Abstract:
This work describes a methodology to assess the impact of positioning and prediction accuracy on the potential benefit of collision avoidance systems. The predicted posit...Show MoreMetadata
Abstract:
This work describes a methodology to assess the impact of positioning and prediction accuracy on the potential benefit of collision avoidance systems. The predicted position of vulnerable road users (VRU) ahead of the vehicle is affected by measurement and prediction uncertainty. In advanced cooperative collision avoidance systems the position of VRUs is provided by vehicle-to-vehicle or vehicle-to-infrastructure (V2X) communication. This work describes a method to optimize the vehicle's longitudinal and lateral trajectories in critical situations in order to minimize the risk of the situation considering the influence of positioning and prediction inaccuracies of VRU. The findings discussed here define requirements on the prediction accuracy and for vehicle velocities of 50 km/h the predicted VRU position should provide a standard deviation of less than 55 cm.
Published in: 2015 IEEE Intelligent Vehicles Symposium (IV)
Date of Conference: 28 June 2015 - 01 July 2015
Date Added to IEEE Xplore: 27 August 2015
ISBN Information:
Print ISSN: 1931-0587