
  

 

Abstract With the recent emergence of electric drivetrains, a 

faster and energy efficient braking actuator   the electric 

motor   has become available to complement the operation of 

the traditional friction brakes. The decision on how to split the 

braking torque among the friction brake and the electric motor 

is one of the main issues of such hybrid braking systems. With 

this challenge in mind, a new model predictive control 

allocation (MPCA) approach for hybrid braking is proposed. 

In comparison to state of the art torque blending solutions 

(daisy chain and dynamic control allocation) the MPCA offers 

faster transient response, without compromising the energy 

recuperation efficiency of the actuators. In addition, we also 

develop a linear wheel slip controller to regulate the braking 

force during emergency braking maneuvers. The tuning of this 

wheel slip controller is carried out using robust pole placement 

techniques, which ensures good operation in spite of 

uncertainties in the tire-road friction coefficient and the 

vertical load. Simulation results demonstrate the effectiveness 

of the proposed method. 

Keywords: wheel slip control; control allocation; model predictive 

control allocation; brake blending; recuperation  

I. INTRODUCTION 

The evolving class of electric vehicles (EV) with near-wheel 
motors and brake-by-wire provides new possibilities of 
motion control, such as torque vectoring and hybrid braking.  
Our robotic vehicle ROMO [1], with four in-wheel motors 
(IWM), represents an example of such powertrains. In these 
powertrains, the regenerative capabilities of the traction 
motors can be used to support the brake-by-wire friction 
brake (FB) system during braking. In this situation the motor 
is used as a generator and recharges the batteries or capacities 
of the EV. Therefore, from an energy-consumption 
standpoint, it is preferable to maximize the usage of the 
motor torque during braking. Moreover, due to the fast and 
precise response of the traction motor, this electric actuator 
can also be used to improve the bandwidth of the wheel 
torque and wheel  slip control [2].  
From a control point of view, the braking system of an EV 
can also be regarded as an over-actuated system. This is 
because the EV’s braking force is realized by a redundant set 
of actuators: traction motor(s) and friction brakes. Static 
control allocation (CA) [3] represents a well-known 
technique to cope with such redundant actuation system. This 
formulation allows dealing with actuator failures and its 
saturation. However, no actuator dynamics are explicitly 
considered in this formulation and, therefore, the application 
of CA is unable to extract the maximum benefit from hybrid 
braking systems.  
To attenuate these limitations, dynamic control allocation 
(DCA) has been proposed [4]. The main idea is to add a 
dynamic penalty in the cost function - to be optimized - and 

adapt the inequality constraints when the actuator rate limits 
occur. Reference [2] applies this approach to the torque 
blending problem, i.e. the split of braking torque among the 
friction brake and the electric motor. Albeit being capable of 
improving the transient response of the hybrid brake system, 
the DCA algorithm relies on an ad-hoc strategy to implicitly 
cope with the actuator dynamic model.  
The explicit incorporation of actuator’s dynamics models 
becomes possible using the third approach examined here: 
model predictive control allocation (MPCA). This approach 
combines Model Predictive Control (MPC) with CA. Thus, it 
is an optimization-based CA approach that can handle 
actuator dynamics (formulated as equality constraints) and 
range and rate limitations (posed as inequality constraints). 
The explicit consideration of the actuator’s dynamic model 
allows inverse pre-allocation of the control setpoint, which 
improves the individual actuator dynamics. Motion control of 
launch and reentry vehicles, marine vessels and thermal 
management problems represent recent examples where the 
MPCA has been successfully applied [5] [6] [5] [7] [8] [9]. In 
this context, the first contribution of this paper consists in the 
application of the MPCA technique to the torque blending 
problem.  
An additional goal of this paper consists in the design of a 
practical, but robust, linear wheel-slip controller. Reference 
[10] reports a static linear well-slip controller to prevent 
excessive wheel slip. However, this controller cannot take 
into account the large variations of the tire road uncertainties. 
To mitigate this issue, variable-gain linear controllers, based 
on velocity-based variable gain Proportional+Integral 
strategies, have been reported in the literature [11], [12]. The 
idea of the velocity-dependent controller gains will be 
extended in this paper using a new formulation, based on 
robust pole placement techniques. 

II. MODELLING AND CONTROL FRAMEWORK  

A. Overview of the Control System 

In this work, we will consider an electric vehicle (EV) 
equipped with four IWM and four FB, similar to the ones 
employed in the ROMO vehicle [1]. It will also be assumed 
that the EV is endowed with a vehicle dynamics controller 
(VDC), responsible for translating the motion demands 
specified by the driver (e.g., velocities and/or forces) into 
wheel steering and wheel torque set points, as illustrated in 
Figure 1 and described in [13], [14]. Based on the wheel 
torque set points, it becomes necessary to find an appropriate 
splitting strategy between electric (  ) and friction brake 
torques (  ), i.e. the torque blending. Towards that goal, we 
will follow here a methodology similar to the one resented in 
[2]. More specifically, each wheel of the vehicle has its 
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associated torque blending block, composed of three sub-
components (see Figure 1): 
i) a wheel slip controller; ii) a torque allocator; and iii) a 

supervisor. The first block, the wheel slip controller, 

manipulates the wheel torque set point in case of emergency 

braking in order to prevent excessive - and potentially 

dangerous - tire-slip. The second block, the torque allocator, 

distributes the wheel slip controller torque demands   
  

among the two braking actuators. While doing so, the aim is 

to maximize the energy recuperation during normal braking 

(i.e. when   
    

 ), and the promotion of a good transient 

response and slip control performance in wheel slip 

controller operation. Finally, the supervisor manages the 

total torque blending process by activating/deactivating the 

wheel slip controller and adapting the allocation 

parameterization. In the remainder of this section we will 

describe practical control-oriented models for the vehicle 

longitudinal dynamics and actuators, which will be used 

later on for the design of the torque blending controller. 

B. Control-Oriented Modeling  

As a starting point for the modeling, let us consider the 

single corner model, widely used in the literature, e.g. [15].  

The first equation (1) accounts for the wheel rotational 

dynamics as defined in Figure 2, where   is the wheel-

inertia,   is the wheel rotational speed,   is the wheel 

radius,  ( ) the slip dependent friction coefficient defined 

in equation (4) and    is the wheel drive or braking torque. 

The second equation (2) is related with the translational 

speed   of the car, where   is the mass of the quarter 

vehicle,       contains aero, dragging and other losses in the 

car. The tire slip   according to (4) will be the controlled 

variable for the wheel slip controller. To take into account 

the actuation dynamics, the above representation is 

augmented with the following control-oriented models of 

the electric motor and the friction brakes. 

          (5) 

   
      (     

) (6) 

    ̇ ( )    
 ( )    ( )         (7) 

                ̇    ̇          (8) 

Here,    is the control set point for the motor (index    ) 

and the brake (   ) that is transmitted to the actuation 

layer. The parameter    represents the time-constant of the 

actuator response,    its gain and    
 a dead time, which may 

appear due to communication delays and other factors. 

Finally,    and    are the actual minimum and maximum 

braking torques that each actuator can provide (cf. [2]) and 

 ̇  the maximum rate limits. Equation (7) describes the linear 

actuator behavior and equation (8) the actuator limits. In the 

case the actuator is in its limits, equation (7) loses its 

validity. 

The parameters employed in the single corner model are 

defined in Table I. Inspecting these values, there are three 

noteworthy facts. First,      . Consequently, the transients 

of the friction brake can be improved by the electric motor. 

Second, the friction brakes can provide higher braking 

torques than the electric motors, i.e.      . This factor 

makes the deployment of the friction brakes unavoidable 

during strong braking maneuvers.  

Using the Modelica optimization library [16], we managed 

to parameterize the control oriented models of (7) and (8) 

with a   -fit of     on our brake testbench as demonstrated 

with Figure 3. 

III. WHEEL SLIP CONTROLLER 

In this work, a wheel slip controller was designed following 
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Figure 1: Control architecture employed in this work 
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Figure 3: Comparison of the pressure responses of the control-oriented 

model from (7) denoted as      with the real by-wire friction brake (  : 

measured pressure).    is setpoint.  

Figure 2: Single corner 
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a wheel-slip regulation setting based on the single corner 

model (1)-(4). The aim is to manipulate the wheel braking 

torque during emergency braking such that the tire slip 

follows a setpoint   . A good choice for this setpoint is the 

supposed value of   where the tire-road friction coefficient 

 ( ) takes on its maximum (e.g., see [17] for additional 

details). By differentiating (3), inserting (1), (2), and 

assuming here         , yields 

  ̇  
  (   )

  
   ( ( )    ) (9) 

which uses the abbreviations  

  ( )   (  (   )
 

   )    ( )   ;    
 

  
  (10) 

according to [2], [15]. 

A. Linearization of the Wheel Slip 

To address the abovementioned control problem, we need a 

linear model of the wheel slip. Therefore, we linearize (11) 

around the equilibrium point. As long as the term   does not 

become zero (i.e. assuming non-zero speed), the equilibrium 

point of wheel slip (i.e.  ̇   ), characterized by the pair 

(       ), must fulfill the constraint         (   ) in (9). 

Now, let us define the input and output deviations with 

respect to this equilibrium point,  

                         (11) 

By linearizing the model (9) around this equilibrium point, 

we obtain the following approximation:  

   ̇  
 

  
 (

  

  
    )    (     ) (12) 

 with     
  

  
|
     

 (13) 

Subsequently, we will regard the vehicle speed   as a 

slowly-varying known parameter; this approach is justified 

by the fact that the tire slip dynamics normally are much 

faster than the vehicle velocity dynamics [15]. Furthermore, 

we will consider   as an uncertain parameter that lies in the 

range        . Effective bounds     can be determined 

by variation of all uncertain parameters that affect the partial 

derivative of  ( ) according to (13).  

The transfer function of the linearized wheel-slip dynamics 

is extracted from (12) using the Laplace transformation. 

Despite its simplicity, it is important to stress that the 

stabilization of this plant is not trivial. This is mainly due to 

the high level of parameter uncertainty that affects the 

plant’s model, and which modifies its transient and stability 

characteristics. 

B. Controller Design 

The goal of the wheel-slip controller is to manipulate the 

torque difference   such that the slip difference    reaches 

the difference setpoint           , with some pre-

specified dynamics, in spite of the model’s parameter 

uncertainty. Notice that, in practice, we normally have a 

difference setpoint equal to zero,      , i.e. the slip 

setpoint is the same as the equilibrium point selected for the 

linearization; nonetheless, non-zero difference setpoints may 

also be applied. In order to fulfill the control goal we will 

explore here a gain-scheduling proportional+integral (PI) 

control law:  

 
 ( )

   ( )    ( )
   ( )  

  ( )

 
 (15) 

where    and    are the proportional and integral gains, 

which may vary slowly with the vehicle speed. To design 

(the scheduling of) the controller’s feedback gains we can 

start by combining (15) together with the linearized plant 

(14). This gives the characteristic polynomial of this closed 

loop system.  

 
    (  ( )

 

  
 

 

  
 )

⏟            
  ( )  ( )

   ( )
 

  ⏟    
  

 ( )

   
(16) 

In other words, this is a second-order system with natural 

frequency   ( ) and damping  ( ). Our design assumes 

robust pole placement where the natural frequency of the 

closed loop matches a desired value and the damping should 

be higher than a minimum value for all          : 

  
 ( )    

 ( ) (17) 

 ( )    ( ) (18) 

For corresponding eigenvalue locations, a set of circular 

arcs, each for a distinct speed, is displayed in the complex 

plane (see Figure 4).  

Solving (16), using (17), (18) for the controller gains, yields 

  ( )  
    

 ( ) 

 
 (19) 

  ( )  
     ( )  

 ( )

 
   (20) 

Table I: PARAMETERS OF THE BRAKING MODEL 

Variable  Symbol  Value 

Wheel inertia       kg/m   

Wheel radius         m 

Quarter car mass         kg 

IWM time-constant         s 

IWM gain      Nm/Nm 

IWM delay    
   ms 

Max. IWM torque        Nm 

Min. IWM torque         Nm 

IWM rate limit  ̇      kNm/s 

FB time constant       ms 

FB gain          Nm/bar 

FB delay     
   ms 

Max. FB torque        Nm 

Min. FB torque      Nm 

FB rate limit  ̇  
     kNm/s 

 

 
  ( )

 ( )
 

 
 

 
  

   
 (14) 
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Concluding from (20) only the upper limit   of   is relevant 

for stability. Considering the Burckhardt tire model, 

     . Henceforth, we adopt a desired natural frequency 

that depends on the inverse of   and a minimum damping 

which is independent of the speed, i.e.:  

   
 ( )  

  

 
           ( )     (21) 

This way, the change of the closed loop bandwidth   
 ( ) 

with speed follows the natural hyperbolic dependency of the 

open loop plant. Further, this approach also limits the control 

effort over the whole operating domain. Robust performance 

in terms of closed loop stability can be ensured by a 

sufficiently high minimum damping   . The values of    

and    represent tuning parameters that the designer can 

specify.  

IV. TORQUE BLENDING STRATEGIES 

This section will discuss the allocation strategies for splitting 

(i.e., blending) the braking torque among the two braking 

actuators. In general this distribution is not unique since a 

wheel braking torque demand   
  can be realized by many 

combinations of      . Therefore, the challenge of 

allocation is to exploit the present redundancy. In the context 

of hybrid braking in EVs, this redundancy is often only 

utilized to reduce the energy consumption of the EV, i.e. to 

maximize the energy recuperation. Here, we are also striving 

for dynamic performance improvement by additionally 

regarding the different bandwidths and constraints (8) of 

each braking actuator. In this section, we will discuss three 

strategies to handle this allocation problem: i) Daisy Chain 

(DC), ii) Dynamic Control Allocation (DCA), and iii) Model 

Predictive Control Allocation (MPCA). The first two 

approaches represent state-of-the-art solutions, while MPCA 

is a new strategy that is proposed in the present article. 

A. Daisy Chain (DC) 

Roughly speaking, the recipe for the daisy chain method can 

be described as: employ the IWM, i.e. the most energy-

efficient actuator, as long as possible, and only add the use 

of friction brakes (the less energy efficient device) when the 

electric torque reaches its saturation. Neglecting the 

actuation dynamics and rate limits, this approach can be 

mathematically described as: 

   
            (  

 ) (22) 

   
            

(  
    

 ) (23) 

where         ( )         represents a saturation 

function block that constrains the passing signal to the 

bounds      . 

This static control allocation approach maximizes the energy 

recuperation. However, its performance degrades at fast 

changing torque demands as e.g. for wheel slip control. 

B. Dynamic Control Allocation (DCA) 

The dynamic control allocation (DCA) approach for brake 

torque blending was investigated in [2]. This approach uses 

optimization to exploit the actuation redundancy. The goal is 

to find a discrete time allocation solution                

at the time sample   that allows for torque distribution in 

frequency domain to make the best of the actuators’ different 

bandwidths for a fast total wheel-torque response. Moreover, 

actuator constraints and energy efficiency related 

performance metrics can be considered. The simplified 

mathematical formulation of this approach is described as 

follows, 

    
  

(‖     ‖
  ‖   (       )‖

 ) (24) 

                       
          (25) 

                      ;             (26) 

where k is the discrete time sample index and   ,    are 

weighting matrices. The first constraint (25) ensures steady 

state achievement of the demanded wheel torque. The 

second constraint (26) reflects the actuator range and rate 

limits (8). Note that the index i stands for the type of 

actuator (brake or motor) and k indexes the time sample. 

Here,      is the torque allocation solution obtained in the 

previous allocation sample. 

C. Model Predictive Control Allocation (MPCA) 

The Model Predictive Control Allocation (MPCA) approach 

[18], applied to the torque blending problem, can be 

conceived as an extension to DCA. The main advantage of 

the MPCA is related with its systematic approach to deal 

with the actuator dynamics. More specifically, instead of 

relying on an ad-hoc cost function to implicitly cope with 

the actuator dynamics (as it is done in the DCA), the MPCA 

explicitly incorporates the actuator’s dynamic model as a 

constraint in the optimization problem. With this approach, 

more complex and precise actuator models can be handled in 

the torque blending process. In contrary to DCA, high-order 
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Table II: WEIGHTS OF THE DCA AND MPCA IN THE NORMAL 

AND EMERGENCY BRAKING SITUATION 

Type DCA    DCA    MPCA   
MPCA 

   

normal     (       )     (   )     (         )     

emergency 
    (   

           ) 
    (          )     (       )    
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actuator models and actuation delays can be incorporated in 

the MPCA formulation. 

Similar to traditional MPC, MPCA relies on optimization of 

a finite horizon prediction of the controlled system. (In our 

case, the plant is only represented by the braking actuators). 

The goal is to find the actuator setpoints    that will 

minimize a weighted cost function for trading off between 

traction error                
  and actuator energy 

consumption    while fulfilling the actuation constraints and 

dynamics. The minimization problem over the moving 

prediction horizon with the length   is formalized as 

follows: 

    
     

    ∑  

 

   

  (     )
 
 ∑  

   

   

  
     (27) 

                        (28) 

                          
  (29) 

                                       ;         (30) 

The triplet (     ) is the discrete time state space plant 

representation being composed of the discretized actuator 

models (7) using a first-order hold approximation. 

Correspondingly,    is the state vector. The constraints (28)-

(30) reflect the state and actuation limits (8). 

The MPCA formulation (27)-(30) has three tuning 

parameters:  ,    and  . As a rule of thumb, the control 

horizon   should capture the fundamental parts of the 

actuator transients [19]. The actuator effort is penalized by 

means of       (      )  and the tracking error at the 

time   with   . 

The MPCA formulation adopted here follows the receding 

horizon strategy, well-known from MPC [19]. At each time 

step, (27) is solved, and then only the first element of the 

control vector,     , is applied to the actuators. This 

procedure is repeated at each sample instant. 

As already mentioned, the main advantage of the MPCA lies 

in its superior consideration of the actuator’s dynamics. In 

fact implicit compensation of the actuator dynamics 

improves the closed loop transient performance [20], [18]. 

On the other hand, MPCA generally involves high 

implementation effort and computational time to solve (27) 

compared to DC and DCA. Nonetheless, due to the fast real-

time numerical solvers that are currently becoming available 

[21], together with the increasing computational capabilities 

of embedded systems, the real-time implementation of 

MPC/MPCA is getting easier to accomplish. 

V. SUPERVISOR 

A basic task of the supervisor (cf. Figure 1) is to monitor 

wheel slip (both traction and brake slip). In case of excessive 

slip the supervisor activates wheel slip control. During 

braking, adaptions to torque blending parameters can be 

scheduled by the supervisor. Notice that only the DCA and 

MPCA have tunable weights; for the DC no adaptation is 

possible. Table II presents the weights employed in this 

work, which varies according to the braking modes. Two 

modes are considered here:  

1. Normal braking: the focus of this mode is to 

maximize energy recuperation. Thus the use of the 

IWM is assigned to a lower penalization; in other 

words,     (DCA) or    (MPCA) are set to a low 

value.  

2. Emergency braking (high braking torque demand and 

excessive wheel slip): the focus of this mode is a fast 

wheel-torque response, helping to improve the 

dynamics of the wheel slip controller. Therefore, the 

weightings of the dynamic component    (DCA) or 

the scalar    (MPCA) are emphasized.  

VI. SIMULATION RESULTS 

In this section the performance of the three introduced 

allocation strategies is compared. In order to assess the 

different torque blending algorithms, a predefined torque 

pattern is used together with the following performance 

metrics (adapted from [22]): 

         : potential for energy recuperation  

          
 ∫     (    )

 

 
  

∫    (   
   |  |)  

 

 

 (31) 

        : the normalized quadratic mean value of the 

torque error over the time   

 
        

√ 
 ∫ (  

  (     ))
   

 

 

(     )  (     )
 

(32) 

         : the mean computation time per sample 

evaluated using a core i7 m6202.67GHz 8Gb RAM 

A. Driving Cycle Evaluation 

The first validation test uses the supplemental FTP driving 

cycle [23] to generate some practical brake torque demands 

  
  as input for the torque blending. The goal of this test is to 

evaluate how the different torque allocation strategies 

perform during braking maneuvers inducing only moderate 

wheel slip. The aggregate results shown in Table III reveal a 

very similar performance among the three allocation 

algorithms under evaluation. In particular, all three strategies 

are able to maximize the energy recuperation, while keeping 

a low wheel-torque tracking error. The computational effort 

of the MPCA is increased compared to the DCA. However, 

the solution of the MPCA problem is still gained within 

milliseconds. 

Table III: COMPARISON OF THE TORQUE BLENDING 

ALGORITHMS DURING THE SCALEDD SUPPLEMENTAL FTP 

DRIVING CYCLE [23] 

Type of Metric DC DCA MPCA 

                        

                       

              ns  ms 
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B. Pseudo Random Binary Sequence (PRBS) Torque 

Demand 

In the second evaluation test, a pseudo-random binary 

sequence (PRBS) [24] was injected in the torque setpoint   
  

of the torque blending. The aim of this test is to evaluate 

how the different torque blending strategies behave when 

fast torque transients are demanded (which may appear as a 

result of the superordinate wheel slip controller activation). 

The PRBS torque demand is scaled such that both brake 

actuators become activated during the test. Figure 5 shows 

the result of the torque blending algorithms, when excited 

with the PRBS signal. Inspecting the        , one can find 

that the DC is, from a torque-tracking standpoint, the worst 

solution. On the other hand, from an energy efficiency point 

of view, DC and MPCA offer significantly better 

recuperation capabilities than DCA. In summary, these 

results demonstrate that MPCA exhibits a good trade-off 

between tracking and energy recuperation.  

Figure 5 illustrates the time-response of the three torque 

blending algorithms. It can be observed that both MPCA and 

DCA make use of the fast IWM torque and thus show good 

tracking of the demanded wheel torque. Furthermore, in the 

DCA case, the torque demand applied to the friction brake is 

very smooth, which is a result of the filtering properties. 

This stands in contrast to the MPCA’s friction torque 

setpoint, which exhibits significant jumps after the steps of 

the PRBS signal. The reason for this jump is related with the 

predictive nature of the MPCA, which, in order to improve 

the tracking of the wheel torque demand, allows to pre-act 

on the actuator dynamics. 

 

C. Wheel Slip Control 

The last test compares the three torque blending algorithms 

during an emergency braking wheel slip control according to 

(15). The controller was applied on the four wheel driven 

electric vehicle in Modelica’s powertrain library [25] based 

on the parameters presented in Table I. To make an even-

handed comparison the tuning parameters of the wheel slip 

controller were kept fixed in all the simulations (      , 

        ). 

Figure 6 presents the response of the vehicle model when the 

wheel slip control is tracking a biased square wave setpoint 

of the wheel slip reference   . As can be seen from the first 

subplot, the wheel slip response obtained with the DC 

heavily oscillates around the reference value. To better 

illuminate the difference between DCA and MPCA, the 

fourth and fifth subplots of Figure 6 show the electric and 

the friction torque setpoints generated during the braking 

maneuver. These results reveal that, despite offering similar 

total wheel braking torques, the DCA and the MPCA are 

using the braking actuators in a very different way. In the 

DCA case, the friction brakes    are generally varying 

slowly in time, while the electric motor    is used to cover 

the fast wheel-torque transients. For the MPCA case, one 

can find that the high bandwidth of the electric motor is still 

utilized when fast wheel torque setpoint steps are requested 
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Figure 5: Comparison of the torque blending algorithms tracking a PRBS 

signal 

Table IV: COMPARISON OF THE TORQUE BLENDING 

ALGORITHMS WITH PRBS EXCITATION 

Type of Metric DC DCA MPCA 

                      

                    

              ns  ms 
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Figure 6: ABS wheel slip tracking with DC, DCA and MPCA used as 

torque blending strategies 
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(see, e.g., the transient around    s). However, when the 

system approaches a steady-state condition, the MPCA is 

able to increase again the electric torque usage and 

maximize the energy recuperation, even during emergency 

wheel slip control operation. This performance degradation 

is due to nonlinear behavior of the DC algorithm, which is 

making use of the slower actuator – the FB – during the 

operation of the wheel slip controller. 

The other two algorithms (DCA and MPCA) provide 

significantly better closed loop dynamics and wheel slip 

tracking accuracy. 

VII. CONCLUSION & OUTLOOK 

This paper proposed a robust gain-scheduled PI wheel slip 

control together with a novel model predictive control 

allocation (MPCA) approach to solve the torque blending 

problem of a hybrid brake system. Additionally, we provided 

a detailed comparison between this MPCA and two other 

state-of-the-art allocation solutions (daisy chain and dynamic 

control allocation).  

During moderate and steady braking situations, all of the 

torque blending strategies provide good results. However, 

whenever fast wheel torque variations are needed (which 

may appear as a result of the wheel slip control activation), 

the MPCA and dynamic control allocation outperform the 

daisy chain. Further, the MPCA maximizes energy 

recuperation, even in emergency situations, while the 

dynamics of the braking system is still dominated by the fast 

electric motor. 

Future investigations will include experimental validation of 

both the MPCA and the wheel slip controller on our research 

platform, the ROMO. Another focus will be the integration 

of the wheel slip control in the MPCA formulation. 
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