “Vision-based slam:
Stereo and monocular approaches,” International Journal of Computer
Vision (IJCV), vol. 74, no. 3, p. 364, 2007.

[14] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry,” 2004.
[15] P. Piniés and J. Tardós, “Scalable SLAM building conditionally

independent local maps,” in IEEE conference on Intelligent Robots
and Systems (IROS), 2007.

[16] R. Schubert, E. Richter, and G. Wanielik, “Comparison and evaluation
of advanced motion models for vehicle tracking,” in Information
Fusion, 2008 11th International Conference on. IEEE, 2008, pp.
1–6.

[17] G. Sibley, C. Mei, I. Reid, and P. Newman, “Vast-scale Outdoor Navi-
gation Using Adaptive Relative Bundle Adjustment,” The International
Journal of Robotics Research, 2010.

