
Evaluation of A Semi-Autonomous Lane Departure Correction System
Using Naturalistic Driving Data

Ding Zhao1, Wenshuo Wang2, David J. LeBlanc1

Abstract— Evaluating the effectiveness and benefits of driver
assistance systems is essential for improving the system perfor-
mance. In this paper, we propose an efficient evaluation method
for a semi-autonomous lane departure correction system. To
achieve this, we apply a bounded Gaussian mixture model to
describe drivers’ stochastic lane departure behavior learned
from naturalistic driving data, which can regenerate departure
behaviors to evaluate the lane departure correction system. In
the stochastic lane departure model, we conduct a dimension
reduction to reduce the computation cost. Finally, to show the
advantages of our proposed evaluation approach, we compare
steering systems with and without lane departure assistance
based on the stochastic lane departure model. The simulation
results show that the proposed method can effectively evaluate
the lane departure correction system.

Index Terms— Performance evaluation, lane departure cor-
rection system, stochastic driver model, bounded Gaussian
mixture model

I. INTRODUCTION

In the United States, single-vehicle road departures ac-
counted for approximately 37.4 % of all fatal vehicle crashes.
Many studies have been conducted on the lane departure
warning (LDW) system, lane departure assistance (LDA)
system, and lane centering assistant (LCA) system. These
systems have the potential to address a large proportion
of serious injury and fatal crashes and have been studied
by many authors. For example, Minoiu Enache [1] et al.,
designed a steering assistant controller for lane departure
behaviors. Reagan and McCartt [2] investigated on the fre-
quency in which the LDW system was activated. A limited
number of studies, however, have been conducted on how
to evaluate the effectiveness and benefits of these systems
in the real world. Several naturalistic field operational tests
have been conducted in the U.S. However, the cost of these
types of evaluation is so high that they are useful only for
evaluating the final product, not at the point of development.
Mathematical models capable of reproducing drivers’ lane
departure behaviors can be applied to testing and evaluating
the effectiveness and benefits of these systems, thus cutting
costs and shortening the development cycle. Such models
may also allow deeper insight into the physiological and
cognitive behaviors of human drivers so that present or future
driver-automation interfaces can be optimized.
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Fig. 1: Evaluation procedure based on a stochastic lane
departure model using naturalistic driving data.

Recently, simulation-based evaluation methods have be-
come popular [3]–[8] in evaluating the safety of auto-
mated vehicles and the performance of advanced driver
assistance systems. In this paper, we propose a simulation-
based method to evaluate the lane departure correction
(LDC) system. The evaluation procedure is shown in Fig.
1. First, a stochastic lane departure model is built based
on a bound Gaussian mixture (BGM) model using a very
large quantity of naturalistic driving data. In the trained
model, we use a dimension reduction method and apply
8 variables representing the lane departure behavior. Thus,
based on the stochastic lane departure model, we can extract
and regenerate the lane departure event as similar to what
it might be in the real word. The lane departure events
generated from the stochastic model can be used to test
and evaluate the LDC system. When the vehicle generated
from the stochastic model drifts cross the lane marker, the
LDC system will automatic control the power steering, thus
bringing the vehicle back into the lane. In this way, we can
estimate different LDC systems.

II. MODELING LANE DEPARTURE BEHAVIORS

A. Naturalistic Lane Departure Events

The naturalistic driving data used in this research are
extracted from the Safety Pilot Model Deployment (SPMD)
database [9], which recorded the naturalistic driving of 2,842
equipped vehicles in Ann Arbor, Michigan, for over two
years. As of April 2016, 34.9 million miles were logged,
making the SPMD one of the largest public N-FOT databases
ever. We used 98 sedans to run experiments and collect
real on-road data. The vehicles were equipped with Data
Acquisition System and Mobileyer [6]. The Mobileyer

obtains the driving data such as relative range, relative speed,
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Fig. 2: Procedure to build the lane departure model

Fig. 3: Illustration of lane departure model

and lane tracking measures about lane delineation both from
the painted boundary lines and the road edge, etc. The GPS
obtains the global position (latitude and longitude) and the
GPS time. The vehicle speed, acceleration, throttle opening,
braking force, engine speed were obtained via the CAN bus.
The error of range measurement to the front object was
around 10 % at 90 m and 5 % at 45 m [10].

To ensure consistency of the dataset, we applied the
following criteria: (1) the duration of each event should be
in the range of 0.5 s to 10 s and (2) the average velocity
of each event should be larger than 5 m/s. In total, 529,096
lane departure events were identified from 118 drivers over
the previous four years.

B. Lane Departure Model

The model procedure is shown in Fig. 2. Three key
variables are used to describe a lane departure event: (1) lane
departure y, (2) vehicle speed v, and (3) lane curvature cl
as shown in 3. Examples extracted from the SPMD database
are shown in Fig. 4.

Our goal is to build a model that can generate lane de-
parture events statistically equivalent to the events collected
from naturalistic driving data. If the departure duration T
is 5 s with sampling time Ts being 0.1 s, we will get
3(T/Ts + 1) = 153 data points to fully describe the three
variables y y, v, and cl. This dimension is normally too
high to build a stochastic model. Therefore, the first task
is to reduce the model dimension by extracting the key
features of the variables while reserving model uncertainty.
As illustrated in Fig. 4(a), y can be approximated through a
second order polynomial function of the longitudinal travel
distance x plus the error term.

(a) Lateral departure distance

(b) Velocity

(c) Road curvature

Fig. 4: Lateral offset examples during lane departure

y(t) = ỹ(t) + εy(t) (1)

ỹ(t) = −4dy
d2
x

(
x(t)− dx

2

)2

+ dy (2)

where dx is the longitudinal travel distance during the depar-
ture. dy represents the lateral departure calculated from the
Least Square method. Variance in human driving is captured
by the standard deviation of εy(l), which can be calculated
from

σy =

√√√√ 1

L− 1

L∑
l=1

|εy(l)− ε̄y|2 (3)

where L is the number of samples in one event, εy(l) =
y(l)− ỹ(l) represents the error at the time of the lth sample
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Fig. 5: Marginal distributions of left lane departure variables

of the lane departure event. Without introducing confusion, in
the this paper we use t to represent continuous time starting
from 0 to T and use l as the index of the discrete sample
time, starting from 1 to L, and ε̄y =

∑L
l=1 εy(l).

Velocity is approximated using a linear function of time.

v(t) = ṽ(t) + εv(t) = ā(t− T/2) + v̄ + εv(t) (4)

where v̄ = dx/T is the average speed. The average accelera-
tion ā is calculated from the least square method. Similarly,
human uncertainties on velocity can be calculated from

σv =

√√√√ 1

L− 1

L∑
l=0

|εv(l)− ε̄v|2 (5)

Lane curvature is also modeled as a linear function of
time:

c(t) = c̃(t) + εc =
∆c

T
t+ c0 + εc (6)

where c0 is the initial curvature and ∆c is the change in
the curvature. To smooth the curvature data, we use linear

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6: Marginal distributions of right lane departure vari-
ables

regression to estimate c0 and ∆c such that
∑L
l=1 |c(l) −

c̃(l)|2 is minimized. The benefits of this model are that it
reduces the dimensions of the original data while capturing
the stochastic variance in human driving with parameters that
have physical meanings.

III. STATISTICAL MODEL FITTING

In this section, we develop a statistical model
to describe the joint distribution of the seven
parameters identified in previous section. Let
ξ(n) = [T (n), d

(n)
y , σ

(n)
y , v̄(n), ā(n), σ

(n)
v , c

(n)
0 ,∆c(n)]

where n = 1, 2, ..., N is the index of departure events. The
marginal distribution of ξ for left lane departure events
and right lane departure events are shown Fig. 5 and Fig.
6, respectively. We can see that each variable follows a
different distribution. From the joint distribution shown in
Fig. 7, a clear dependence between variables can be seen. A
flexible probability density function (p.d.f.) that can model
the multi-variate distribution is needed.



Fig. 7: Joint distributions of duration and maximum departure
distance

In light of its flexibility and ease of training, the Gaussian
Mixture Model (GMM) has been widely used in applications
such as speech recognition [11], pattern recognition [12], and
driving behaviors [4]. In this research, we use the BGM
model to take the physical boundaries into account. The
BGM model is valuable because it considers the variable
boundaries while preserving a tractable form when using the
EM algorithm to train the model.

The probability density function of a BGM model can be
expressed as

fBM(ξ) =
fGM(ξ)∫ bu

bl
fGM(u)du

(7)

where fGM(ξ) is a normal GMM, i.e.

fGM(ξ|Θ) =

K∑
k=1

πkgk(ξ;θk) (8)

where πk ∈ [0, 1] are mixing weights with
∑
k πk = 1,

gk is the kth d-dimensional Gaussian distribution component
parameterized by θk = [µk,σk]. Here we assume that the
boundary is a hyper-rectangle in Rd with two vertices bu =
[bu1 , ..., b

u
d ]T and bl = [bl1, ..., b

l
d]
T on the diagonal opposites

such that bl < ξ(n) < bu, Θ = [π1, ..., πK ,θ1, ...,θK ].
It can be derived that fBM is also a mixture

fBM =

K∑
k=1

ηkfk(ξ) (9)

with mixing weights ηk and component density functions fk:

ηk = πk

∫ bu

bl
gk(u)du∫ bu

bl
fGM(u)du

(10)

fk(ξ) =
gk(ξ)∫ bu

bl
fGM(u)du

(11)

(a) Left departure

(b) Right departure

Fig. 8: BIC with different numbers of BGM components.

The log-likelihood function of fBM can be expressed as

LB(Θ) = ln
∏
n

∑
k

znk ηkfk(ξn) (12)

=
∑
n

∑
k

znk [ln ηk + ln fk(ξn)− ln

∫ bu

bl

fk(u)du]

(13)

The expectation of LB(Θ) can be calculated from

QB(Θ(i+1); Θ(i)) = E[LB(Θ)|ξ1:N ; Θ(i)] (14)

=
∑
n

∑
k

〈znk 〉[ln ηk + ln fk(ξn)− ln

∫ bu

bl

fk(u)du]

(15)

where the latent variable

〈znk 〉 := P(znk = 1|ξn) (16)

As shown in [13], the EM iteration can be calculated from

ηk =
1

N

∑
n

〈znk 〉 (17)

µk =

∑
n〈znk 〉ξn∑
n〈znk 〉

−mk (18)

Σk =

∑
n〈znk 〉(ξn − µk)∑

n〈znk 〉
+Hk (19)

where

mk =M1(0,Σk; [bl − µk, bu − µk]) (20)

Hk = Σk −M2(0,Σk; [bl − µk, bu − µk]) (21)



Fig. 9: Bicycle model and the related variables in a curve
path.

with M1 and M2 represent the first order and second order
moment generated function of fBM.

The component number of the BGM model is chosen
based on a numerical analysis of the Bayesian Information
Criterion (BIC) [14] . As shown in Fig. 8, the BIC decreases
very slowly and begins to oscillate when the number of
components is greater than 10 for both left and right lane
departure cases. Therefore we chose K = 10.

IV. EVALUATION OF A SEMI-AUTONOMOUS LANE
DEPARTURE CORRECTION SYSTEM

An LDC system is designed to demonstrate the evaluation
approach. First, we describe the vehicle dynamics during
the lane departure. Then we introduce an LDC system by
controlling the steering wheel.

A. The Vehicle Dynamics

When vehicle speed varies slightly and the slip values are
small, as at the beginning of lane departure drifting events, a
linear vehicle model can be employed. As shown in Fig. 9,
a simplified vehicle model is used, where two front wheels
and two rear wheels are lumped together, respectively. ψ is
the heading angle and ψl is the tangent direction of the lane.
We define the heading error eψ and offset error ey as

eψ = ψ − ψl
ey = y − wv

2
+
wl
2

(22)

where wv and wl are vehicle width and lane width, respec-
tively. The vehicle dynamic can be expressed in a state space
form

ẋ(t) = Ax(t) +Bδ(t) +Eψ̇l(t), (23)

A =


0 1 0 0

0 − 2Cαf+2Cαr
Mvx

2Cαf+2Cαr
M − 2Cαf lf+2Cαrlr

Mvx

0 0 0 1

0− 2Cαf lf−2Cαrlr
Izvx

2Cαf lf−2Cαrlr
Iz

− 2Cαf l
2
f+2Cαrl

2
r

Izvx



B =


0

2Cαf
m

0

2Cαf lf
Iz

 , E =


0

− 2Cαf lf−2Cαrlr
mvx

− vx
0

− 2Cαf l
2
f+2Cαrl

2
r

Izvx


where x(t) = [ey, ėy, eψ, ėψ]T ∈ R4×1, A ∈ R4×4, B ∈
R4×1, E ∈ R4×1, Cαf and Cαr are tire stiffness, lf and
lr are the longitudinal distance from the center of gravity to
the front axle and rear axle, m is the total mass, Iz is the
inertia of z axis, and δ is the average of the steering angles
of the front two wheels.

B. Controller Design
Define the preview orientation error (Fig. 9)

elpψ = ψ − ψlpl (24)

Let
∆ψl = ψl − ψlpl (25)

Substituting (25) to (24), we have

elpψ = ψ − (ψl −∆ψl) = eψ + ∆ψl (26)

Consider the control law

δ = Kyey +Kψe
lp
ψ (27)

Letting F = [Ky, 0,Kψ, 0] and G = Kψ , we have

δ = Kyey +Kψeψ +Kψ∆ψl

= Fx+G∆ψl
(28)

The semi-autonomous system kicks in when a certain thresh-
old is reached. In this paper we will evaluate a design with
a trigger y > ys, where ys is the predefined threshold.

Based on the above discussion, we rewrite (23) as follows

ẋ(t) = Acx(t) +Bcl(t), (29)

where Ac = A + BF , Bc = [E,BG], l(t) =
[ψ̇l(t),∆ψl(t)]

T . Substituting (28) into (29), we get the
closed loop form

ψ̇l(t) = vx(ts)c(t) =
vx(ts)∆c

T
t+ vx(ts)c0 (30)

∆ψl(t) =

∫ t+Tlp

t

ψ̇l(t)dt = A∆ψlt+B∆ψl (31)

where A∆ψl =
∆c·Tlp·vx(ts)

T and B∆ψl =
∆c·T 2

lp·vx(ts)

2T +
vx(ts) ·c0 ·Tlp. The initial condition of the close loop control
is ey(ts) = y(ts)+(wl−wv)/2 and eψ(ts) = arctan(

vy(t)
vx(t) ),

where vy(ts) =
dey(t)
dt |t=ts , ts is the time of start point of

lane departure. Table I provides the parameters used in the
simulation.



Fig. 10: Illustrations of comparison between trajectories with
and without the controller.

TABLE I: Simulation Parameters

Var Unit Value Var Unit Value
Cαf N/rad 80000 lr m 1.47
Cαr N/rad 80000 Iz kgm2 3344
lf m 1.43 M kg 1000
Tlp s 2 Dy m 0.5
Ts s 0.05 wl m 3.6
Ky rad/m -0.005 wv m 1.9
Kψ rad/rad -0.2 ys m 0.2

C. Simulation Results

Fig. 10 illustrates the lane departure event (green solid
line) generated from the stochastic model and the control
results (green dash line). The red point represents the trigger
point where the control condition is valid.

The simulation results are shown in Fig. 11. The solid
black line is the lane boundary; the dashed black line is the
center of the driving lane. The blue line is the lane departure
trajectory generated from the stochastic model; the red line
is the trajectory of the vehicle with the designed controller.
In Fig. 11, we draw the trajectory only after the controller is
triggered, i.e., the trajectory after the red point in Fig. 10. It is
shown that the learning-based stochastic model regenerated
the lane departure events that can be used in the controller
evaluation.

To clearly show the evaluation performance of our pro-
posed approach, the area between the vehicle trajectory and
road centerline for each departure event is computed by

S =

∫ tend

tstart

|ey(t)|dt (32)

where tstart and tend are the start and end time point of
controller, respectively. Thus, a smaller value of S indicates
that the vehicle is tracking the lane center better.

Fig. 12 provides the statistical simulation results for 200
left lane departure events and 200 right lane departure events
that were stochastically generated from the trained model.
The bar represents the mean value and the red vertical line
represents the standard deviation of S. We note that our
proposed method can generate a wide range of different kinds
of lane departure events and that the controller can pull the

Time [s]
0 0.5 1 1.5 2 2.5 3 3.5

La
te

ra
l d

ip
la

ce
m

en
t [

m
]

-2

0

2

4 Control
No Control

(a) Right departure cases
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(b) Left departure cases

Fig. 11: Examples of the comparison results of the lane
departure events with and without controller.
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Fig. 12: The mean and standard deviations of departure
covering areas for 200 left and right departure events, re-
spectively.

vehicle back to the lane center when drivers depart from the
lane center. The vehicle with an LDC system can reduce the
departure area S by 26.47% and 34.24% for left and right
departure events, respectively. Fig. 13 shows the statistical
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Fig. 13: The statistical results for different number of lane departure event generated from the trained model.

results of generated lane departure events, consisting of right
lane departures (RLDs) and left lane departures (LLDs), thus
supporting the benefit of our proposed approach to evaluating
semi-autonomous LDC systems using naturalistic driving
data.

V. CONCLUSIONS

In this paper, we propose a framework for evaluating
a semi-autonomous LDC system using a learning-based
method. The proposed model can regenerate LDB to evaluate
the controller for the semi-autonomous LDC system. In the
stochastic model, we apply naturalistic driving data to learn
the model parameters based on a bounded Gaussian mixture
model. To reduce computation costs, we propose a dimen-
sion reduction method by using a polynomial function with
stochastic terms to characterize the LDB. Finally, a controller
is designed to validate the semi-autonomous LDC system.
The simulation results indicate that the proposed stochastic
model is effective in evaluating the semi-autonomous LDC
system.
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