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Abstract— In this work, a framework for motion prediction of
vehicles and safety assessment of traffic scenes is presented. The
developed framework can be used for driver assistant systems
as well as for autonomous driving applications. In order to
assess the safety of the future trajectories of the vehicle, these
systems require a prediction of the future motion of all traffic
participants. As the traffic participants have a mutual influence
on each other, the interaction of them is explicitly considered in
this framework, which is inspired by an optimization problem.
Taking the mutual influence of traffic participants into account,
this framework differs from the existing approaches which
consider the interaction only insufficiently, suffering reliability
in real traffic scenes. For motion prediction, the collision proba-
bility of a vehicle performing a certain maneuver, is computed.
Based on the safety evaluation and the assumption that drivers
avoid collisions, the prediction is realized. Simulation scenarios
and real-world results show the functionality.

I. INTRODUCTION

Traffic reports [1] have shown that on average 93 peo-
ple died each day on U.S. roads. However, this number
has declined over the last two decades thanks to several
safety systems in the vehicles. For a further decrease of the
death toll, an important contribution is the development of
additional driver assistance systems or even one step further
completely autonomous driving systems. These systems shall
help the driver of the vehicle to move the vehicle in a
safe way, ideally also in a comfortable and fuel-conserving
manner. Today, there are already lots of driver assistance
systems integrated in vehicles which help the driver to avoid
collisions or to save fuel such as the blind spot monitor or
the intelligent shifters.

However, most assistant systems only consider the current
state of the vehicle or the current traffic situation, but lack
prediction of future situations. These systems are therefore
hardly able to detect a dangerous situation at an early stage
or to find the optimal gear with regard to the future motion.
Thus, it is desirable to develop systems which are able to
predict how surrounding traffic participants will behave.

This information could also be used by a driving assistant
system, warning the driver about an upcoming dangerous
situation, or for autonomous driving to generate safe and
comfortable trajectories.

The goal of the approach presented in this work is to
enhance the driving safety of vehicles in structured environ-
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ments. A more reliable prediction of future movements of
vehicles shall be achieved by explicitly taking into account
the mutual influence of traffic participants. We call this
mutual influence interaction of the traffic participants. This
interaction is important as explained with Fig. 1, which
shows three vehicles on a highway. The red vehicle is
overtaking the yellow vehicle at a high velocity, which in
turns is approaching a much slower truck at the same time.
Thus, the yellow vehicle has to either brake or change
lanes in order to avoid a collision with the truck. With
this knowledge, the driver of the red vehicle can adjust his
prediction and react on the dangerous situation ahead of
time. Therefore, a prediction without consideration of the
interaction would be less reliable.
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Fig. 1: Three vehicles are interacting in a highway scene.

In this work, a novel framework is presented which
predicts the motion of vehicles on highways considering the
interaction of the traffic participants, fulfilling the required
time constraint for on-line computation. Although this work
is explained with vehicles driving on highways, the approach
can be used for all mobile robotic applications in dynamic
and structured environments, where structured means that the
motion space of the participants can be discretized without
great losses.

II. RELATED WORK

In the following, different approaches for motion predic-
tion and threat assessment are explained. In general these
approaches can be grouped into learning based motion
prediction, model based motion prediction, and motion pre-
diction with a cognitive architecture. While learning based
approaches for motion prediction learn from observation
of the past movements of vehicles in order to predict the
future motion, cognitive architectures try to reproduce human
behavior and model based prediction use motion models.
Former approaches ignore or insufficiently incorporate the
influence of mutual interaction of the traffic participants.

The approaches in [2] and in [3], [4] aim at estimating
the future position of a vehicle by its past movement. For
that purpose, a database of motion primitives for different car
actions is constructed preliminarily by recording trajectories.
By observing the motion of a vehicle and the measurement of
its current state, trajectories are assigned from the database



to the car with a certain likelihood. Therefore, the former
is using an extension of the Longest Common Subsequence
(LCS), the Quaternion-based Rotationally Invariant LCS to
compare the trajectories. The latter uses clustered trajectories
in order to obtain typical motion patterns, where each cluster
consists of several trajectories. These approaches allow one
to estimate the future motion of a vehicle, assuming it
follows the representative trajectory. Unfortunately, for good
results the databases in these approaches have to contain
an infeasible number of different trajectories in order to
cover the amount of possible maneuvers. Additionally, the
interaction of traffic participants is not considered as in
following papers.

In contrast to the previously introduced approaches, the
one presented in [5] and [6] is able to learn new motion
patterns on-line while predicting the future movement of an
object. For that purpose, the authors use Growing Hidden
Markov Models. This approach worked well in their exper-
iment on a parking lot.

In [7], a combined optimization of the motions of all
vehicles in a particular traffic scene is performed using a cost
function which punishes unsafe maneuvers of the vehicles.
Additionally, this cost-function considers secondary goals
like comfort and fuel consumption. However, this approach
is based on the assumption that the traffic participants are
centrally controllable.

In [8], the cognitive architecture Adaptive Control of
Thought Rational (ACT-R) is introduced. The goal of this
framework is to model human driving behavior including
human perception, e.g. the steering motions are predicted in
consideration of the delay, caused by cognition and human
constraints regarding motor capabilities. The main focus of
this framework is the comprehension of the way a vehicle
is driven, but not to predict the actions of drivers, especially
under mutual influence.

An approach using model based motion prediction for
situation and threat assessment is presented in [9]. For that
purpose, the authors introduce two parameters: Predicted Ob-
ject Minimum Distance (PMD) and Predicted Time to Object
Minimum Distance (TPMD), which serve as a measure for
the threat of a situation, outperforming the commonly used
Time to Collision parameter in their experimental results.

A framework for designing an accurate vehicle motion
model is described in [10] and extended in [11]. This model
includes the expected driver input, enabling an accurate
long term prediction, using cost functions which depend
on the individual driving style and intention of the driver.
Information about the individual driving style is obtained
by previous observation. The authors introduce an approach
for the classification and recognition of maneuvers, which
a driver likes to perform. The expected driver input can be
computed by minimizing the cost function. It is possible to
predict the future trajectory with respect to the postulated
goals, the interaction of drivers is not considered.

In [12] an approach for vehicle maneuver identification
and driver’s intention prediction is presented. In order to
recognize early which maneuver a driver is performing, a

Dempster-Schafer reasoning system is utilized, based on the
theory of evidence. The authors use measurements like PMD,
TPMD, Time to lane crossing (Tlc), or Distance from vehicle
in path to identify the maneuvers. Although this approach
helps to identify maneuvers the ego vehicle driver is likely
to do, it does not estimate the future trajectories of the other
vehicles, which makes it unsuitable for situation assessment.

In [13], the motion of a vehicle is described by a dif-
ferential equation and abstracted by a Markov chain which
consists of discrete states called reachable sets. They repre-
sent possible states which can be reached in a certain time
interval. The transition probabilities of the Markov chain are
obtained from the vehicle dynamics. The input is discretized
and also abstracted by a Markov chain. From observation
and heuristics the computation of the transition probabilities
is achieved. In contrast to the former approaches, interaction
of traffic participants is not neglected. For example, if a
slower vehicle arises in the same lane, the probability of a
lane change will increase. The safety assessment and motion
prediction approach of [14] uses a dynamic motion model as
well. With this model, the future trajectories can be computed
for known control inputs. If this is available for all traffic
participants, their trajectories can be checked for collisions.
But as the inputs are unknown, the prior probability distri-
bution has to be estimated with goal functions which model
the drivers’ behaviors. Monte Carlo sampling is used to find
an approximate solution for several trajectories. Further [15]
obtains a posterior distribution of the future inputs, assuming
that drivers try to avoid collisions. With this posterior dis-
tribution, threat assessment can be done. However, constant
velocities are assumed for the vehicles except the currently
considered one. Thus, it is not considered that an obstacle
may react on an upcoming vehicle.

An approach for motion prediction and risk assessment
for lane-crossing scenes can be found in [16] and [17]. The
authors separate the intention of drivers and the expectation
of their motion. In order to avoid high complexity, Dynamic
Bayesian Networks are used to model the motion of vehicles
near intersections with the intention and expectation as
hidden variables. Interference between these variables is
assumed to be a measure for risk. Although this approach
is tailor-made for crossings and uses a different theoretic
background, it has parallels with the presented one as it con-
siders the mutual influence of traffic participants. Likewise
it distinguishes between the high-level intention of drivers
and their situation-aware driving. This work also differs from
works like [18], where the control input is implicitly chosen
in a cooperative manner based on global knowledge of the
desired goal.

In contrast to the presented algorithms, which do not
consider the interaction of drivers sufficiently, the following
novel algorithm focuses on the interaction of traffic partici-
pants in order to achieve more reliable motion prediction.

III. PROBLEM STATEMENT

This framework aims to predict the future motions of
vehicles on highways. Like [15], this framework is based



on the postulate that drivers will not perform maneuvers
with high collision risks if safer options are possible. As
shown before, the common approach to situation prediction
implies independent prediction of each traffic participant.
In contrast, the approach needs to be extended in order
to respect the interaction of the drivers. Therefore, it is
necessary to distinguish between the intention and the ex-
pected behavior of the drivers. The intention expresses which
trajectory drivers want to drive having some high-level goal
in mind, while the expectation incorporates knowledge about
the current traffic scene. The first can be approximated with
the presented common techniques, the latter is estimated with
this novel approach. To achieve this, perfect perception of
the traffic participants is assumed. With this, the framework
will provide an improved estimation of the future motion,
making use of the characteristics of structured environments
like highways.

All traffic participants are able to perform different motion
trajectories, superimposed in m. The future motion of the
i-th vehicle can be modelled with a distribution function
fi, that assigns trajectories a certain probability. The desired
output of the motion prediction is therefore the most accurate
estimate of f;.

IV. APPROACH

The work assumes that the future motion of traffic partic-
ipants can be estimated as a combination of the intention of
each driver and the driver’s local risk assessment to perform
a maneuver. A situation based approach is presented in the
following that unifies the intention and the threat estimate of
all drivers, leading to an interaction-aware motion prediction.

Given a traffic scene, the probability that a collision will
occur anywhere in the whole scene is

PC) = /Ind(0|m)f(m) dm (1

with C the event of a collision. The function f(m) combines
the distribution functions f; to a continuous probability
distribution for the infinite number of possible combinations
of future motions of all vehicles in the road scene. These
future trajectories determine how traffic situations will evolve
in the future. The index-function Ind(C|m) equals one if at
least one collision between two vehicles occurs, else zero.
With this information, this approach should improve the
prediction of the situation. Fig. 2 illustrates that the possible
trajectories a driver can perform is only restricted by the
dynamic constraints. The number of possible trajectories is
infinite even for a single vehicle. It is therefore not feasible to
solve the combination of possible trajectories for all vehicles
as in (1).
A. Discretization of the Continuous Movement Space

Making use of the fact that highways can be seen as
a structured environment, the infinite number of possible
movements a driver is able to perform can be approximated
by a limited number of different maneuvers. Some examples
for the discrete maneuvers on the highway include lane
changes, acceleration, maintaining the speed, deceleration,
and combinations as illustrated in Fig. 3.

Fig. 2: The possible future positions of this vehicle on a highway are only
restricted by the dynamic constraints. The black circles, called “Circles of
Forces”, define the area which a vehicle is able to reach in a particular time.
The green arrows show possible future trajectories in this area.

Fig. 3: The arrows show example trajectories for the allowed maneuvers.
Red arrows label braking maneuvers. Green arrows show trajectories which
keep their speed and the blue ones indicate an acceleration of the vehicle.

B. Approximation of the Collision Probability

For the approximation of (1) and simplification of the
notation, some sets are introduced. The set V := {v1,v2, ...}
with |V| = v contains all v traffic participants of a road
scene. Each vehicle v; can perform maneuvers from the set
M; = {m;1,m;2,...} with |M;| = m,. In order to obtain
the possible future evolutions of a road scene, the sets M
are permuted,

S=Mix Maxox My=T]_ M, @

S| = H;l mi.

Hence, the set S consists of all |S| possible future evolutions
of the current traffic scene i.e. all possible combinations of
maneuvers. The set S contains all future scenes s € S, where
s is a v-tuple with s = (s1,2,...,5,). An example for a
maneuver combination s is illustrated in Fig. 4.

Fig. 4: The red arrows demonstrate one out of all possible maneuver
combinations for this road scene. As each vehicle within this scene has
three different opportunities to act, there are m1 - mo - m3 = 27 different
maneuver combinations.

Each element s; of the tuple represents a certain ma-
neuver m; ; of vehicle v;, so S = {(s1,82,...,8,)|Vi €
[1,v]: s; € M;}. With the limitation of possible maneuvers,
the integral in (1) is approximated with a sum

P(C) =) P(Cls)f(s),
seS
where f(s) is the discrete probability distribution. P(C/s)
is the risk that a collision occurs in a scene and can
be determined with a stochastic collision checker [19] or
with a stochastic reachability analysis [13] for all pairs of
vehicles in the scene. As each element s; of the tuple s =



($1,82,.-+,84,...,8,) can be assigned a certain maneuver
m, j, the probability, that a certain scene s occurs, is

fs) = _H fi(si) = _H fi(miz). 3)

The probability that vehicle v; performs the maneuver m; ;
is denoted by the intention distribution function f;(m; ;).
Preliminary note that (3) assumes stochastic independence of
the distributions f;(m; ;). The value of f;(m, ;) is defined
by a probability distribution of M;. This distribution can be
seen as a free space motion including high-level intentions
but ignoring other vehicles.

For the computation of the conditional collision risk,
depicted as P(C|my,p), a further set S, , C S is defined

Sqp i =1{(51,52,...,8¢,...,80) ES|sqg=mgp}
. S .
with |Sy | = ‘m—‘ where S, consists of all maneuver com-

. . . 4 . .
binations s which include the maneuver m, , of vehicle v,.
Hence, the conditional collision risk is

__ S PCl9fs). @

fa(mqp) .

With this information the prior intention estimation is ad-
justed to obtain an interaction-aware distribution.

P(C|mq7p) =

C. Applicability of the Globally Optimal Solution

If a communication frame was available the overall colli-
sion risk of situation P(C') could be cooperatively optimized.
But in contrast to [7], this framework covers the case that
no centralized cooperation is expected. Instead, it is assumed
that the drivers locally optimize their trajectories based on
the estimation of the intention of the surrounding drivers.

D. Implementation

To improve the prediction of the future movement of the
traffic participants the algorithm adapts the prior intention
estimations f;(m; ;) of the maneuvers by computing the
collision probabilities P(C|m, ;) and taking the interaction
of traffic participants explicitly into account.

1) Calculation of the Collision Probability P(C|m; ;):
Instead of setting up a table of all maneuver permutations,
an iterative approach is used, avoiding the need to store
the high amount |S| of all permutations. This approach
computes the values f(s) and P(C|s) at the same time,
when the maneuvers of the vehicles are permuted. After each
permutation, the value of the product f(s)P(C|s) is added
to the corresponding collision probabilities P(C|m; ;) of the
maneuvers m;_;, which are part of the combination s.

The algorithm can be efficiently implemented:

o Initialize P(C|m; ;) = 0 for all m;; € M, for all

v; €V

o Permute all maneuver combinations s € S and add the

product f(s)P(C|s) of the occurrence probability

1) =TI, fits) =TT_, fitmiy).

and the collision risk of the current combination s

v—1 v
pCls)y=1-]] TI - P(Clsi,sx)).
i=1 k=i+1
to the collision probability P(C|m;_;) for all maneuvers
with ms ;5 = S;.

o Divide P(C|mi’j) by f(mw)

With these instructions, the collision probability P(C|m; ;)
of each possible maneuver is obtained. Due to the fact that
the collision probabilities P(C|m; ;) are now known, it is
possible to adapt the prior distribution f;(m; ;) of each
vehicle depending on the value of P(C|m; ;).

An example permutation for the three vehicles in Fig.4
which are able to execute three different maneuvers is shown
in Tab. 1. Additionally, the probability f(s) and the collision
risk P(C'|s) of each combination s are given.

Permutations of the maneuvers

v1 mi1 mi1 0 M1l mi1 M1l mia
v2 m2,1 Mm21 M21 M22 M22 M22
v3 m31 M32 M33 M31 M32 M33
f(s) J1(m1,e) f2(m2,e) f3(m3,e)

P(C‘S) P(Clml,th,-,mS,o)

TABLE I: Example for the permutation of three vehicles with three possible
maneuvers.

2) Modification of the Prior Distributions: How drivers
react on their risk estimation should be learned from data. For
this interaction model, an exemplary approach distributing
the probabilities linearly to the collision risk and the intention
estimation is to set fMV(m; ;) = fi(m; ;)g(P(C|m; ;)) for
each maneuver m; ; of each vehicle v; with

P(C|ml7j) - minmi,kEMi P<C|mi,k>

P - ))=1—
g( (C‘mla])) 1-— minmq‘,,kGMz‘ P(C'mz’k)

Of course, f/°" needs to be normalized to one to get
from(mg ;). In the result f°™(m, ;) the interaction of the
drivers has been incorporated explicitly into the intention
estimation f; to obtain a more reliable motion prediction.
The following shows results of the described algorithm.

V. RESULTS

In order to evaluate the presented approach the algorithm
was exemplarily implemented in C++. Example simulation
road scenes were created and real-world data has been used
to test the approach. Therefore, trajectories for the maneuvers
were generated and checked for collisions. The presented
approach was integrated in the framework of [20].

Minimum jerk trajectories are used to simulate human
driving. For computing the trajectories, a road aligned co-
ordinate system is used. As sketched in Fig.5, this Frenet
system consists of two coordinates s(t) and d(t) where
the s-coordinate runs parallel to the road lane and the d-
coordinate is perpendicular to the lane. Note that trajectories
are represented more realistically in the Frenet frame. A more
detailed look at the trajectory generation is given in [21].

As collision checker for the minimum jerk trajectories
the approach of [19] is used to obtain the collision risk



Fig. 5: Illustration of the Frenet frame. The coordinates s and d are the
longitudinal and lateral displacement of the center of the street respectively.

P(C|s). It tests if a collision will occur between two vehicles
when they drive certain maneuvers. For the computation of
P(C|s), (4) possible pairs of maneuvers have to be tested
for collision.

Note, that the presented approach is designed to work with
arbitrary trajectories and collision checkers.

A. Simulated Highway Scene

This example serves as a demonstration of the function-
ality of the presented algorithm. Additionally, the changes
from the prior intention estimate to an interaction-aware
distribution is shown. With the stochastic collision checker
it is possible to compute the values of the collision risks
P(C|m; j,mk;), ¢ # k. The possible maneuvers of the
vehicles and their prior estimated intention distribution are
given in Fig. 6b.

V2 U3
(a) Seven vehicles v1, . .., v, on a highway with three lanes. As an example
the arrows indicate nine possible maneuvers of vehicle v4. To distinguish

between the maneuvers brake, keep velocity, and accelerate, the length of
the arrows is varied. For clarity, the maneuvers of the others are not drawn.

v; Prior Intention Estimate f;(m; ;) in %

Middle lane

Right lane Left lane

<0 =0 >0 <0 =0 >0 <0 =0 >0
vy 80 500 8.0 8.0 180 8.0 - - -
vo 80 500 8.0 8.0 180 8.0 - - -
vy 80 500 8.0 8.0 18.0 -
vge 5.0 100 5.0 50 500 5.0 50 100 5.0
vs 5.0 10.0 5.0 5.0 50.0 5.0 5.0 10.0 5.0
ve - - - 8.0 180 8.0 80 500 8.0
vy - - - 8.0 180 8.0 80 500 80

(b) This table lists the probabilities, that drivers perform a certain maneuver.
These values have yet not been modified.

CH v1 v2 Gk V4 U5 Ve v7

Speed in kmh 140 100 80 160 110 200 180

(c) The vehicles drive at different initial speeds which are listed in this table.

Fig. 6: Simulation highway scenario.

All vehicles are assumed to be able to brake (a < 0),
accelerate (a > 0) or to keep their velocity (¢ = 0) with
a as longitudinal acceleration. In addition they have the
opportunity to stay on their lane or to change to adjacent
lanes. Lane changes over two lanes are not allowed. In future
studies, the chosen discretization has to be verified with real

world data. For example, the probability that vehicle v, keeps
its lane and velocity, is assumed to be 50%. The vehicles vy
and vz are on the middle lane as sketched in Fig.6a. The
figure contains a highway with three lanes and seven vehicles
v;, which are moving with different speeds. Their speeds are
listed in Fig. 6¢.

Applying the stochastic collision checker to this highway
scenario, the values of Fig. 7a are obtained for the collision
probabilities P(C|m; ;). Note how high and unrealistic these
values are as no interaction has been integrated yet.

v; Collision Probabilities P(C|m; ;) in %
Middle lane

Right lane Left lane

<0 =0 >0 <0 =0 >0 <0 =0 >0
v1 86.0 859 98.6 944 864 94.6 - - -
v2 90.9 906 936 886 81.8 819 - - -
vz 974 888 795 960 860 834 - - -
vg 828 850 856 881 883 889 947 915 915
vs 982 71.6 716 985 90.1 90.1 80.0 952 952
ve - - - 76.5 84.1 880 756 932 932
v7 - - - 975 929 929 855 855 855

(a) The collision probabilities P(C|m; ;) of vehicles, performing certain
maneuvers, are listed.

v; Interaction-aware Distribution f'°™(my ;) in %

Middle lane

Right lane Left lane

<0 =0 >0 <0 =0 >0 <0 =0 >0
vy 9.7  60.7 0.9 39 211 3.7 - - -
vy 6.3  40.6 44 79 283 125 - - -
v 1.8 48.2 14.1 2.8 21.7 114 - -
vy 7.4 12.9 6.2 5.1 503 4.8 2.3 7.3 3.7
vs 0.8 245 123 0.7 427 4.3 8.6 4.1 2.1
ve - - - 162 247 83 168 293 4.7
vy - - - 1.7 110 49 100 622 103

(b) The interaction-aware maneuver probabilities are estimated from the
intention estimation and the collision probabilities.
@

U1 Vg V3

(c) The figure sketches all maneuvers of the interaction-aware prediction
with the probability ff°™(m; ;) > 10% with arrows. Red arrows indicate
braking maneuvers, while green arrows and blue arrows illustrate maintain-
ing the current speed and longitudinal acceleration respectively.

Fig. 7: Results of the collision checker and the presented algorithm.

In order to modify the prior distribution, the adjustment
step of IV-D.2 is applied to the collision probabilities. The
results are presented in Fig. 7b.

This scenario has been computed on an off-the-shelf
Intel Core i7-2600 with 3.4 GHz in a multi-threaded C++
exemplary implementation. The |S| = 629,856 scenarios of
this example have been calculated in less than 4.5 ms, so the
computational time is very promising even for more com-
plex scenarios. In Fig.7c the most probable future actions
from(m, ;) > 10% of the vehicles are illustrated by the
arrows of the vehicles.

B. Real-world Highway Scene

The presented algorithm has also been tested with recorded
data from a German highway scene. Fig. 8 shows a frame of
the trip that is evaluated with the novel approach. Again, the
vehicles have been assigned an intention estimation analog
the values in Fig. 6b. In future implementations these values



(a) Photo taken with the front camera on a highway scene with several
surrounding vehicles.

(b) With sensor data and tracking system constructed top view of this scene.
The ego vehicle is painted in white, all surrounding vehicles in green.

Fig. 8: Real-world scene with multiple vehicles from a trip on a highway.

are chosen according to a cost function that penalizes jerks,
deviations e.g. from the lane and time.

In Fig.9 the results of the algorithm are presented. The
situation with |S| = 22,674,816 has been predicted in
342.5ms on the same processor.

v; Interaction-aware Distribution f°™(m; ;) in %

Middle lane

Right lane Left lane

<0 =~0 >0 <0 =0 >0 <0 =0 >0
vy - - - 10.0 58 26 100 625 9.2
vy 0.0 0.0 0.0 62 618 84 114 8.1 4.1
vz - - - 95 202 94 70 438 10.1
vg 136 77.0 5.0 1.5 22 08 - - -
vs - - - 4.1 132 69 45 624 8.9
ve 1.8 56.0 10.1 83 165 74 - - -
vr - - - 57 109 49 9.7 594 9.5
vg 0.0 0.0 0.0 73 646 6.5 52 103 6.3
vg 39 764 122 1.5 42 19 - - -

Fig. 9: First results for a real-world scenario on a highway: The posterior
probabilities, that drivers perform a certain maneuver respecting the current
environment, are given in this table.

VI. CONCLUSIONS

In this paper, a novel approach for motion prediction
and threat assessment of objects in structured environments,
like highways or crossings, is presented. The approach is
developed for driver assistance systems as well as for au-
tonomous driving. The systems assess the danger of possible
future trajectories. For that purpose, they require a reliable
prediction of the movements of other traffic participants. Due
to the fact that the drivers have a mutual influence on each
other, it is necessary to consider the interaction of the traffic
participants in order to obtain a reliable prediction. Taking
the interaction explicitly into account, this framework offers
reliability and differs from already existing approaches which
do not consider the interaction sufficiently. In simulated and
real-world scenarios, the computation time of an exemplary
implementation of this approach is shown to meet the on-line
requirements. Future work includes evaluation of the chosen
interaction model, tests with inter-vehicle communication
and different environment settings.
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