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Coordinated Standoff Tracking of In- and Out-of-Surveillance Targets
Using Constrained Particle Filter for UAVs

Hyondong Oh, Cunjia Liu, Seungkeun Kim, Hyo-Sang Shin, and Wen-Hua Chen

Abstract— This paper presents a new standoff tracking
framework of a moving ground target using UAVs with a limited
sensing capability such as sensor field-of-view and motion
constraints. To maintain persistent track of the target even in
case of target loss (out of surveillance) for a certain period, this
study predicts the target existence area using the particle filter,
and produces control commands to ensure that all predicted
particles can be covered by the field-of-view of the UAV sensor
at all times. To improve target prediction/estimation accuracy,
the road information is incorporated into the constrained
particle filter where the road boundaries are modelled as
nonlinear inequality constraints. Both Lyapunov vector field
guidance and nonlinear model predictive control methods are
applied for the standoff tracking and phase angle control, and
the advantages and disadvantages of them are compared using
numerical simulation results.

I. INTRODUCTION

The operation of a team of UAVs (Unmanned Aerial
Vehicle) has proliferated in recent decades in both military
and civilian missions. Surveillance and subsequent tracking,
of a moving ground target of interest is one of the important
capabilities of the UAV required to accomplish those mis-
sions successfully while increasing an overall knowledge of
target’s intent and surrounding environments.

To this end, state estimation of the target of interest is
essential by using appropriate tracking filter design with
available sensor data and domain knowledge. Since ground
vehicles are generally moving on road networks whose
topographical coordinates could be obtained, such road-map
information can be used to improve the estimation accuracy
significantly by constraining the state of the target within the
road geometry [1]–[3]. While estimating states of the target,
UAVs also should be able to follow the target persistently.
This is not an easy task due to unknown movements of
the target as well as physical and sensing constraints of
the UAV. As one of solutions for this task, a coordinated
standoff tracking concept is introduced for UAVs, which
is to keep a certain distance (termed standoff distance)
from the moving target, resulting in orbiting around the
target due to the possible speed superiority of the UAV
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over the ground targets. Various approaches for this problem
have been proposed: vector fields [4], differential geometry
[5], controlled collective motion [6], and nonlinear model
predictive control (NMPC) [7]. However, there is relatively
little research on the standoff tracking considering the target
uncertainty and the limited sensing capability of the UAV.

With above backgrounds, this paper proposes the persistent
standoff tracking guidance approach for a moving ground
target using the particle filter framework along with road-
map information. Firstly, to estimate the states of the target
moving on the road, this paper applies the constrained PF
(CPF) by treating the road as an inequality constraint. Then,
this paper further extends the previous standoff tracking
guidance algorithms: the vector field based guidance [4]
and the NMPC approach [7] by considering sensing and
physical constraints of UAVs more explicitly. Due to the
limited sensing capabilities such as a limited sensor field-
of-view (FOV) or sensing failure from line-of-sight block
by obstacles, the target can be in and out of surveillance
frequently. Here, by out of surveillance, we mean that the
target is lost for certain duration intermittently. To maintain
continuous track of the target, prediction of a region within
which the moving target is likely to present for a given lead
time becomes very important.

To tackle this issue, this study uses the position of particles
generated from the CPF to predict possible areas of target
existence. By commanding the UAVs to maintain the desired
standoff distance determined by target existence area, the
UAVs keep all the particles within their sensor FOV, and
as a result, the probability of successful target track main-
tenance can be improved. Although a similar concept has
been proposed by Tang and Ozguner [1], their focus was
mainly on the target estimation rather than the UAV guidance
algorithm. Besides, as the standoff distance is continuously
changing according to the predicted target existence area, this
study needs to address a variable standoff distance tracking
problem, which is different from the previous work using a
pre-defined fixed desired standoff distance. Both Lyapunov
vector field guidance and NMPC methods are applied for
this new standoff tracking problem, and the characteristics
of them are compared quantitatively and qualitatively with
numerical simulation results.

The structure of this paper is given as follows. Section II
presents the constrained particle filter algorithm for ground
target localisation and prediction. Section III proposes the
application of LVFG and NMPC guidance for the standoff
tracking guidance for multiple UAVs with the limited sensing
capability using the CPF. Section IV presents numerical sim-



ulation results of a ground target tracking scenario. Lastly,
conclusions and future work are given in Section V.

II. CONSTRAINED PARTICLE FILTER

This section introduces the constrained particle filtering
(CPF) algorithm aided by road information and how to utilise
the sampled particles from the CPF to predict a possible
target existence area.

A. Brief introduction to the constrained PF

Consider the target dynamics can be described by the
following discrete state-space model:

xtk = f(xtk−1) + wk (1)
zk = h(xtk) + vk (2)

where xtk, zk, wk and vk are target state, measurement,
process noise and measurement noise at time k, respectively.
The objective of state estimation is to recursively infer
the posteriori distribution p(xtk|z1:k) given the observation
sequence z1:k and the initial state xt0. Bayesian inference
can be used to construct the posteriori. Given the posteriori
density p(xtk−1|z1:k−1) at time k − 1, the prior density at
time k can be obtained by the prediction step, such that

p(xtk|z1:k−1) =

∫
p(xtk|xtk−1)p(xtk−1|z1:k−1) dxtk−1 (3)

Next, an update step can be performed by using the new
observation zk as:

p(xtk|z1:k) =
p(zk|xtk)p(xtk|z1:k−1)

p(zk|z1:k−1)
(4)

Note that this marginalised posteriori density p(xtk|z1:k) can
also be derived by integrating the following recursion:

p(xt1:k|z1:k) = p(xt1:k−1|z1:k−1)
p(zk|xtk)p(xtk|xtk−1)

p(zk|z1:k−1)
(5)

As there is no tractable solution for the above Bayesian
estimation when the system is nonlinear/non-Gaussian, a
numerical solution, namely the Monte Carlo method, is
adopted in particle filters [8]. A target distribution can be ap-
proximated by a set of samples and their associated weights
drawn from a proposal density. In terms of a posteriori
density p(xt1:k|z1:k), it can be represented as:

p(xt1:k|z1:k) =

Np∑
i=1

wikδ(x
t
1:k − xt,i1:k) (6)

where {xt,i1:k}
Np

i=1 is the set of particles of size Np drawn
from a proposal density π(xt1:k|z1:k), {wik}

Np

i=1 is the corre-
sponding importance weights defined as:

w̄ik =
p(xt1:k|z1:k)

π(xt1:k|z1:k)
, wik =

w̄ik∑Np

i w̄ik
(7)

and δ(·) denotes the Dirac delta function.
In the Bayesian recursion, a common proposal density

can be chosen as p(xt1:k|z1:k) = p(xtk|xtk−1)p(xt1:k|z1:k−1).
This means that given the samples {xi1:k−1, wik−1}

Np

i=1 at

k − 1, new samples can be drawn as xik ∼ p(xk|xt,ik−1)
and attached to the existing sample set. Substituting Eq. (5)
into Eq. (7) gives the corresponding update on weights
wik ∝ wik−1p(zk|x

t,i
k ).

In addition to the above general particle filtering frame-
work, in some target tracking scenarios, extra knowledge
about the system state may be incorporated to improve the
estimation accuracy. Specifically in this paper, information
about the road constraint is considered, which usually limits
the vehicle’s movement within a specified space defined by
g(xtk) ≤ 0 where g(·) is a possibly nonlinear function. To
incorporate this inequality constraint, the sampling step is
augmented with the acceptance-rejection process [9], which
accepts the sample only if it satisfies the constraint. The
corresponding constrained particle filter algorithm is sum-
marised in Algorithm 1.

Algorithm 1 Constrained Particle Filter Algorithm

Input: weighted samples: {xt,ik−1, wik−1}Ni=1

1: for i = 1 : N do
2: repeat
3: Draw a candidate particle x̃k ∼ π(xtk|x

t,i
k−1)

4: until x̃k satisfies constraints g(xtk) ≤ 0
5: Let xt,ik = x̃k
6: Update weight wik ∝ wik−1p(zk|x

t,i
k )

7: end for
8: Weight normalisation such that

∑N
i w

i
k = 1

9: Resampling

B. Sensor fusion

In case that there are multiple UAVs involved in tracking
of the same target, sensor fusion techniques can be utilised
to improve the estimation accuracy. In this study, simple
measurement fusion is adopted which utilises an augmented
measurement vector with other UAV’s sensor measurements
obtained via communication (i.e. zk = [z1k z2k · · · zmk ]T

where m is the number of UAVs involved) for weight update
in Algorithm 1. Note that other sensor fusion techniques can
also be utilised [10].

C. Prediction of an out-of-surveillance target

To ensure that the UAV tracks the target persistently, it is
required to predict the states of the target with a certain error
bound even in case of out of surveillance (in turn, target loss
due to sensing failure or line-of-sight block by obstacles).
The CPF can inherently provide the possible position of the
lost target by propagating sampled particles with the target
dynamics within the road in the prediction (sampling) stage
in Algorithm 1. Figure 1 shows the comparison of out-of-
surveillance target prediction examples with different esti-
mation methods. In this figure, inner circles are determined
by the position error covariance (a green ellipsoid) from the
extended Kalman filter (EKF) or the generated particles with
the estimated target position from the PF and CPF. Outer
circles represent the standoff orbit to be followed by the



(a) Extended Kalman filter (b) Particle filter (c) Constrained Particle filter

Fig. 1. Comparison of out-of-surveillance target position prediction using different estimation methods (blue small dots: particles from the particle filter,
cyan plus symbol: estimated target position, and red diamond: true target position).

UAV ensuring that the inner circle is within the sensor FOV
(blue lines). Apparently, we could get a better picture for
the possible position of the lost target (i.e. the intersection
of the inner circle and the road) using the CPF. Even though
the error covariance matrix of the EKF could be projected
into the road-constrained subspace, this projection is not
straightforward given that the road is nonlinear. Note that
the number of particles used for the CPF is directly related
to the size of the error bound, which should be carefully
determined according to the fidelity of target dynamics.

III. COORDINATED STANDOFF TARGET TRACKING

Once the possible existence area of the in- or out-of-
surveillance target is determined from the CPF, coordinated
standoff tracking guidance is performed by UAVs. The objec-
tive of the guidance is to keep all particles within the field-
of-view (FOV) of the UAV sensor by commanding UAVs
to maintain corresponding distances (standoff distance) from
the estimated target position. To this end, this study proposes
to use the Lyapunov vector field guidance (LVFG) and the
nonlinear model predictive control (NMPC) concept.

A. UAV Dynamics
Assuming each UAV has a low-level flight controller

(autopilot), this study aims to design guidance inputs to this
low-level controller for standoff target tracking. Consider a
two-dimensional UAV kinematic model [7] as:

ẋ
ẏ

ψ̇
v̇
ω̇

 = f(x,u) =


v cosψ
v sinψ
ω

− 1
τv
v + 1

τv
uv

− 1
τω
ω + 1

τω
uω

 (8)

where x = (x, y, ψ, v, ω)T are the inertial position, heading,
speed and yaw rate of the UAV, respectively. τv and τω are
time constants for considering actuator delay. u = (uv, uω)T

are the commanded speed and turning rate constrained by the
following dynamic limits of fixed-wing UAV: |uv − v0| ≤
∆vmax and |uω| ≤ ωmax where v0 is a nominal speed
of UAV. The continuous UAV model in Eq. (8) can be
discretised by Euler integration into:

xk+1 = fd(xk,uk) = xk + Tsf(xk,uk) (9)

where xk = (xk, yk, ψk, vk, ωk)T , uk = (uvk, uωk)T , and
Ts is a sampling time. Note that if the frequencies of the
guidance law and autopilot are not too close, it is common
to initially design and verify the guidance law and control
algorithm separately. Therefore, like in many literatures
considering similar guidance problems [4], [7], [11], above
simple kinematics is used for the UAV model.

B. LVFG with variable standoff distance

The LVFG uses the following vector field function to com-
pute the desired velocity to guide the UAV to orbit around
the ground target [4]: Vl(x, y) = (r2 − r2d)2. Then, the total
time derivative of Vl is given by V̇l = ∇V · [ẋ, ẏ]T , and the
following desired velocity [ẋd, ẏd]

T can make V̇l nonpositive,
which provides stable convergence to the circling limit cycle
around the target as shown in Fig. 2 (in this subsection, the
subscript k will be omitted for simple notation):[

ẋd
ẏd

]
=

−vd
r(r2 + r2d)

[
δx(r2 − r2d) + δy(2rrd)
δy(r2 − r2d)− δx(2rrd)

]
(10)

where δx = x−xt, δy = y−yt, and r =
√
δx2 + δy2 is the

distance between the UAV and the target. Herein (xt, yt) is
the target position estimated from the tracking filter, and vd
is a desired UAV speed. Loitering direction in this study is
clockwise as shown in Fig. 2, and it can be changed by
using different sign in Eq. (10). rd is a desired standoff
distance from the UAV to the target which can be computed
considering the FOV αf of the UAV as:

rd =
dmax

sin
(
αf−εm

2

) (11)

where dmax is the distance between the estimated target
position and the particle furthest from the target as shown in
Fig. 2, and εm is an angle margin for the FOV of the UAV.
Note that rd should be bounded by the physical (turning)
constraints the UAV, thus rd ≥ rd,min. Convergence analysis
of vector field to the standoff orbit can be found in [12].

By commanding the UAV to maintain the standoff dis-
tance, the UAV can keep all the particles within its FOV as
shown in Fig. 3. The guidance command uω for UAV turn



Fig. 2. Illustration of vector field and standoff orbit tracking.

Fig. 3. Geometric relation between UAV, particles from the CPF, and
estimated target position

rate is computed by proportional feedback and feedforward
control terms as:

uω = −kω(ψ − ψd) + ψ̇d (12)

where the desired heading ψd can be determined using the
desired velocity in Eq. (10) as: ψd = tan−1(ẏd/ẋd) and
differentiating ψd gives:

ψ̇d = 4vd
rdr

2

(r2 + r2d)
2
− 2rṙd
r2 + r2d

. (13)

Note that for the guidance command to be feasible (i.e.
within ωmax), the control gain kω and rd,min need to be
carefully determined.

In case that a pair of UAVs are used to track the same
target while flying on the same orbit, the angular separation
between UAVs needs to be maintained in order to obtain
more accurate target information as well as to avoid collision.
Among various approaches [4], [13], this study uses speed
control of each UAV:

uv = ±kv(γ − θd)rd + vd (14)

where kv is a control gain, γ is the angular phase separation
between UAVs, and θd is a desired phase difference between
the UAVs. Note that the guidance algorithm is separated to

standoff orbit tracking by the heading rate uω and phase
angle maintenance by the speed control uv , which is termed
as a decoupled structure.

C. NMPCST with variable standoff distance

This subsection proposes to use a nonlinear model predic-
tive control (NMPC) framework [7] for coordinated standoff
tracking. Unlike a decoupled control structure as in the
LVFG, the NMPC is a coupled approach where the heading
rate and speed control contribute to both standoff orbit
tracking and phase angle control, which provides a sub-
optimal performance in terms of tracking accuracy as well
as control efforts. Since the NMPC utilises future states of
the target as well as UAVs within the receding horizon steps,
the prediction of the target movement plays a more important
role on the tracking guidance performance.

The model predictive coordinated standoff tracking (NM-
PCST) decides a control input sequence for N sampling
times that minimises the following performance index for
maintaining a distance between a UAV and a ground target
as well as a relative phase angle between UAVs.

J = φ(r̃N , d̃N ) +

N−1∑
k=0

L(r̃k, d̃k,uk) (15)

φ(r̃N , d̃N ) =
1

2
(pr r̃

2
N + pdd̃

2
N )

L(r̃k, d̃k,uk) =
1

2
{qr r̃k + qdd̃

2
k + rv(

uvk − vd
vmax

)2 +

rω(
uωk − vd

rd,min

ωmax
)2}

where r̃k = (r2d,k − |rk|2)/r2d,k and d̃k = (rTk r
p
k +

|rk||rpk|)/r2d,k with rk and rpk represent the relative vectors
from the target position to the positions of the current UAV
and its pair UAV, respectively. On computing rk up to
N steps, the future position of the target and the UAV is
predicted by their dynamic models, and for the target position
outside the road, a simple interior point method [14] is used
to bring it back into the constrained region. rd,k is a desired
standoff distance from the UAVs to the target position as
defined in Eq. (11). pr, pd, qr, qd, rv , and rω are constant
weighting scalars. d̃k is derived from the inner product of
rk and rpk as < rk, r

p
k >= rTk r

p
k = |rk||rpk| cos4θk where

∆θk = |θpk−θk| with the phase angles of UAV positions with
respect to the current target location. If the phase difference
∆θk is ideally maintained as π radian, the above equation
is rearranged as rTk r

p
k + |rk||rpk| = 0. Therefore, d̃k can

be used to ensure phase angle keeping between UAVs. By
incorporating the UAV dynamics in Eq. (9) and admissible
control input ranges as equality and inequality constraints,
an augmented performance index can be derived as:

Ja = φ(r̃N , d̃N ) (16)

+

N−1∑
k=0

[L(r̃k, d̃k,uk) + λTk+1{fd(xk,uk)− xk+1}

+
1

2
µvlvkS

2
v(uk) +

1

2
µωlωkS

2
ω(uk) +

1

2
µclckS

2
c (xk)]



where Sv(uk) = |u1k−vd|−vmax

vmax
≤ 0, Sω(uk) =

|u2k|−ωmax

ωmax
≤ 0, Sc(xk) =

rc−|C(xk−xp
k)|

rc
≤ 0, rc is a

safe distance between the UAVs to prevent collision, λk is a
Lagrange multiplier, and µv , µω , and µc are penalty function
parameters. lvk, lωk, and lck are defined to avoid unnecessary
computation for satisfying inequality constraints:

l∗k =

{
0, S∗ ≤ 0
1, S∗ > 0.

. (17)

Then, gradient-descent based online optimisation can be
performed to find an optimal solution for above performance
index. Each UAV runs the optimization routine in flight in a
decentralized way at each sampling while getting necessary
information of others via communications.

IV. NUMERICAL SIMULATIONS

This section carries out numerical simulations using the
proposed standoff tracking algorithms with the constrained
PF for a moving ground target. The ground target is assumed
to be moving on the road defined by two arcs with radius of
r1 = 96m and r2 = 100m with the following dynamics:

xtk =


1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1

xtk−1 +


0.5T 2

s 0
0 0.5T 2

s

0 0
0 0

wk

(18)
where xtk = [xtk, y

t
k, ẋ

t
k, ẏ

t
k]T and wk is a 2-D Gaussian

process noise with zero mean and identity covariance matrix.
Given the road boundaries above, the road constraint can
be expressed as: r1 ≤

√
(xtk)2 + (ytk)2 ≤ r2. Besides,

UAVs are equipped with an onboard ground moving target
indicator sensor to localise the position of target where the
measurement zk = (r, θ)T can be defined as:

zk =

( √
(xtk − xk)2 + (ytk − yk)2

tan−1
ytk−yk
xt
k−xk

)
+ vk (19)

where vk is a measurement noise vector, and its noise co-
variance matrix Rk = diag{100, 0.01}. The sample vehicle
trajectory for 70 seconds is shown in Fig. 4, and the target
is assumed to be out of surveillance for 20∼30 and 45∼55
seconds, unless otherwise stated. For performance analysis,
Monte Carlo simulations with a hundred independent runs
were performed. The other setting of simulation parameters
needed for guidance algorithms can be found in Table I.

The effect of the number of particles used for the CPF
on the standoff distance and the estimation error is investi-
gated considering the out-of-surveillance period only in the
scenario, as shown in Fig. 5. As the more particles are used,
the wider they are spatially dispersed, the standoff distance
increases accordingly (by dmax in (11) ) which also increases
the chance of putting the target within the FOV. However,
since this could increase the computation time and make the
standoff orbit expand too fast to be followed by the UAV,
this study uses Np = 200.

The target tracking performance of the LVFG is investi-
gated with different estimation methods as shown in Table II.

Fig. 4. Ground vehicle tracking scenario and a sample trajectory.

TABLE I
SIMULATION PARAMETERS

Parameter Value Unit
Ts 0.5 sec
N,Np 6, 200 N/A
θd π rad
vd 15 m/s
(rd,min, rd,max) (30, 100) m
∆Vmax 7 m/s
ωmax 0.7 rad/s
τv , τω 1/3 sec
(αf , εm) (80, 20) deg
(pr, pd, qr, qd, rv , rω) (500, 100, pr/N, pd/N, 100, 50) N/A
(kω , kv , kl) (0.5, 1.2, 0.8) N/A
µv , µω 1e3 N/A

The CPF improves the estimation accuracy significantly
with the help of road information compared to the PF, and
consequently reduces tracking guidance error and target loss.
Here, target loss represents the number of incidents where
target goes outside the FOV out of 100 simulation runs. The
use of multiple UAVs with sensor fusion (CFPmulti) in the
particle filtering further improves the tracking performance.

Table III compares the performance of the LVFG and
the NMPCST using two UAVs. In the table, ’In’ and
’In/Out’ represent the simulation scenarios where the target
is always in-surveillance and in and out of surveillance,
respectively. The control efforts on uv and uω are computed
by integrating the time histories of |uv − vd| and |uω|,
respectively. For the ’In’ scenario, since target estimation

Fig. 5. Standoff distance prediction with respect to the number of particles



TABLE IV
COMPARISON BETWEEN LVFG AND NMPCST

LVFG NMPCST
Prediction One-step look ahead Receding horizon steps
Control methodology Decoupled for distance and phase angle Coupled

Tracking performance Limited Sub-optimal (better suited for nonlinear
& non-Gaussian road constraints)

Loitering direction Fixed Variable
Convergence Guaranteed Subject to optimisation conditions
Parameter tuning Simple Complex
Collision & Obs. avoidance - Simply adding more constraints in Ja (17)
Computation Light Heavy (albeit approximation is possible)

TABLE II
PERFORMANCE COMPARISON BETWEEN DIFFERENT ESTIMATION

METHODS USING THE LVFG

Mean error Single UAV Multiple UAVs
PF CPF CPFmulti

Position (m) 7.29 (12.90) 3.94 (6.04) 2.38 (4.25)
Velocity (m/s) 1.79 (2.39) 1.29 (1.64) 1.05 (1.43)
Standoff distance (m) 13.34 8.84 6.78
Phase keeping (deg) - - 12.04
Target loss 20 13 1

(·) represents the result for the period of out-of-surveillance only

TABLE III
TRACKING PERFORMANCE WITH DIFFERENT GUIDANCE METHODS

Mean error LVFG NMPCST
In In/Out In In/Out

Standoff distance (m) 3.60 6.78 3.29 6.97
Phase keeping (deg) 11.20 12.04 9.25 13.94
uv control effort (m/s) 69.80 79.98 71.18 117.08
uω control effort (rad/s) 31.10 29.34 30.76 29.87

is quite accurate and as a result, the standoff distance is
almost constant (i.e. rd = rd,min), the NMPCST shows
better performance thanks to the optimisation with future
prediction over multiple time steps. Note that the LVFG
uses basically a one-step look ahead approach. However,
for the ’In/Out’ case, whenever the target goes out of
surveillance (20∼30 and 45∼55 seconds as mentioned)
and then comes back to in surveillance, the standoff
distance and the estimated target position are subject to
sudden changes, which makes the performance of the
prediction-based NMPC worse than that of the LVFG.
Also, note that the loitering direction is not specified in
the NMPC formulation (as opposed the LVFG which uses
the fixed direction), so it could be changed even in the
middle of the same target tracking mission; this leads to
more tracking error and excessive control efforts as shown
in the Table III and movie clips which can be downloaded
at https://dl.dropboxusercontent.com/u/17047357/CST.zip.
Lastly, Table IV summarises characteristics of the LVFG
and the NPMCST approach.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented the standoff target tracking
guidance framework for multiple UAVs using the particle

filtering approach aided by roadmap information. Numerical
simulation shows the feasibility and benefit of the proposed
approach and also compared two guidance algorithms: the
LVGF and the NMPCST. It was shown that both algorithms
have their own merit depending on the situation. Extension
of the constrained particle filter to the multiple model filter
considering road junctions and different vehicle models will
be followed as future work along with allocating multiple
UAVs intelligently to the corresponding road segments.
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