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Abstract— Modern multi-level indoor parking environments
promise to alleviate the parking problems in modern cities
but they are oftentimes stressful for human drivers. Increasing
automation of the parking process has the potential for signifi-
cant gains in efficiency, safety and comfort but requires highly
accurate sensing and monitoring of the environment. Another
challenge is the appropriate visualization of large amounts of
sensor data from disparate sources, in an intuitively under-
standable way. We address these challenges with our platform
VPIPE for realistic visualization of 3D parking environments,
parking lots and sensor data of vehicles. As central building
block for this platform, we propose a cost-effective camera-
based parking lot monitoring system that uses a cascade of
Random Forest and Artificial Neural Network classifiers. The
achieved detection accuracy in our parking testbed is 94.98%.

I. INTRODUCTION

Modern cities around the world suffer from problems
related to parking: Overcrowded streets, lack of space and
time-consuming searches for parking spots. One potential
solution are multi-level car parks which represent an efficient
way for temporary vehicle parking. However, human drivers
are often overwhelmed, as driving in these confined, highly
dynamic and sub-optimally illuminated spaces is challeng-
ing. Also, especially if the parking environment has a high
rate of occupancy, finding a free parking lot can take a
considerable amount of time.

To alleviate these problems, driver assistance systems can
be employed: The first step is a navigation system, where
the driver is guided towards an available parking lot. The
second step is automatic driving, where the vehicle is finding
an available parking lot entirely on its own. Both strategies
significantly reduce the burden of the human driver. However,
the difference is in the strictness of the requirements in the
underlying sensor task, i.e. automatic driving requires a con-
siderably higher level of accuracy, robustness, performance
and error detection for each of the sensing tasks.
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In this work, we present our platform for visualization of
indoor parking environments (VPIPE), an extension of the
Physics Aware Behavior Modelling Advanced Car Simulator
(PHABMACS). Our vision is to blur the border between
the virtual and real world by achieving a customizable
visualization of the 3D environment and sensor data from
both the infrastructure and vehicles. This platform will
accelerate the development, validation and demonstration of
localization, object detection, tracking and other algorithms.
Also, synergies are created by using VPIPE for parking space
monitoring, Human Machine Interface (HMI) for naviga-
tion, tracking of autonomous vehicles, validation of indoor
maps, etc. Further improvements are yielded by applying
Cooperative Driver Assistance systems (CoDAS) in parking
environments, such as Cooperative Adaptive Cruise Control
(CACC) [1] which are evaluated in the TEAM project [2].

To achieve this, VPIPE dynamically renders indoor en-
vironments based on maps, infrastructure and vehicle data.
Firstly, OpenStreetMaps (OSM) [3] are rendered true to
scale. Secondly, the environment is equipped with a vari-
ety of sensors. Thirdly, vehicle sensors are incorporated to
further enhance the richness of environmental representation.

In our previous work, we have used ubiquitous surveil-
lance cameras to detect and localize moving vehicles [4],
[5], [6], as well as tracking and identification of unique
endpoints [6], [7]. In order to quantitatively evaluate these
systems, we proposed a highly-accurate Ground Truth [8].
In this work, we propose a parking lot monitoring (PLOM)
approach based on infrastructure cameras that is a central
building block, sas many ADAS in parking areas rely on an
accurate knowledge of the lot occupation state. In addition,
we deployed Velodyne Puck VLP-16 LiDAR scanners [9]
in the environment which yield highly accurate point cloud
data. An example of the flexible visualization capabilities of
VPIPE is displayed in Fig. 1 which shows three representa-
tions of the same parking scene using the PLOM detection,
simulation models and LiDAR scanner.

This paper is organized as follows: In Section 2 related
work is introduced, Section 3 explains the PHABMACS
simulator, the basis of VPIPE, Section 4 presents the method-
ology of the PLOM system which is evaluated in Section 5,
while the paper concludes in Section 6.

II. RELATED WORK

Simulation tools relevant for ADAS research in the context
of intelligent parking environments can be divided in three
groups. The first group are microscopic traffic simulation
tools like SUMO [10], which aim on modelling traffic flows
and to support research with a focus on traffic influencing



Fig. 1: Three vantage points on parking lots: PLOM detection (left), PHABMACS (center), LiDAR scanner (right).

applications rather than with physically realistic 3D represen-
tations. The second group, driving simulators, is dedicated
to the involvement of human drivers into the simulation,
like OpenDS [11]. These driving simulators are used for
research on ADAS from a perspective of interaction with
human drivers. For this reason, the simulation is designed to
feel most realistic to the driver instead of mapping realistic
vehicle physics. The third group of simulation tools, the
most relevant group for our purpose, refers to the vehicle
simulators such as TORCS [12] which aim on mapping
realistic vehicle dynamics. TORCS, however is targeted
towards racing scenarios and the visualization of race tracks.
In contrast, the PHABMACS simulator is designed to map
realistic 3D vehicle physics and to visualize a recognizable
view of an existing real world environment with a minimum
set of information, provided by OSM maps and sensor data.

With respect to indoor parking environments, parking lot
detection systems (PLDS) often incur the disadvantage of
high installation and deployment costs. In contrast, camera-
based systems do not only provide an inexpensive and
effective solution that is easy to deploy and covers a wide
range of parking spaces, but also support other tasks such
as surveillance. The substantial challenges for camera-based
PLDS are the various environmental influences such as
shadows, varying weather conditions and limited visibility as
determined by the camera perspective. Most of the PLDS for
parking lot occupancy detection in recent years are based on
images and videos from cameras placed on the infrastructure
side. For instance, template matching techniques based on
reference images can be applied [13]. However, invariant
descriptors such as SIFT [14] or SURF [15] in combination
with the bag of visual words (BoW) [16] method have
gained popularity due to their simplicity, performance and
robustness [17], [18]. In this paper, we present a vision-based
Parking Lot Monitoring (PLOM) system based on two clas-
sification methods (Random Forest [19] and Artificial Neural
Networks [20]) that build multi-category image models based
on invariant descriptors.

III. SIMULATION ENVIRONMENT

In the following, we provide a brief overview about
the PHABMACS simulator, a distributed framework for
testing ADAS [21] within a simulated 3D environment.
PHABMACS, is the basis of VPIPE, even though only the
visualization aspects are relevant to this paper. The ADAS

under test in PHABMACS can utilize simulated sensor
data as well as control simulated vehicles by using virtual
actuators. In order to support such testing, the entities to be
part of the simulation are driver, vehicles, and environment.
The simulated driver is used to generate the input, which a
driver normally generates by operating the vehicles actuators
(throttle, brake, steering). In PHABMACS, this is realized by
employing driver models, or using direct input from a human
driver. The simulated vehicles map the vehicle dynamics on
simulation objects, which generate sensor input used by the
ADAS and reacts to the output on actuators of the vehicles.
The environment simulates the influence, which objects have
on the sensors and the dynamics of the vehicles, as well
as road conditions, the street grid, and other environmental
influences like slopes, air drag etc. PHABMACS is available
as part of the VSimRTI suit[22].

1) Models: When developing PHABMACS, the require-
ments for the simulation where oriented on cooperative
ADAS [21]. To simulate these a higher physics accuracy
is needed than any existing microscopic traffic simulator
like e.g. SUMO [10] can offer. Simulation scenarios contain
less vehicles than large scale traffic simulations but can still
involve hundreds of vehicles. However, in order to achieve
this tradeoff between simulating vehicle dynamics precisely
and still having enough performance for simulating multiple
vehicle instances, PHABMACS does not aim on simulation
of accidents. Thus, the simulated vehicle behavior close to
the limits of driving dynamics is realistic until accidents hap-
pen, not subsequently. A correctly simulated vehicle behavior
in extreme situations like heavy over- or understeering is not
strictly realistic, as the class of applications PHABMACS
aims on, is meant to prevent these situations. For this
reason, PHABMACS is based on rigid body dynamics [23]
employing basic models for chassis components e.g. dampers
and more precise models for the powertrain as this is relevant
for the interaction of the ADAS with vehicle. These models
are of minor importance for the research done in the context
of this paper and we therefore do not go into further details
at this point.

2) Architecture and Implementation: The architecture of
PHABMACS is depicted in Fig. 2. This architecture takes
separation of user code and the PHABMACS framework
into account. The user code is a separate piece of software,
which the user employs to control the simulator, setup
scenarios, define custom sensors and connect the ADAS to
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Fig. 2: PHABMACS architecture.

be simulated. The PHABMACS framework is separated into
the visualizer and the actual simulator, which needs to be
modified if changes on the models are needed. The frame-
work also enables deployment of visualizer and simulator on
different computers. In this way, multi-user scenarios with
multiple human driver or observers can be set up, as well
as high performance simulation scenarios with a runtime
factor below real time, without visualization. Controlling the
simulated vehicles in PHABMACS can either be done by
the simulation, driving paths which are part of the scenario
defined by the user, or by direct user input.

The implementation is realized in JAVA. For the basis
of the physics engine of the simulator, JBullet has been
chosen. The vehicle dynamics and the other models described
earlier are custom JAVA implementations, which are used to
calculate the forces to be applied to the objects in JBullet.

3) Visualizer: The Visualizer component displays the sim-
ulated world to the user utilizing advanced 3D graphics (cf.
Fig. 1 and Fig. 2). This includes visualization of complex
environments like parking garages, creating a recognizable
visualization for the user from the limited set of 3D infor-
mation of the environment, coping with low performance
devices, and potentially a large number of objects to be
rendered. In order to reconcile these requirements, we have
designed the visualizer using the following features. In order
to avoid additional effort on scenario setup, the visual models
should be directly generated from the simulation models. The
displayed environment is automatically generated from an
arbitrary OSM file and includes streets, buildings, waterways,
trees and terrain types. Moreover, an optional height map
can be used to generate further terrain information. To get a
high quality visual appearance the visualizer optionally uses
cascaded shadow maps [24] and high-detail vehicle models.
The employed visualization engine is a custom implemen-
tation, which uses LWJGL as JAVA based library to access
OpenGL functions on the target system. There are options
to connect ADAS which are no JAVA implementations, e.g.
a Matlab/Simulink interface is available.

4) Parameterization of the Vehicle Model: As described,
the precise simulation of vehicle dynamics is important for
original purpose of PHABMACS. In order to reach such
a precision, the vehicle models are parameterized to match
the real world pendants of the vehicles to be simulated. In
this way, from the perspective of the ADAS under test, the
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Fig. 3: Validation of simulation vehicle model.

simulation gets close to the situation when being deployed
in a real world vehicle.

This parameterization has been validated in two steps
according to the graphical comparison technique [25]. First,
static parameters of a real world vehicle like dimensions,
mass, maximum steering angle, suspension spring constant,
etc. are set to the simulation model. Second, experimental
data captured from a real world vehicle is used to correct
the vehicle models. In the context of this paper, we do not
go into details. However, as one example of the result of
validating the model used for the research in this paper,
[ref] shows the graph for comparison of the lateral dynam-
ics captured from real world experiment and simulation.
According to the methodology for validation of vehicle
lateral dynamics simulation described in [26], six selected
test runs performing a double lane change maneuver where
split, aligned and averaged. The 95% confidence interval
was calculated for yaw rate and lateral acceleration using
student’s t-distribution. As depicted in the resulting Fig. 3,
one of the major validation criteria is met, as the averaged
simulation output are within the confidence interval.

IV. PARKING LOT DETECTION

The proposed processing steps of our parking lot mon-
itoring system are the following: In the first step (1.), we
obtained an image from the camera which is monitoring
multiple parking lots (cf. Fig.1 left). The second step (2.) is
the segmentation of the entire image into individual regions
of interests (ROIs) for each parking lot. Due to the fixed
mounting point of the camera and fixed position of parking
lots, the ROIs are set manually in an initial calibration step.
In the next step (3.), a classifier evaluates each ROI to label
it as either occupied or available. Finally (4.), the status for
each parking lot is provided to PHABMACS in order to
enable VPIPE to visualize the parking lot occupation state
(cf. Fig.1 center).

Our proposed image classification step is based on BoW
models which is a supervised learning technique using a
codebook of visual words obtained by clustering the ex-
tracted local invariant image descriptors with the K-Means
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TABLE I: Confusion Matrix denoting the possible results of
the PLOM classifier.

[27] algorithm. Put differently, an image is represented as a
bag of visual words, which is a vector of K bins that counts
the number of occurrences of particular image patterns or
vocabulary. This histogram of visual words acts as input for
multi-class classifiers.

The proposed PLOM is a binary classifier as it differen-
tiates two possible classes for each parking lot input image,
i.e. occupied and available. The confusion matrix in Tab.I
illustrates the four possible states for the classifier results
depending on its prediction and the actual reality. Moreover,
the classifier is operated in two stages, training and testing
resp. In both the training and testing stage, the first step is
detection and representation of features (i.e. keypoints). The
second step in the training stage is to use the features of step
1 and given class labels (i.e. supervised learning) to train a
classifier. In the testing stage, this classifier determines the
class label of an arbitrary new image.

We selected a dataset of about 22,000 images for the train-
ing process. For both classes (i.e. occupied and available), we
use images from our parking test site, as well as images from
publicly available datasets [28], [29]. For the evaluation of
the detection accuracy, we used additional 757 images from
our parking test site (see Fig.4) which are not in the training
data set.

For the basic representation of image features, we investi-
gated the following keypoint detectors and descriptors [30]:

• Difference of Gaussians (DoG) feature detector and the
128-elements SIFT descriptor.

• Fast Hessian feature detector and the 128-elements
upright SURF descriptor.

• Oriented Brief (ORB) keypoint detector and descriptor.

Based on aforementioned detector and descriptor methods,
a Random Forest (RF) [19] and an Artificial Neural Networks
(ANN) [20] classifier was trained on the training data set.
Furthermore, we have used a two-step empirical method
selection process to identify the optimal combination of
keypoint detector and classifier for a varying number of
clusters in the BoW vocabulary. In the first step, we evaluated
the detection accuracy of each combination of a single
individual keypoint detector and classifier. In the second
step, we have assessed the detection accuracy of cascades
of individual classifiers.

In the first step we tested the suitability of each method for
our classification task. To this end, the classifiers were trained
with different K number of clusters. Thus followed the vali-
dation and analysis of the results obtained after each training
round. These results were then recorded and evaluated in a

Fig. 4: Examples of evaluation input images (top row occu-
pied, bottom row available).

confusion matrix (see Tab.I), thus the training parameters of
the classifiers and the size of the BoW vocabulary K are
quantitatively optimized.

The second step addresses the consequences of a com-
bination of methods, to compensate the disadvantages of
each method and to benefit from the respective advantages.
With this in mind, the classifiers were individually and in
combination also trained and verified. In order to simul-
taneously achieve a high detection rate at the same time
the lowest possible false alarm rate and low computational
time, the parking lot occupancy detection is carried out in
cascaded classifiers. The idea of cascaded classifiers is that,
it executes consecutively multiple basis classifiers in order
to improve the classification result iteratively and reducing
the misclassifications by a further classifier.

The results of the empirical method selection presented in
Section V reveal that the optimal detection accuracy for the
evaluation data set is achieved for a RF-ANN-ANN cascade
based on FAST and SIFT descriptors.

V. EVALUATION

Our underground carpark test site (cf. Fig. 5) is equipped
with 16 AXIS M3114VE 2MM (FW: 5.40.9.2) network cam-
eras (LOT0 to LOT15) providing images at a resolution
of 1280 × 800 px via Gigabit Ethernet encoded as JPEG.
Overall, 65 parking lots are monitored as one camera covers
between three to six parking lots. The cameras mounting
heights are approx. 2 m; the distance to the lots is between
4 m to 7 m. The detection software is implemented in C++
using the library OpenCV 3.1 on a PC with an Intel(R)
Core(TM) i7-4700MQ and 16 GB RAM on Ubuntu 14.04
LTS (64 bit). In the following, we first present the results
of the aforementioned two step empirical method selection
process, to determine the optimal classifier cascade. Subse-
quently, we evaluate this classifier cascade approach with a
manually labeled evaluation data set of our parking testbed.

1) Empirical method selection process: We assessed the
detection accuracy of each method in order to choose the
best combination of feature detector, descriptor and classifier.
Also, we used a confusion matrix (see Tab.I) with the 4
classes True Positive (TP), True Negative (TN), False Posi-
tive (FP) and False Negative (FN) to evaluate the prediction
quality of our approach on the evaluation data set.
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TM PLOM

True Positives 344 346
True Negatives 328 373
False Positives 53 6
False Negatives 32 32

Accuracy 88.77% 94.98%
MCC 0.78 0.90

True Positive Rate 91.49% 91.53%
True Negative Rate 86.09% 98.42%

TABLE II: TM and PLOM detection results.

Phase 1: Descriptor and classifier selection
Considering the accuracy of the different descriptors over

number of training image, the best result is achieved for a
BoW cluster size of K=1500. For this value, SIFT and SURF
descriptors based classifiers achieved the highest accuracy,
for the given data sets.

Regardless of the number of training images, the ORB-
based classifiers could not be improved beyond a detection
accuracy of about 83%. As a result, the ORB classifiers were
no longer taken into account in the subsequent second phase.
Furthermore, to take an advantage of the efficiency of the
ORB detector and the performance of the SIFT and SURF
descriptors, the FAST detector was used in connection with
the SIFT or SURF descriptors.

Phase 2: Combination of methods
Due to the method combination, we were able to use a

BoW cluster size larger than 10,000 without resulting into
overfitting the classifiers. We found that a RF-ANN-ANN
classifier cascade achieved the best detection results with
K=20,000. For this value, FAST and SIFT descriptors lead
to the lowest overall error rate (7.40%).

2) Quantitative evaluation: We use a basic template
matching approach similar to [13] (referred to as TM) as
baseline for the evaluation of the detection accuracy, in com-
parison with our proposed RF-ANN-ANN cascade (referred
to as PLOM). The TM approach uses a reference image for
each parking lot ROI representing the available state. Each
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Fig. 6: Cumulative Density Function (CDF) of processing
time for TM and PLOM algorithms, in ms.

test image is compared against the reference image and the
proportion of matching area by the TM approach determines
the parking lot occupation state.

The evaluation image data set contains 757 manually
labelled images for both occupied and available parking lots
captured randomly over a period of months. Thus, these
images represent a realistic environment as they contain
different levels of illumination, dirt and moisture. Also, some
cars are not perfectly aligned to the parking lot boundaries.
Moreover, some images contain arbitrary objects in the
parking lots, such as pedestrians or building materials. For
the subsequent evaluation, we use the following evaluation
metrics (see Tab. I):

Accuracy =
TP + TN

TP + TN + FN + FP
(1)

MCC =

(TP · TN)− (FP · FN)√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(2)

TPR =
TP

TP + FN
(3)

TNR =
TN

TN + FP
(4)

The accuracy represents the overall rate of correct detec-
tions in relation to the total number of image detections. The
MCC (Matthew’s Correlation Coefficient) score has been
selected due to its interesting properties: In a range of −1
to +1, where 0, −1 and +1 can be interpreted as chance
results (i.e. coin flip), all detections incorrect and all detection
correct resp. The TPR (True Positive Rate) and TNR (True
Negative Rate) indicate only the correct detection rate within
their class, i.e. occupied and available respectively.

Tab. II shows the evaluation results for TM and PLOM.
Generally, TM and PLOM exhibit an accuracy of 88.77%
and 94.98% or a MCC of 0.78 and 0.90 resp. Also, TM
and PLOM show a TPR of 91.49% and 91.53%, as well
as a TNR of 86.09% and 98.42% resp. TM shows a
relatively high number of false positives, i.e. empty parking



lots declared as occupied. In this case, some parking lots will
not be utilized which incurs economic consequences for the
operator. Also, both TM and PLOM show a relatively high
number of false negatives, i.e. occupied parking lots being
declared as available. This can be problematic as vehicles
might be guided towards these occupied lots, leading to
potential overutilization and congestion. Thus, in the process
of tuning the classifier’s parameters a trade-off between a
higher TPR and a lower TNR should be chosen if possible.

Fig. 6 illustrates the processing time of TM and PLOM for
each image frame (containing in average 4 ROIs). TM and
PLOM have a median processing time of 4ms and 107ms
resp. The PLOM processing time standard deviation is 14ms
and the 95 percentile processing time is 174ms.

VI. CONCLUSION AND OUTLOOK

In this work, we have presented a highly accurate real-
time parking lot detection system which is a central building
block for our simulation and visualization platform VPIPE,
an extension of the PHABMACS simulator. This system
achieves a detection accuracy of 94.98% in a realistic parking
environment under challenging environmental and illumina-
tion conditions. Further synergies can be achieved by com-
bining results of our previous research into PHABMACS,
i.e. detection and localization of vehicles and pedestrians,
identification and tracking as well as collision warnings.

Our future vision is to blur the lines between the real
and virtual environments by gaining an all-encompassing
representation of objects measured by disparate sensors, both
in the environment and vehicle. Different aspects of the
virtual representation can be used for different purposes, such
as navigation, tracking of autonomous vehicles, collision
detection, parking space surveillance, etc. A myriad of new
possible visualization and interaction concepts arises when
connecting the PHABMACS simulator with virtual reality
hardware components.
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