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Landmark based localization : LBA refinement using MCMC-optimized
projections of RIMCMC-extracted road marks

Bahman Soheilian, Xiaozhi Qu, Mathieu Brédif

Abstract—Precise localization in dense urban areas is a
challenging task for both mobile mapping and driver assistance
systems. This paper proposes a strategy to use road markings
as localization landmarks for vision based systems. First step
consists in reconstructing a map of road marks. A mobile
mapping system equipped with precise georeferencing devices is
applied to scan the scene in 3D and to generate an ortho-image
of the road surface. A RJMCMC sampler that is coupled with a
simulated annealing method is applied to detect occurrences of
road marking templates instanced from an extensible database
of road mark patterns. The detected objects are reconstructed
in 3D using the height information obtained from 3D points. A
calibrated camera and a low cost GPS receiver are embedded
on a vehicle and used as localization devices. Local bundle
adjustment (LBA) is applied to estimate the trajectory of the
vehicle. In order to reduce the drift of the trajectory, images
are matched with the reconstructed road marks frequently. The
matching is initialized by the initial poses that are estimated
by LBA and optimized by a MCMC algorithm. The matching
provides ground control points that are integrated in the LBA in
order to refine the pose parameters. The method is evaluated on
a set of images acquired in a real urban area and is compared
with a precise ground-truth.

I. INTRODUCTION

Precise localization of mobile vehicles in dense urban
areas constitutes an important component of several sys-
tems such as Mobile Mapping (MMS), Advanced Driver
Assistance (ADAS) and Autonomous Navigation (ANS)
Systems. The most popular localization system is GNSS
(Global Navigation Satellite System). In dense urban areas
GNSS localization however suffers from signal outage and
multi-paths, thus failing to provide sufficient accuracy. More
advanced systems rely on Inertial Navigation Systems (INS)
and/or odometers in order to overcome the lack of reliable
GNSS signals by dead-reckoning [1]. An innate issue of
these systems is drift. The quantity of the drift depends on
the quality of the INS and high precision systems are not
affordable for applications such as low cost map updating
systems and car navigators.

More affordable relative localization systems using vision
sensors were proposed by the computer vision and robotic
communities. Visual odometry approach proposed by Nistér
et al. [2] enables successive computation of relative poses
in a sequence of mono or stereo images in real time. More
optimal pose parameters can be obtained by a local bundle
adjustment technique proposed by [3] in real-time. Like in
any dead-reckoning method, in vision based methods, errors
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are accumulated through the sequence and lead to drifts.
Even though loop closure [4] enables the system to estimate
the drift, on the one hand many trajectories contain no loops
at all and on the other hand adjustment of large loops is
computationally expensive for both SLAM (Simultaneous
Localization and Mapping) and bundle adjustment methods

[5].

An efficient solution for adjusting the drift consists in
integrating external absolute information into the pose
estimation at short intervals. GNSS observations were
integrated with vision based approaches such as visual
odometry [6], bundle adjustment [7], SLAM [8] and bundle
adjustment SLAM [9].

Other approaches used pre-built maps and applied data
association techniques in order to adjust the drift of vision
based localization methods. Various types of maps were
used in different systems.

Some authors pre-build a set of 3D points by structure
from motion or 3D laser scanners in an offline mapping
mode. In order to ensure a sufficient precision for these 3D
points, precise georeferencing techniques such as differential
GPS, precise INS, loop closure and even integration of
ground control points (GCP) were used. Then, online
localization is performed by matching features that are
acquired in real time to the corresponding features in the
georeferenced map. Royer et al. applied this strategy for
localizing a monocular system [10]. A very similar system
used planar patches instead of points [11]. In the work
presented by Bodensteiner et al. a laser scanner was used
for mapping. Then, optical images were aligned to the 3D
mapped points in the navigation mode [12]. Other authors
used laser scanning for both mapping and navigation
modes [13]. Point based maps take large storage capacities
on-board of the vehicle and make partial updates laborious.

More classical maps such as building models [14], digital
elevation models [15], [16], ortho-photos [17], textured
facades and road surfaces [18], [19] were also used as
landmarks for localization. These GIS objects are easily
available since they are produced and updated by national
cartographic agencies. In addition, their compactness
simplifies their embedment on the vehicle. However their
geometric precision is generally rather limited.

Other techniques applied a map containing compact se-



mantic objects such as pole-like objects [20], road markings
[21] and traffic signs [22]. The simple geometric shapes
of these objects make their detection and matching precise
and easy. In addition they take low storage capacity and are
manageable to update.

This paper presents an offline localization technique that
is useful for low cost street-level mapping systems. The
system reaches sub-decimetric absolute accuracies using only
affordable sensors (a low cost GNSS receiver and a calibrated
camera) and taking benefit from a pre-built 3D road marking
map.

II. RELATED WORK

Lane marking detection was investigated in many research
works in intelligent transportation community since the 90s
[23]. They were usually used for lane keeping [24]. More
recently road marking objects were also used as landmarks
for localization.

Tournaire et al. used 3D zebra-crossings that were
reconstructed in street-level stereo pairs as matching objects
between ground-level images and multiple georeferenced
aerial images. The method applied GPS localization for
initialization and enabled to compute 6D pose parameters of
the stereo pairs with sub-decimetric precision of the aerial
images’ poses [25].

Pink proposed a two step mapping-localization schema
[26] . Road marking objects are first detected in aerial
images with a semi-automatic approach. They assume
that all objects lie on a plane referred to as the ground
plane. This provides a 2D map of markings. During the
localization step, road mark contours are detected with a set
of image filters in street-level images. The detected objects
are then projected on the ground plane estimated using the
V-disparity method. Initial position of objects are known
using GPS. The matching is performed by ICP (Iterative
Closest Point) algorithm using centroid of markings. A
2D transformation composed of a 2D shift and a heading
angle was computed in order to refine the pose of the image.

In another method [21], road markings were captured
manually as polylines in an aerial image. The polylines
were then projected on the ground surface (supposed to be
a plane). Poses of street level images are initialized by a
GPS. Given an initial pose, an image of map features, like
the camera would see it is simulated. The simulated image
is then compared to the image captured by the camera. Pose
refinement parameters (a 2D shift and a heading angle) were
estimated by maximizing the similarity of the two images.
One of the interests of this technique is in comparing map
features directly with optical image without intermediate
object detection step in ground-level images.

In a system called LanelLoc, road markings were mapped
in an offline mode using georeferenced bird-eye views of

ground-level 3D point clouds and optical images by a semi-
automatic method. In the localization mode, road markings
were detected using a filtering method. GNSS is used for
initializing the pose of the camera. The features of the
map are projected in the current image. A 2D shift and a
heading angle were estimated by matching the map features
(lines) and the detected markings (points) [27]. Another
system following a similar strategy integrated road marking
observations obtained from two lateral cameras with GPS
and IMU for pose estimation [28].

In the aforementioned papers, the pose parameters were
initialized by GNSS and final parameters were obtained by
matching road marking objects between the real-time views
and the map. Following this strategy, there is no merge
of two sources of localization. The localization switches
frequently between the GNSS solution (if no map matching
available) and map matching solution. Ranganathan et al.
used a windowed bundle adjustment as initial pose estimator
[29]. Then every time a pose is corrected by matching road
marks, the refined pose is integrated as a measurement in
the bundle adjustment. The benefit of this method is that
the refined pose contributes to improve the accuracy of its
neighboring images in the sequence as well.

Two main approximations were used by all of the afore-
mentioned methods.

a) Flat road surface: In mapping and localization
phases, the road surface was approximated by a plane.
Moreover the position and orientation of the plane was
supposed to be known in relation to the camera. These two
approximations introduce errors in the coordinates of the
road marking.

b) 2D pose correction: In the pose correction phase,
only three degrees of freedom are taken into account instead
of six. The height of the camera, roll and pitch are supposed
to be exactly known. The corrections were injected to
horizontal shifts and heading angle only.

In order to reach higher localization accuracies that are
required for our mapping system, we propose a method that
is free of these two approximations.

III. OUR STRATEGY

Our system is based on two separate mapping and lo-
calization phases. In the mapping phase we use precise
georeferencing devices (GNSS/INS/odometer) and a 3D laser
scanner embedded on a mobile mapping system such as the
STEREOPOLIS MMS [30] to acquire a precise and dense 3D
description of the environment. We applied an extension of
our previous work on road marking object reconstruction
from a 3D point cloud [31]. It will be briefly explained in
section IV. In the localization phase we use only one GNSS
observation at the start point and one calibrated camera. The
localization is performed by our previous work on extension
of local bundle adjustment to integrate ground control points
(GCP) [32]. This part is summarized in section V. The main
contribution of this paper is in associating 3D georeferenced



road marks in the map to the images during the localization
phase without using any road mark detector. Uncertainty
propagation through the bundle adjustment provides error
ellipsoids that will drive the search space for road mark
matching (section VI). Once a 3D marking is associated
to its corresponding 2D position in an image, it provides
a GCP. The obtained GCP together with its uncertainty adds
a weighted constraint equation to the bundle adjustment
system. The resolution of the system provides refined pose
parameters for the entire image sequence. Results on a real
dataset are presented in section VII.

IV. ROAD MARKING MAP GENERATION

We propose to generate a road marking map using an
extension of the method proposed by Hervieu et al. [31]. We
first summarize here this approach, then detail the proposed
extensions, and finally lift the 2D extractions as a 3D road
marking database.

A. Original approach

First, the acquired point cloud by a Mobile Mapping
System is projected vertically onto a horizontal plane in order
to generate an orthophoto-like Lidar image (figure 2) with
two channels (intensity and height) which undergo a hole-
filling filter to cope with the irregular Lidar sampling.

Within the Lidar intensity orthophoto, road mark-
ings are then searched for as occurrences of a trans-
lated/rotated/scaled rectangular road marking template in-
stanced from a library of road markings (figure 3). This
search space is modeled as a set of road marking types and
for each type a fixed aspect ratio, an interval of scale and a
template vector pattern delineating the white road marking
area against a dark background. Thus the extraction of road
markings boils down to finding a set of road markings X =
(¢;, zi,yi,0i, A;) parameterized by a type ¢, a translation
(z,y), a rotation by 6 and a scaling A (figure 1). The
marking type defines a pattern I, that may be rasterized into
the intensity orthophoto geometry using the affine transform
T, y,6,» (denoted Tx, for short).

Hervieu et al. [31] formulate the road marking extrac-
tion as an energy minimization problem over the varying-
dimension search space defined above, with an energy de-
fined over a set of road markings X = (X;);=1.., as :

n

UX) = Y wi(Xi)+ Y us(Xi, X;) (D
i=1 1<J
u(X;) = f°—max(0,ZMNC(I,, Tx (1))

R | S(X;) N S(X;) |
uz(Xi, X;) P min( S T S(X5) 1) *

where f© is the cost of adding an object. A low value of
9 (0.35 as used in [31]) enables the optimization to add
objects with lower correlation scores at lower costs. A high
value, in contrast penalizes the objects with low correlation
scores. It should provide a trade-off between the number
of over-detections and under-detections. In the present work
we chose a higher value f° = 0.55 in order to reduce the

number of over-detections which comes at a cost of higher
number of under-detection. ZM NC(I, I') denotes the zero-
mean normalized correlation between images I and I’ and
S(X) =Tx (1) is the resampled image of the pattern and
| - | and N denote respectively the area and intersection of
white pixels. The coefficient 5 tunes the tradeoff between
the energy terms u; and us (8 = 100 in [31]).
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Fig. 1. The object % with parameters (¢; =bike,x;, i, 0i, A;).

This energy is minimized using a Reversible-Jump Markov
Chain Monte Carlo (RIMCMC) sampler coupled with a
simulated annealing, which may cope with search spaces of
varying dimensions (the number of road markings to extract
itself being unknown) and arbitrary energy functions (cf. Fig.
4). Hervieu et al. [31] further discusses both standard and
more advanced RIMCMC kernels which may be used to
bias the random sampling toward good solutions, thereby
improving the convergence rate.

B. Proposed extensions

o New patterns have been introduced, leveraging the ex-
tensibility of the original paper (figure 3).

o The data energy term has been scaled by the road-
marking perimeter in order to reduce over-detections.

u) (X;) = uy(X;) perimeter(X;) 4)

It enables to favour larger objects that could be replaced
by many smaller objects using previous data energy.

o A new binary orientation energy u.,,..,, has been in-
troduced in order to penalize incompatible orientations
of neighboring road markings. Road markings follow
usually a same direction and are nearly parallel except
in the intersections where perpendicular markings are
observed. This energy term is computed for neighboring
objects that are situated at a distance lower than 5m.

o The raster-based intersection energy proved to be very
time consuming as it required the resampling of the
template pattern and pixel-by-pixel raster comparisons
to get the raster area of intersection. This energy has
been replaced by a simplified version u},,;.,., penalizing
the intersection of the road marking oriented bounding
boxes (OBB) instead. This drastically reduced comput-
ing times while the approximation is very reasonable
as road markings are very rarely sufficiently close that



their oriented bounding boxes intersect.

ul2(X“ XJ) = u;rient(Xivxj) + u;nter(X’hXj)
Ulient(Xin X;) = max(0, —cosdy) 3)
u;nter (Xi’ X]) = uinteT(OBB(Xi)7 OBB(XJ))

+ Road markings tend to follow a regular layout, thus
we added a birth/death in a neighborhood kernel which
gives the sampler the opportunity to explore more
efficiently the possibility that some road marking might
exist next to an already detected one. The inclusion of
this kernel also resulted in a significant performance
boost [33].

o Finally, another kernel was added to enable a uniform
type switch, which proved to be necessary in order to
help the sampler find the right road marking type.

C. 3D road marking database

Once the 2D rectangles labelled with a road marking type
have been extracted, they are lifted in 3D using the digital
terrain model (DTM) encoded in the height channel of the
Lidar orthophoto. A simple height lookup enables the lifting
of these 2D rectangles as a 4-sided 3D polygon.

Dictated by the targeted application, and due to the abun-
dance of road markings in street view images, the detec-
tion tradeoff has been tuned to minimize false detections
at the cost of under-detecting some road markings. This
results in an extraction with some under-detection but very
limited over-detection. In order to ensure the accuracy of
this database the extracted road markings may be validated
interactively in order to remove the remaining few false
positives. Note that this manual intervention is optional and
very limited as the extracted road markings may be sorted
using their data attachment term u} such that the operator
only has to review the few extracted road markings that have
the worst data evidence.

V. LOCALIZATION SYSTEM

Similar to other works, we use a monocular calibrated
camera embedded on a vehicle as a localization device.
The localization is initialized using a low cost GPS at the
beginning of the trajectory. Except at the starting point, any
GPS observation is used in the localization system. Local
bundle adjustment (LBA) [3] and uncertainty propagation
[34] are applied in order to estimate the pose parameters and
their covariance. Like in any relative positioning algorithm,
accumulation of errors in LBA leads to considerable drifts for
long trajectories. In order to reduce the drift, we proposed to
integrate ground control points (GCP) in the equation system
of LBA [32]. GCPs are points whose coordinates are known
in both world and image coordinate systems. In order to
explain how road markings are integrated as GCPs in the
bundle adjustment, we explain briefly the principal concepts
of a constrained LBA. For more details about the algorithm
the reader is invited to refer to [32].

The principal concept of LBA (cf. Fig. 5) is to compute the
system on a low number of images N since the complexity

Fig. 2. (a) 3D point cloud, (b) corresponding orthophoto I (GSD = 2cm)
generated from points’ intensities.

ﬂlﬂl]ul]l

Fig. 3. Library of road marking template patterns (GSD = 2cm).

Fig. 4.

Simulated annealing-coupled RIMCMC optimization.

of the system is O(N?3). At the very beginning a classical
bundle adjustment is computed on the first N images (step
1 in Fig. 5). Then the bundle adjustment window is slid by
a step n < N (step 2 in Fig. 5). N — n poses of the new
window are already computed by the previous step (C},) and
n new poses are unknown (C,,). The vector X; contains the
3D coordinates of all tie points. The re-projection errors are
estimated by equation 6.

Ut :F(prcn,Xt) — my (6)
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Fig. 5. Schematic flow of local bundle adjustment.

F' is the function projecting X; in poses C, and C,, and m;
is a vector containing observed coordinates in the images. As
mentioned before, previous poses C), were already computed
during the previous step. The previously computed values C’g
are used to constrain new estimation of C),, denoting this
erTor as vp:

v, =Cp — C) (7)

The system is then resolved by minimizing the weighted
quadratic error:

[Cp, Cn, Xi] = argmin %(v? Qi vt v, Qgyvn)  (®)
[Cp.Crn, X4]

Where, @Q; is the covariance matrix of the 2D tie point
positioning in image space and (¢, is the covariance of
poses that are computed in the previous step.
In order to integrate GCPs in the equation system, let us
suppose that their world coordinates are coded in vector X¢
and their 2D coordinates in image spaces in vector my. The
re-projection error of these points (v,) is expressed as:

vy = Fy(Cp, Cn, X)) — my ©)

Since the 3D world coordinates of these points are known
(X2) the following constraint may be added to the equation
system:

vg = Xg — X2 (10)

After adding GCPs the system is resolved by equation 11.
[ép: ém Xta XG]

arg min
[Cp,Cn, X, Xc]

o=

T -1 T -1
(vi Qy vt + v, Qe vp

+ ngQg_lvg—&-ngélvg) (11)

Q¢ is the covariance matrix of 3D GCPs and is related to the
precision of 3D reconstruction of road marks (section IV).
Qg is the covariance of position of road marks in image
space. It is related to the precision of road mark matching
(section VI). After resolution of the system the covariance
of the parameters can be estimated by partial inversion of
normal matrix [32]. In this paper we used SIFT points for

feature detecting and matching. Features of every image are
matched to the previous three images. The size of the sliding
window is seven (N = 7) and sliding step is one (n =
1). The output of this step is 6D pose parameters of image
sequence together with their covariance.

VI. ROAD MARK MATCHING

This section tackles the problem of providing new GCPs
to the LBA by leveraging the LBA-estimated pose with
uncertainty by matching the projection of a 3D road marking
database into the current image.

A. Initialization using the LBA estimates

Given a LBA-estimated pose with uncertainties for the
current pose (C, Q¢), the nearest 3D road markings (X¢)
may easily be selected from the database and projected into
the current image. Due to the perspective projection (F'), this
yields for each marking in the database a 4-sided polygon
which may be used to resample the road marking template
pattern through the homography defined by these 4 points.
Furthermore, the pose and road mark uncertainties (Q¢
and Q) translate directly into a 2D Gaussian re-projection
uncertainty (()z,) for each of the 4 points following equation
12.

Qze = [g% aax—i] {QOC (12)

B. Search space definition

oF
0 e
ol |

These four 2D points together with their 2D Gaussian
uncertainties allow us to define a sufficiently tight search
space: We consider for each 2D point a search space
for the refined position as the 2D bounding box of the
99%-confidence region of the Gaussian uncertainty centered
around its estimated 2D position (figure 6). This conservative
search space definition is both able to cope with small error
underestimation, and is convenient to deal with.

e

Fig. 6. LBA-based search space definition, initialization and MCMC
optimization.

C. Objective function

Given four image points defining the homographic projec-
tion of a road marking template into the current view, we can
assess the quality of this projection by computing the ZMNC
of this homographic projection with the image content. We
can then formulate our problem as finding the four road



marking corner projections within their uncertainty-based
bounding boxes such that they maximize this ZMNC score.
In order to rule out degenerate set ups, we further impose
that the four points define a convex polygon.

D. MCMC Optimisation

Contrary to the offline road marking extraction step, this
optimization is defined in a fixed dimension setup: the 8
coordinates of the four 2D points. Given the nature of the
objective function, a more specific optimizer is not trivially
available, thus we propose to perform a (regular) MCMC
optimization.

Given the strong correlation between the errors of the 4
projected points, we propose the following transformation
kernels for the MCMC modification proposal step:

o An overall rigid translation of the 4 points
« A translation of one point leaving the three other points
fixed with a lower amplitude

Similar to the database generation optimization, the
MCMC sampler is coupled with a simulated annealing in
order to optimize the ZMNC objective function, rejecting all
modifications that produce a concave polygon. The initial-
ization is provided by the road marking projection using the
estimated pose.

VII. RESULTS AND EVALUATION

In order to evaluate the proposed mapping/localization
algorithm, it is applied to a 500m trajectory in an urban
area (cf. Fig. 7(a)). STEREOPOLIS mobile mapping system
[30] was applied to scan the area. It provides point clouds
of bem resolution on the road surface. Thanks to an
integrated georeferencing system (GPS/INS/odometer),
the acquired data are precisely georeferenced. A full HD
camera is embedded on the system. The focal length is
quite high and the horizontal angle of view is about 70°.
Intrinsic parameters of the camera and its position and
orientation in relation to the system are known. It provides
our ground-truth for vision based localization. Fig. 7(c)
depicts an example of image acquired by the system. The
road mark mapping algorithm presented in section IV was
applied to detect the road marks in the orthophoto. The
detected objects were projected in 3D using the height value
of Laser points at the corners of the road marking. The 3D
map was edited manually for removing false objects. Fig.
7(b) depicts the provided 3D map on the test area.

The first image of the sequence was initialized using GPS
localization and LBA (cf. section V) was launched using
a sliding window containing seven images (N = 7) and
progressing step of one image (n = 1). From the very
beginning of the trajectory road marks were matched to the
images and provided GCPs. Fig. 8 shows the interest of road
marking at the beginning of the trajectory. The green poly-
line shows the ground-truth trajectory. The red trajectory in
Fig. 8(a) was obtained by LBA without using road marks and
the blue one in Fig. 8(b) was computed by LBA integrating
road marks as GCPs. The error ellipsoids were exaggerated

ten times. The larger size of error ellipsoids as well as larger
difference with ground-truth is noticeable when road marking
were not integrated in the LBA.

e

(a) Without using road markings.

[

(b) Using road markings.

Fig. 8. Vision based pose estimation at the first 20m of the trajectory.
Ground-truth trajectory is drawn in green.

The results of localization with and without using road
marks on the entire trajectory are shown in Fig. 9. The
maximum of error if no road mark is integrated in the system
is 4m. This error is reduced to 0.4m if road marks are
integrated in the system. The accuracy along the trajectory is
correlated to the density of road marks. For a large part of the
sequence the error is around 0.1m. This error increased to
0.4m at the end of the trajectory since the density decreased.
We noticed that in the case where no road marking is used
(Fig. 9(a)) the positioning error decreased near image number
130. We would expect the error to increase continuously. The
decrease of error starts to happen at a very sharp turning. At
this position only about 20 tie points are available between
successive images whereas this number is about 100 for
normal conditions. We guess that relative pose estimation
at this area is erroneous. It seems that this error happens
coincidently in the opposite direction to the accumulated
error and leads to a decrease of final error to 0.5m at the



Fig. 7.

a8

(b) (c)

(a) Our 500m test trajectory. (b) Approximately 200 road mark objects are reconstructed by the mapping step and 150 were kept after manually

editing. (c) An example of image acquired by the embedded camera on the system.

end of the trajectory. This problem was not happened for the
localization mode using road marks. Only a few numbers of
observed GCPs can resolve such degenerate pose estimation
cases.

Most of the computation time goes into road mark matching.
The number of needed iterations for convergence in the
MCMC algorithm depends on the initial estimation and the
size of the uncertainty region. Due to some non Gaussian
errors, our estimated uncertainty is sometimes underesti-
mated. This is why in practice we enlarge the search area to
guarantee the convergence and it slows down the algorithm.
In addition the computation time for each iteration is pro-
portional to the number of the pixels of the pattern (50 x 200
pixels). It takes 10 — 40s for each object.

VIII. CONCLUSIONS AND TRENDS

This paper presents a solution to the problem of precise
localization for low cost mobile mapping systems equipped
only with low cost sensors (camera and GPS). The method
is particularly careful about the uncertainties and does few
approximations. It enables a real 6D pose estimation using
precise landmarks. Evaluation on a test trajectory revealed
an accuracy of 10 ¢m in areas with high density of road
marks and 40 c¢m in areas with low densities. More tests
are required in order to compare the presented method using
road marks with our previous work using traffic signs as
landmarks. Fusion of both methods should obviously provide
better result. Actually, the system assumes that the landmark
map contains no false object and that the uncertainty of initial
pose is sufficiently low to avoid ambiguities in landmark
matching step. The robustness of landmark association phase
would be improved if all the visible landmarks in a view
undergo the matching at the same time (instead of matching
every object separately). The high computation time of the
matching part constitutes the main barrier for using the
proposed localization method in real-time applications. One
interesting idea for accelerating this part would be to use
image gradient to match the contours and/or corners of
objects instead of using all the pixels inside the road marking
for costly correlation score computation. Moreover, a smarter

adaptation of MCMC parameters (number of the iterations,
starting temperature and temperature decrease rate) for each
object can also help to avoid useless iterations and save
computation time. Finally, we believe that the real-time Jurie-
Dhome [35] tracker can be adapted to the problem of road
mark matching.
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