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Estimation and prediction of vehicle dynamics states based on fusion of
OpenStreetMap and vehicle dynamics models*

Kun Jiang, Alessandro Victorino, Ali Charara1

Abstract— This paper presents a novel approach for estima-
tion and prediction of vehicle dynamics states by incorporating
digital road map and vehicle dynamics models. Precise infor-
mation about vehicle dynamics states is essential for the safety
and stability of vehicle. In particular, the tire-road contact
forces and vehicle side slip angle are the most important
parameters for evaluating the safety of vehicle. Nevertheless,
these dynamics states are immeasurable with low cost sensors.
Therefore, different observers, or the so-called virtual sensors
are developed to estimate vehicle dynamics states. However,
the existing observers are only capable in estimating vehicle
dynamics states at a current instant but not to predict the
potential dangers in a future instant. In order to make time
for correcting drive behaviors, especially when driving at high
speed, it seems very appealing for us to predict an impending
dangerous event and react before the danger occurs. In this
paper, the estimation of vehicle dynamics states is based on
the fusion of information from inertial sensors, GPS and
OpenStreetMap. The geometry of the upcoming path ahead
of vehicle is provided by the digital map and is employed to
predict the future dynamics states.

I. INTRODUCTION

The development of an active safety system that can pre-
vent the potential accidents is a critical research topic. Nowa-
days many safety assistance systems are already equipped
on modern vehicles, such as anti-block brake system (ABS)
and electronic stability program (ESP). We can classify all
these safety system according to its trigger time, as shown
in Figure 1. According to the report of U.S Department of
Transportation [9], for the vehicles equipped with both ABS
and ESC, 7.5 percent ran off the road, while for the vehicles
equipped with neither ABS nor ESC, 14.6 percent ran off the
road. It is clear that these active safety system has enhanced
the road safety. However, these systems typically react to an
event that has already occurred. In some dangerous situation,
it is too late or too complicated to avoid the accidents when
the signs of dangers have already occurred. In order to reduce
the driver performance errors, a better strategy is to warn the
driver about the potential dangers much earlier and prevent
the vehicle from arriving at such high speed in the beginning.

In order to preview the potential accidents, two tasks have
to be accomplished: 1, estimation of the current vehicle
dynamics states; 2, prediction of the future vehicle dynamics
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Fig. 1. Classification of vehicle safety system according to its trigger time

states in the coming path. Today, the task of estimating vehi-
cle dynamics states is still challenging due to economical and
technical reasons. Many observers based on low-cost sensors
have been proposed in the literature. Most of these research
is based on Kalman filter. The Extended Kalman filter is
implemented in [7] to estimate tire/road forces and side slip
angle and steering stiffness. The common objective of these
estimators is to detect and correct the errors of inertial sensor
measurement. The accuracy of these estimators depends on
the quality of inertial sensors. In this paper, we propose to
incorporate the information from digital map to improve the
current estimation and furthermore provide prediction of the
future states. The digital map we used is a free editable map,
the OpenStreetMap.

Fig. 2. Geometry of a roundabout in OpenStreetMap

The road bank angle and road friction coefficient are
important for vehicle dynamics but are difficult for vehicle
to measure. However it is possible to obtain these informa-
tion by using a digital map. Furthermore, digital map can
be used to predict future road geometry or road surface
condition,such as the sudden change of road condition (e.g.
icy road, sharp turn). We propose to synthesize all vehicle
dynamics information to provide an risk assessment of vehi-
cle’s safety. In the literature, various methods are presented
to develop risk assessments. In [11], a rollover indicator is



proposed to predict the vehicle rollover phenomenon of light
all terrain vehicles. Some other vehicle rollover prediction
method can be equally found in [12] for heavy vehicles. [13]
proposes a algorithm for the curve speed prediction which
addresses control loss due to excessive speed in curves. [10]
proposes a vehicle full-state estimation system to describe
overall vehicle dynamics.

The main contribution of this paper is to incorporate
the digital-map and inertial sensors to estimate and predict
the safety of vehicle. The method of how to get the road
information through OSM is presented in Section II. Then
section III describes the vehicle dynamics models and the
risk assessment index. In Section IV, the whole estimation
algorithm is presented. The results of experimental validation
is illustrated is in Section V. Finally, concluding remarks and
future perspectives are given in Section VI.

II. ROAD GEOMETRY ESTIMATION

OSM is a platform capable of describing a variety of
information about roads. Typically, the OSM data is stored
in a xml file. The OSM data model consists of three basic
geometric elements: 1,Node, which defines points in space.
Each node comprises at least an id number and a pair of
coordinates. 2,Way, which represents linear features and
area boundaries and is defined by an ordered list of nodes.
3, Relation, which is used to explain how other elements
work together. Each element can be attributed to multiple
tags to represent different road information.

A. Road geometry description

The first problem we encountered is how to describe the
road geometry with OSM. Note that the original database
of OpenStreetMap doesn’t contain the accurate information
we need (curvature, friction, etc). Therefore, we created new
database with our own measurement. In OSM, a road is
represented by intensive and consecutive way points. It is
unpractical to attribute geometry information to each point,
due to the huge amount of work needed. In the publication
of Victorino et al. [5], a topological representation of the
robot path is proposed. Inspired by this work, the vehicle
path in this paper is represented by corridors and the nodes
of their intersections. The nodes of intersections were called
as Critical Points (CP). The corridors are the roads between
two CPs, without any other direction to go. The CPs are
the locations where the vehicle dynamics states will change
a lot (roundabout, slippery region or traffic light stop).
Comparison with way points, the CPs can be defined sparsely
and are attributed with many properties to describe the
geometry of nearby road. The list of tags we attributed to
each CP is illustrated in the Table 1.

Then the corridors can be obtained by connecting two CPs,
as illustrated in Table 2. It is noted that the connections
between two CPs can be straight lines or curves. In order
to simplify the representation of corridor, the CPs should be
selected carefully and the following assumption is made.
• Hypothesis 1: The CPs are pre-calculated so that each

corridor is represented by a straight line or a clothoid;

TABLE I
TAGS ATTRIBUTED TO CRITICAL POINTS

Longitude Position Latitude Position Altitude

x y h

Road Direction Curvature Concavity

ψr κ ρ

Road Friction Bank Angle Slope Angle

µ ϕ θ

ID in OSM Number of lanes Number of roads

Idosm Nlane Nroad

TABLE II
TAGS ATTRIBUTED TO CORRIDORS

Id of Beginning CP Id of Ending CP Length of Corridor

Id0 Idn Lcorr

Id of corridor Curve or Line Stop or Not

Idway Rcurve = {0, 1} Rstop = {0, 1}

• Hypothesis 2: The length of each corridor is known;
• Hypothesis 3: The change rates of road friction and

road inclination angle can be approximately regarded
as constant in each corridor.

The road geometry information vector listed in Table 1 is
noted as State = [x y hµκ θ ϕx ρψr]. Based on Hypothesis
3, when the corridor is a straight road. the properties of each
point in the straight corridor can be easily obtained by the
Equation (1).

Statecurrent = (1− L
Lcorr

)StateCP0 + L
Lcorr

StateCPn (1)

where the index “current” means the geometry of current
point, “CP0” represents the beginning point of the corridor
and “CPn” corresponds to the ending point, L is the distance
between the current position and CP0.

When the corridor is a curve, the properties of a CP
in a curve corridor can be also obtained by Equation (1),
except for the position. According to the fundamentals of
road design[4], the clothoid is widely used for urban road
construction. They are defined by their begin curvature κ0
and a constant curvature change rate κ1 and their total length
l. The current curvature of a clothoid after length lc can be
obtained by Equation (2).

κ(lc) = κ0 + κ1 · lc (2)

The variation of tangent angle after length lccan be com-
puted by integration of Equation (2) over lc.

4ψ =
κ0 + κ(lc)

2
lc (3)

The position of a point [x, y]′ in a curve corridor is given
as Equation (4).

[
x
y

]
=

[
x
y

]
CP0

+
2lc
4ψsin

4ψ
2

[
cos(ψ + 1

2
4ψ)

sin(ψ + 1
2
4ψ)

]
(4)



B. Vehicle localization

The vehicle location is measured by a differential GPS
sensor. However, the GPS has the problem of signal lost.
Therefore, the Kalman filter algorithm is employed to com-
bine the direct measurement and the integration of speed.
As the kinematic model is non-linear, an Extended Kalman
filter is applied to minimize the estimation errors. The con-
tinuous state equations and measurement models are given
by Equation (5).


Ẋ

Ẏ
v̇x
ψ̇

ψ̈

 =


sin(ψ) · vx
cos(ψ) · vx
ax − g sin θ

ψ̈
0

+ noise

measurement :
Xgps
Ygps
vgps
ψgps
vwheel
ψ̇gyro

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1




X
Y
vx
ψ

ψ̇

+ noise

(5)

where Xgps, Ygps, vgps, vwhell, ψgps, ψ̇gyro are the
measurement of GPS receiver and inertial units, ψ is the
clockwise angle between the north and the vehicle direction.
In this equation, we suppose the lateral speed is negligible
in the calculation of displacement.

The estimated vehicle location is used to identify the
corresponding point in the OSM. The searching process
can be divided into two steps: firstly searching for the
corresponding corridor and secondly locating the relative
position in the corridor. Supposing the initial position is
already known, the total distance (ltotal) between current
position and initial position is the sum of length of the passed
corridors. Then the criterion for matching the corridor of
number n is given by Equation (6).∑n−1

i=1 Lcorr, i < ltotal <
∑n
i=1 Lcorr, i

ltotal, t = ltotal, t−1 + vx · 4t
(6)

After the current corridor is identified, the vehicle position
can be calculated with the two CPs of the corridor, as shown
by Equation (1) or (4) depending on the corridor is straight
or curve. As a result, we have two additional measurement
about the location which could be used to improve the
Kalman filter in Equation (5).

[
Xosm
Yosm

]
=

[
1 0 0 0 0
0 1 0 0 0

]
X
Y
vx
ψ

ψ̇

+ noise (7)

To eliminate the accumulated errors in the calculation of
ltotal, when the vehicle passed the ending point of the Nth
corridor, the ltotal will be calibrated by Equation (8).

ltotal =
∑n
i=1 Lcorr, i (8)

III. DIAGNOSIS OF VEHICLE DYNAMIC BEHAVIORS

A. Evaluation of safety
In order to evaluate vehicle’s safety, we employ three risk

assessment indexes: load transfer ratio (LTR) and lateral
skid ratio (LSR), and the stopping distance (SD)[12]. The
lateral load transfer ratio LTR is defined by using four wheel
vertical forces as in Equation (9). The estimation method of
vertical forces at each tire is introduced in our previous work
[10].

LTR =
Fz11 − Fz12 + Fz21 − Fz22
Fz11 + Fz12 + Fz21 + Fz22

(9)

The lateral skid ratio LSR represents the loss of adhesion
resulting in the lateral drift. The lateral skid ratio is defined
by road friction coefficient and tire forces, as in Equation
(10). The estimation of lateral tire forces and slip angle is
introduced in next subsection. The µmax is the threshold
of safe friction, it should be smaller than the real friction
coefficient.

LSRij = 1−
∣∣∣µmax−µij

µmax

∣∣∣
µij =

∣∣∣Fyij

Fzij

∣∣∣ (10)

The stopping distance (SD) refers to the distance needed
to stop the vehicle. We assume that during the stopping
process, the braking acceleration is a constant value axmax.
The axmax is defined as to ensure the comfort of passengers.
The stopping distance can be obtained by Equation (11).

SD = 1
2axmax

v2x (11)

B. Vehicle dynamics models

The yaw rate, steering angle and accelerations are im-
portant parameters for vehicle dynamics estimation. In the
literature, all these parameters are usually measured by
inertial sensors. However, the unpredictable sensor failure
may happen during driving. In this paper, we propose to
employ data from digital map to provide redundant infor-
mation about these basic dynamics parameters. Supposing
that the vehicle successfully followed the the road curve,
these vehicle dynamics parameters can be approximated by
applying the kinematic relationship, as shown in Equation
(12). The errors caused by the lane changing behavior can
be viewed as the noises in the curvatureκosm.

axosm = dvx/dt+ g sin θosm
ayosm = v2xκosm + g sinϕosm

azosm = v2xρosm + g cos θosm cosϕosm
ψ̇osm = vxκosm
δosm = Lvκosm

(12)

where θosm and ϕosm are the slope and bank angle of the
road, ρosm is the vertical curvature of the road, κosm is the
planar curvature, their value are obtained by Equation (1).
When the κosm is the curvature at current point, Equation
(12) can be regarded as an redundant resource of current
dynamics states. While κosm is the curvature at future point,
the computed accelerations and yaw rates can be employed
to predict future dynamics states. The variance of κosm is
set as 0.032.

To simplify the estimation, the linear tire model and
bicycle model are used to estimate the sideslip angle, as



shown in Equation (13). With this observer, we can also
obtain the lateral force per axle. To obtain the lateral force
at each tire, the double track model and Dugoff model are
employed, as explained in our previous work [6,10].

Fig. 3. Double track model

[ ψ̈ β̇cog Fxf F yf F yr ]T =
−L

2
1Cf+L2

2Cr

Izvx

L2Cr−L1Cf

Iz

−1 +
L2Cr−L1Cf

mvv2x
−Cf+Cr

mvvx

O2×3

O3×2 O3×3




ψ̇
βcog
Fxf
F yf
F yr



+

[ L1Cf

Iz
Cf

mvvx

]
δ + cov(noise)

 ψ̈Iz
mvay
mvax

0

 =


L1 sin δ L1 cos δ −L2 0 0
sin δ cos δ 1 0 0
cos δ sin δ 0 0 0
L2
vx

−1 0 0 1
Cr




ψ̇
βcog
Fxf
F yf
F yr


+cov(noise)

(13)

where Cf , Cr are side slip stiffness of front tires and rear
tires. L1, L2 are the distances from COG to front and rear
axle. δ is steering angle. Iz is vehicle yaw inertia. F yf and
F yr are lateral forces at front and rear axle respectively, F xf
is the longitudinal tire forces at front axle.

IV. PREDICTION ALGORITHM

The overall prediction process can be expressed by the
Figure 4. The sensor measurement is used to locate the ve-
hicle’s position and identify the corresponding corridors and
CPs. Then CPs can provide information about road friction
coefficient which can greatly improve the the estimation of
current states. Moreover, by extracting the upcoming CPs, the
estimator could predict the potential variation of dynamics
states. Then the dynamics states of current instant and
future instant will be evaluated by three indicators of safety,
introduced in the above section. To simplify the prediction
process, the vehicle speed is regarded as constant and equals
to the current speed during the preview time. The prediction
system will perform the risk assessment for the coming 300m
road. If a potential danger is detected, the system will warn
the driver to slow down. The predicted dynamics states can

also be used to control the stabilization system. However, in
order to improve the accuracy of prediction, a more accurate
model about the variation of speed is needed.

Fig. 4. Overall structure of vehicle safety prediction system

Due to the non-linearity of vehicle dynamics models,
an extended Kalman filter (EKF) is used to minimize the
estimation errors. The algorithm of EKF is shown in the
Figure 5.

Uk:Inpout vector

:estimation

of states

Yk:Measurement vector

EKF Observer

Fig. 5. Algorithm of Extended Kalman Filter

Sensor based measurement and map geometry based pre-
diction provides two independent approaches for the obser-
vation of the vehicle dynamics. The Kalman filter algorithm
could combine the two observation to minimize the variance
of final estimation result.

V. EXPERIMENTAL VALIDATION

The experimental vehicle DYNA is instrumented by our
laboratory, as shown in Figure 6. This experimental platform
is dedicated to validate the algorithm of estimating vehicle
dynamics. The details about these sensors are introduced
in our previous work [6,10]. A remarkable point about our
vehicle DYNA is the ability to directly measure the vertical
and lateral tire forces, which were used as the ground truth to



Fig. 6. Experimental vehicle: DYNA

validate the estimation results. The observers were validated
in an off-line algorithm. The trajectory of the vehicle during
the test is illustrated in Figure 7. In total, 53 critical points
and 52 corridors were defined to describe the trajectory.
More CPs were defined around the sharp turning and lane
changing point in order to better describe the road. Some
examples of CPs and corridors are demonstrated in Table
3. A segmentation of data (150 < t < 200s) is selected
due to the successive turning behaviors in this period. The
maneuver time history are presented by red lines in Figure
8. The average speed is about 50 km/h.
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Fig. 7. Vehicle’s trajectory and curvature value at each critical point

The curvature at each critical point is illustrated by red
spots in Figure 7. The curvature between two critical points
were computed by Equation (1), which is a linear interpo-
lation of the two neighboring critical points. As we can see
in Figure 7, the interpolation method (represented by red
lines) was a simplification of real road geometry and was
not always accurate. However, it effectively represented the
main characteristic of the road. Then the obtained curvature
was used to compute the value of accelerations and yaw
rate with Equation (12). The comparison between inertial
sensor measurement and digital map based (OSM) estimation
was illustrated in Figure 8. Then two data are incorporated
to provide a robust estimation about the basic dynamics
parameters, as represented by green lines.
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Fig. 8. Comparison of lateral dynamics states estimated by inertial sensors
and OSM

The estimation results of tire forces are compared with the
measurement of force transducer in Figure 9. The red lines
are the measurement data. The green lines represented the
estimation result based on inertial sensors. The blue lines
corresponded to the estimation result based on the Open-
StreetMap. The accuracy of the OSM method depends on
the intensity of critical points and map quality. Moreover, it
is also based on the assumption that the vehicle successfully
followed the planned path. At t = 175s, the driver did a
lane changing behavior, which was not in the planning and
caused some errors. As demonstrated by the experimental
result, the inertial sensor based method can better follow the
vertical force variation, while, the OSM based estimation
method is accurate when the vehicle is following the curve.
Fusion of these two estmation provides a better estimation of
vertical force, as expressed by solid black lines in the Figure
9.a). The similar situation can be found in the estimation of
lateral force. Note that the shift in the estimation of Fy at
front tires is caused by the Ackermann steering geometry.
The steering angles at left tire and right tire are different,
while we regarded as identical in this paper. The advantage
of OSM is obvious in the estimation of sideslip angle. We
configured the slip stiffness Cr as two times of the correct
value. Therefore, the estimated sideslip angle is obvious
smaller than measurement. The OSM method could get the
correct Cr from the digital map, as we suppose Cr ∝ µ. It is
clear that the combined method provided a better estimation
of sideslip angle. Note that due to the position of the optic
sensor, the direct measurement is actually the sideslip angle
at rear axle βr. The transformation between βr and βcog is
given by βcog = βr +

L2ψ̇
vx

.
The curvature at each point is a function of the traveled

distance, as shown in Figure 7. Then it is able to predict
the curvature of following 300 meters ahead of the vehicle’s
current postion. The vehicle’s safety could be evaluated with
the index introduced by Equation (9, 10, 11). Figure 10
illustrated the prediction of vehicle’s safety situation in the
following 300 meters at instant t = 160 s and t = 180 s.
The results showed at instant t=180s, the algorithm detected
potential dangers in the upcoming path.



CP ID x(m) y(m) h(m) ψr(°) κ ρ µmax ϕ(°) θ(°)

...
...

...
...

...
...

...
...

...
...

7 -717.7 986.7 52.6 333.3 0 0 1 0 5

8 -748.1 1066.1 56.8 2.1 -0.031 0 1 0 0

9 -743.6 1103.3 57.0 343.7 0.046 0 1 0 0

...
...

...
...

...
...

...
...

...
...

Corridor Id Id0 Idn Lcorr(m) Rcurve Rstop

...
...

...
...

...
...

5 5 6 690 0 0

6 6 7 270 0 0

7 7 8 85 1 1

...
...

...
...

...
...

TABLE III
THE CONSTRUCTION OF CRITICAL POINTS AND CORRIDORS
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Fig. 9. a) Estimation of of vertical forces at each tire; b) Estimation of lateral forces at each tire: comparison between sensor measurement and estimation
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VI. CONCLUSIONS AND PROSPECTS

This paper presented a novel method to estimate and
predict vehicle dynamic states based on the fusion of Open-
StreetMap and inertial sensors. The current and future road
information was obtained from the digital map after the
localization process. Then the vehicles models and map
data are combined to evaluate the safety of the vehicle.
Experimental results validated the proposed algorithm. The
future work will focus on the improvement of map quality
and localization accuracy.
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