
  

 

Abstract— We present a novel technique for fast and 
accurate reconstruction of depth images from 3D point clouds 
acquired in urban and rural driving environments. Our 
approach focuses entirely on the sparse distance and 
reflectance measurements generated by a LiDAR sensor. The 
main contribution of this paper is a combined segmentation 
and upsampling technique that preserves the important 
semantical structure of the scene. Data from the point cloud is 
segmented and projected onto a virtual camera image where a 
series of image processing steps are applied in order to 
reconstruct a fully sampled depth image. We achieve this by 
means of a multilateral filter that is guided into regions of 
distinct objects in the segmented point cloud. Thus, the gains of 
the proposed approach are two-fold: measurement noise in the 
original data is suppressed and missing depth values are 
reconstructed to arbitrary resolution. Objective evaluation in 
an automotive application shows state-of-the-art accuracy of 
our reconstructed depth images. Finally, we show the 
qualitative value of our images by training and evaluating a 
RGBD pedestrian detection system. By reinforcing the RGB 
pixels with our reconstructed depth values in the learning 
stage, a significant increase in detection rates can be realized 
while the model complexity remains comparable to the 
baseline. 

 
 

I. INTRODUCTION 

Depth perception as a visual ability allows us to perceive 
the structure of the world in three dimensions. During 
driving, the human brain-eye loop is constantly active and 
adjusts to the ongoing traffic situation. However, the human 
organs have physiological limits such as accumulation of eye 
strain, blinding by glare and low light sensitivity, which can 
all pose difficulties to the inexperienced driver. Analysis of 
current trends in road traffic accidents confirm the notion that 
the weakest link and the most unreliable part of a vehicle is 
indeed the driver [1]. A significant part of the driver’s 
reasoning is performed using prior experience of the situation 
and context. Using spatio-temporal tracking, the human brain 
is able to interpolate any missing visual cues that might occur 
due to occlusions or loss of concentration. This process is 
difficult to accurately model since it is highly subjective, but 
in all cases the brain relies on a decent set of sensory inputs 
over long periods of time. Thus, we suspect that the 
combination of accurate depth and visual imagery plays an 
important role in the driving reasoning. 
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In the past decade camera technologies have advanced to 
a point where we can safely assume that the visible light 
spectrum can be densely and accurately imaged at low sensor 
cost. Visual object detection algorithms have also been 
actively studied and currently there are many, now 
considered classical [2], applications that can be run in a real-
world environment.  A recent and comprehensive overview 
of pedestrian detectors has been presented in [3]. However, 
since the popularization of deep learning, applications of 
pedestrian detection in RGB images have received an 
increase in interest producing new and promising algorithms 
[4],[5],[6],[7]. 

 Depth information, on the other hand, has been mainly 
perceived by extracting disparity information using stereo 
image processing. The evaluation page on the KITTI Stereo 
2012 benchmark, [8] lists more than 50 algorithms and a 
review of the topic is outside the scope of this paper. We note 
that most of the shortcomings when processing stereo images 
arise from noise in estimating the disparity which is inversely 
proportional to depth. Small disparity errors may give large 
depth errors, especially for distant objects. Authors in the 
literature have used other depth sensing methods, such as 
time-of-flight cameras, where they successfully applied up-
sampling and de-noising to the raw data. Authors in [9] were 
able to recover dense, de-noised depth images without the use 
of a camera reference image. However, time-of-flight 
cameras have limited operating range, especially in bright 
light conditions, and as such are not in the immediate focus 
for autonomous vehicles research. Another viable ranging 
solution is the Light Detection and Ranging (LiDAR) sensor 
which scans the environment by shining infra-red laser beams 
and measuring the reflection delay in order to determine the 
correct distance of objects. These sensors can operate reliably 
in outdoor environments and have usable ranges at up to 
80m. This performance, however, comes at a price of reduced 
sampling density and to this date, steeper sensor cost.  

The topic of obtaining a dense depth map and 
interpolation from automotive LiDAR point clouds has been 
sparsely researched with attempts such as [10] and recently 
[11]. The former proposed a d-dimensional reformulation of 
the bi-lateral filter in order to use a calibrated RGB image as 
guidance for the depth up-sampling. The latter uses 
interpolation techniques only on data from time-synchronized 
LiDAR point clouds to produce dense depth maps. We found 
out, however, that even though these resulting images look 
appealing to the eye, the actual values around object 
boundaries are far from their correct values. An adaptation to 
the bi-lateral filter approach has been suggested [12] where 
points within each local neighbourhood are clustered and 
only points belonging to the cluster with the closest distance 
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to the local point are considered for up-sampling. This 
technique has promising results, however it uses a very small 
clustering window which can miss the underlying semantics 
and the object structure. Another disadvantage is that it only 
clusters points into two groups (foreground / background) 
which isn’t descriptive enough in situations where several 
objects lie in the same line of sight and/or objects have small 
size relative to the sampling resolution. 

Our main contribution is a semantically aware algorithm 
for generation of dense depth maps using only sparse LiDAR 
point cloud data. We propose a two-step approach by first 
segmenting the input point cloud into disjoint objects and 
then applying our novel guided multilateral filtering 
technique on the depth projection image. We use a 
reformulated multilateral filter to work on projected sparse 
images of LiDAR distance and reflectance values, filling-in 
missing measurements, preserving the object edges and 
suppressing the measurement noise. Our dense depth maps 
will later be used to reinforce the RGB input of a state-of-the-
art pedestrian detection algorithm. The rest of the paper is 
organized as follows: in Chapter 2 we will describe how we 
segment the point cloud how it is projected on a virtual 
camera viewport. Chapter 3 describes our depth map up-
sampling using a novel reformulation of the multilateral 
filter. The experimental setup and results confirming our 
hypothesis are presented in Chapter 4 and in Chapter 5 we 
discuss the fail cases and the opportunities for further 
improvement. 

II. POINT CLOUD SEGMENTATION 

The data coming from the HDL-64E automotive ranging 
sensor from the company VelodyneLidar is formed by a 
fixed pattern of 64 rotating laser beams. The sampling rate 
of each laser can be programmed and generally is in the 
range of 2000 samples per full rotation. This rotational 
nature of the sensor head results in three dimensional point 
cloud which represents the environment as a sparse and non-
uniform sample. As the distance from the head increases, the 
scanning density decreases proportionally. A representation 
of such 3D points in a Cartesian coordinate system poses a 
challenge in many applications where algorithms assume 
uniform spatial data distribution. Lately, authors have started 
proposing novel techniques that cope with the varying 
sample densities [13] by transforming the point clouds into 
uniformly sampled lattices. The initially added cost of 
transformation, at the end, results in benefits such as 
increased system flexibility and the possibility to use 
theoretically proven algorithms which are otherwise not 
applicable. In this analysis we will further explore this idea 
by segmenting the environment into disjoint objects using 
fast neighborhood indexing based segmentation. We refer to 
the work in [14] for a more detailed survey of 3D point 
cloud segmentation algorithms.  

Assuming that the world consists of separate objects that 
are not physically connected to each other, we propose a 

segmentation algorithm for finding disjoint objects based on 
the region growing paradigm. The way objects are 
segmented also depends on the scene. In a traffic 
environment any vertical standing structure that is 
protruding above the local road surface or ground plane is a 
potential collision threat. Objects that are high enough to be 
included in this categorization can be frequently observed in 
the KITTI dataset: roadside barriers, traffic signs/lights, 
natural objects, vegetation and trees, animals, buildings, 
bridges, fences and other road users (vehicles, pedestrians, 
cyclists, etc.). Object boundaries are therefore very 
important and can be simply defined as the limits of free 
space that spans around the vehicle. We propose to segment 
the environment by representing it as a two dimensional 
occupancy grid. In this representation the ground plane has 
zero occupancy and anything that protrudes above this plane 
has a correspondingly higher probability of occupancy 
attached to the underlying grid cell. It has already been 
suggested that modeling objects as vertical lines, [15] is well 
suited as a common basis for scene understanding tasks of 
driver assistance and autonomous systems.  

A. Ground plane removal and projection 

Object segmentation of a driving environment should 
consist of the ground plane as a background segment and all 
potential collision threats as separate foreground segments. 
The first step is to remove points representing the local 
ground plane, or otherwise laying in close proximity. We use 
our RANSAC based ground estimation technique [16] to fit 
a plane to the data scanned in front of the vehicle. Later, we 
compute the occupancy grid (map), as the most as the most 
widely used environmental model, using our GPU 
implementation, as discussed in our previous work. In most 
cases the ground can be accurately segmented using plane 
fitting algorithms followed by a simple threshold. The 
produced occupancy map consists of two layers, a model of 
the probability of occupancy of each cell p, and the number 
of times a cell has been scanned, t: 
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where z is the point cloud data, and F is the frustum of the 
LiDAR. A visualization of one such map can be seen on the 
bottom left image in Fig.1. The map is a 2D matrix that 
resembles a regular grid of rectangular cells. Therefore, 
using the maps in (1) we can quickly segment points into 
foreground or background (FG/BG) by thresholding, using 
ground threshold : 
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 The choice of the value of  can be adapted to be above 

the expected unevenness of the local road surface. In 
practice we chose a relatively “safe” value of 25.0 in 

order to segment most road users on the street and on the 
sidewalk. Due to the scanning sparsity, the obtained grid in 
(2) is suffering from noise and discontinuities especially in 
objects that are distant from the sensor. We label these 
sparsely scanned points as weak foreground (FG) objects so 
that they can be treated accordingly in the following steps. 
An intermediate morphological processing step is then 
applied to clean up the object boundaries in order to avoid 
over-segmentation. 

B. Gap fling and clustering 

Two distinct degradations in our resulting grid (2) can be 
observed: objects in the scene that have parts lying below 
the threshold, might get split up into several disjoint blobs, 
and second, parts of objects that are far away and only 
sparsely scanned, usually appear as disconnected noise. In 
order to keep all object parts within their respective blobs, 
and at the same time not merge too many blobs together, we 
propose a strategy of iterative weak object fusion. Weak 
object blobs in the threshold grid (2) are appended to any 
strong object that might be in the neighborhood B. These 
unified objects are now treated as the new strong objects and 
the procedure is repeated until it converges. Formally, at 
iteration k, we define this procedure as the morphological 
sequence: 

   weak
k
strongFG

k
strongFG

k
strongFG OBOdilateOO   ,11



In practice, the algorithm usually converges in less than 
5 iterations depending on scene complexity and the type of 
LiDAR being used. Each unique object of interest must be 
physically separated from other objects, i.e. to be completely 
surrounded by at least one cell of empty space, thus, we treat 
each disjoint blob in our grid (3) as a unique object. The 
actual computation of disjoint blobs can be performed by 
any fast connected components labeling algorithm: 

  k
strongFGidx OO components connected  

3D points from the point cloud will be labeled with the 
respective object index from the blobs in (4). By varying the 
grid resolution and threshold parameters, we can tune our 

segmentation to separate specific objects such as 
pedestrians, cyclists, cars, buses, etc.   

III. DEPTH PROJECTION AND UPSAMPLING 

Point cloud data generated by automotive LiDAR is 
semi-structured in a sense that the exact position of the 
LiDAR head can be computed for each 3D point. However, 
oftentimes the intelligent vehicle will be equipped with 
several LiDAR sensors that might not have the same 
specifications and can be poorly synchronized. In such 
realistic scenarios we must treat the agglomerated point 
cloud data as a single unstructured source where any 
assumption about the structure of this data is false. We offer 
an elegant solution to this challenge by transforming the 
point cloud from a single or multi-LiDAR sensors to a 2D 
image projection with arbitrary resolution.   

A.  Calibration and projection 

We will assume a virtual pinhole camera positioned at the 
origin of the LiDAR coordinate system. The camera is 
pointed in the direction of travel of the vehicle and has a set 
of intrinsic parameters such as focal length and sensor size. 
3D points which lie in R

3
, are projected onto this virtual 

camera image by using the pinhole camera projection model: 
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Each LiDAR point x is mapped to a point d in camera 
coordinate system ∏

(u,v)
 where the pixel value is our target 

quantity, which is the measured Euclidean distance or the 
reflectance index. The matrix K contains the intrinsic camera 
parameters, R is a camera rectification matrix and T holds 
the extrinsic camera parameters with respect to the LiDAR. 
Object segmentation indices and reflectance values are 
projected using the same camera viewport to the respective 
segmentation and reflectance images. When using 
reasonable intrinsic parameters, K, the depth and reflectance 
images are sparse. An example of such a projection can be 
seen in the middle column of Fig.1. Thus, we propose an up-
sampling technique with a three-fold task: fill-in missing 
depth samples, preserve object boundaries and suppress the 
measurement noise. 

B.  Multilateral filter definition 

Laboratory measurements on static objects with known 
distances show that the LiDAR noise follows a Gaussian 
distribution with a variance +-3cm. In turn, a filter with a 
Gaussian impulse response function will be a good candidate 
for noise suppression. Measuring objects in the real world, 
produces depth values which cover both flat and rough or 
edge regions. It can also be expected that the empty depth 
pixels contain the same or similar structure that needs to be 
accurately reconstructed. Object edges can be seen as a 
discontinuity in the depth function and flat regions have 
smoothly varying values. Thus it is natural that we do the 
reconstruction of the depth image using a form of an edge 
preserving filter. This task has been performed with lot of 
success in the RGB image domain using the original 

 Figure 1. Overview of the processing pipeline, from left to right and 
from top to bottom: 3D visualization of the input data; the intermediate 2D 
occupancy from equation (1); camera projections of reflectance, depth and 

segmentation data; output: dense depth image 
 



  

  

Figure 2. Left: performance of the baseline pedestrian detector [20] on 
KITTI, right: comparison between our RGB+D pedestrian detector (solid 

lines) and the RGB+D detector in [12] (dashed lines) 

formulation of the bi-lateral filter [17]. It follows the 
paradigm of locally varying filter coefficients that filter the 
image in two directions simultaneously. Two functions 
measuring geometric closeness and photometric similarity 
are adapting the coefficients to the local image patches. The 
resulting filter is optimized to suppress noise while 
preserving details around sharp edges. Formally we can 
write a discrete version of the bi-lateral filter as: 
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where the output d’u,v is a weighted average of the input 
value du,v and the product of the functions f() and g() over 
the local neighborhood S. The first function measures the 
inverse Euclidean distance of pixel positions S, and the 
second function measures the distance in luminance, usually 
following a radial basis function.  

 We propose a filter that is loosely inspired by this 
formulation. The novelty in our approach lies in a 
formulation that works on both depth and IR reflectance 
values while extracting semantical information using the 
segmentation image for object association or guidance. 
Lastly, we use supervised learning to optimize the model 
parameters in order to achieve maximum reconstruction 
accuracy. Our method relies on two important assumptions 
about the nature of the input signal. Firstly, depth is a 
smoothly varying function except at object boundaries where 
the derivative is infinite and secondly, properties of IR 
reflectance image can be approximated with properties of 
natural light images i.e. smooth local variations and sharp 
object edges. In practice, it is very difficult to model the IR 
reflectance image since it is product of angle of incidence of 
the LiDAR light and the surface material properties of the 
object. This form of active light reflectance contrasts with 
RGB imaging where the reflection is often Lambertian in 
nature. However, our later experiments show that filtering 
the depth by including the IR reflectance image as a factor in 
the filter coefficients significantly improves reconstruction 
fidelity. Formally our upsampling and filtering function is a 
multilateral extension of (6) defined as:   
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where d , r  and o  are the projected camera images 

containing the LiDAR depth, reflectance and segmentation 

object index values as defined in (5). The weight factor w  

represents the sum of coefficients computed by the functions 

f1..4 and S is a small interpolation window:  
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Functions f1..3 compute vector distances in the three 

directions: pixel position space, depth space and IR 

reflectance space. The function f4 operates on the local image 

patch 
So  as follows: find the locally dominant object 

Sodominant  by computing the statistical mode of the categorical 

object indices in the patch S, then find whether the object 

index of the current pixel is the same as the dominant object 

index. In practice this function allows interpolation to be 

performed only with measured values from the locally 

dominant object in the patch. Each time the patch moves 

through the image, a different dominant object is found and 

thus each pixel will be reconstructed by the data from the 

most frequently occurring object in its own neighborhood. 

The parameter γ controls how strict our rule is applied and 

its value usually stays close to 1. Empty areas of the image 

are assigned with object labels based on a local k-NN 

clustering, with the value of k varying based on the LiDAR 

model, usually k=3. On Fig.1, right, we show one typical 

example of the density and reconstruction quality that can be 

obtained by our proposed method. 

C.  Parameter optimization 

Important part of our analysis is finding the optimal 
values for parameters α,β and ρ. The need for optimality can 
easily be deducted from the fact that in (7) we fuse image 
modalities with broadly different nature and value ranges. 
Pixel distance range is defined by the chosen camera focal 
length and sensor size, depth data is measured in meters with 
range 0m to 80m and IR reflectance is pre-processed 
internally by the LiDAR and is a relative dimensionless 
variable with values in the range of 0 to 1.  

We define the model vector  TPS,...,,,,   containing 

P parameters that we want to optimize over a set of N 

ground truth images  
1..0  Ni

i
GTd using a set of M input 

images triplets  
1..0

,,
 Mi

iii ord containing depth, IR 

reflectance and object indices as defined in the previous 
section. The function projecting the later set into the former 
is the one we formulated in (7) and depends on  . We will 

use supervised learning technique to learn the optimal 
parameters that minimize the projection error defined by the 
following function: 
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TABLE I.  ACCURACY OF DEPTH IMAGE RECONSTRUCTION,  
% OF OUTLIER PIXELS 

Method Reconstruction error, 
percent of outlier pixels Proposed 2.75% 

Proposeda 3.13% 

Premebida[12] 3.35% 

Minimum 4.63% 

Bilateral 4.77% 

Delaunay  5.55% 

Median 6.88% 

IDW[12] 7.14% 

KRI[12] 7.25% 

Average 7.56% 

Maximum 17.76% 

 

where the objective function is the peak signal to noise ratio 
between the reconstructed image and the ground truth depth 
map. Both the objective function and our proposed filtering 
function are non-linear, thus a closed form analytical 
solution for the minimum is not possible. We resort to an 
iterative optimization algorithm, namely steepest-gradient 
descent with an update step defined by: 
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where  controls the inertia for the update of our solution. 

In practice we compute the derivative in (10) by computing 

the objective function at    iiii
GT

kk orddE ,,,,11     

for combinations of small 1 k . This operation is 

computationally expensive since the objective function has 
to be applied to a set of N images, so we tend to use the 
minimal training set size that produces a generally 
acceptable solution   over a larger set of validation images. 

The optimal parameter set at convergence is able to even out 
the differences in data ranges of the different data modalities 
making each term in (8) to have a meaningful impact on the 
result.  

IV. EXPERIMENTAL RESULTS 

In the first section we will focus on measuring the 
absolute numerical accuracy of the reconstructed depth 
images and in the second section we will measure how much 
an object detection algorithm can benefit from dense depth 
information as an additional modality. 

A.  Quantitative analysis 

Currently there seems to be no consensus on how to 
quantitatively evaluate the reconstruction of dense depth 
images coming from a LiDAR point cloud in automotive 
scenarios [12]. One possibly relevant dataset is the KITTI 
Stereo 2012 and Stereo 2015 [8] and [18] which uses dense 
depth maps from LiDAR as the ground truth to compare 
depth map reconstructions of various stereo algorithms. The 
ground truth of this dataset is built by registering a set of 
consecutive LiDAR frames (5 before and 5 after the frame 
of interest) using the iterative closest point algorithm. 
Accumulated point clouds are projected onto the camera 
image and then all ambiguous image regions such as 
windows and fences are manually removed. Using an 
exhaustive search through the provided raw data, [12] have 
found a practical sub-set of the Stereo 2015 ground truth 
images that we will also use to quantitatively measure our 
dense depth map reconstructions against. The dataset 
consists of 100 original point clouds and 100 corresponding 
dense point clouds considered as ground truth.  

In our experiments we will be using the provided data as 
follows: initially, we project the sparse (input) LiDAR point 
clouds on a local occupancy grid with cell size of 
0.125x0.125m. Ground plane estimation is performed as 
described in chapter II.A and the object segmentation is 
performed by the connected components algorithm 
implemented in the Quasar programming language [19]. Our 
proposed filtering and up-sampling works on local image 
patches with dimensions 17x30 pixels. Using supervised 
learning we found that the optimal values for the parameters 

},,,{  are {0.129, 0.011, 0.999, 56.23} respectively. 

We used a random sub-sample of 30% to search for the 
optimal parameters and the remaining set was used for 
validation. In the end, depth images are converted to 
disparity images (KITTI Stereo 2015 baseline=0.537m) in 
order to compare to the ground truth format. The measured 
accuracies are given in Table I. We note that the parameter 
search was relatively invariant to the selected subset for 
training, thus we present the accuracy for the entire set of 
100 point clouds in the dataset. Accuracy is measured by 
means of the metric D-all:% which represents the percent of 
outlier image pixels averaged over all ground truth pixels. 
Here outliers are pixels with disparity error greater than 3 
pixels. We conducted the measurements using the provided 
MATLAB scripts in KITTI Stereo 2015 and obtained the 
accuracies which we compare to the work discussed in [12]. 
We are able to outperform the best algorithm in [12] by a 
significant margin. Interestingly, when we switch off the 
term f3 in (8), again, we observe top performance. This 
shows that the fast segmentation technique we described in 
section II is better at capturing semantical information by 
preserving the object structure in the scene. Several 
examples of the reconstructed depth images, reflectance 
images and segmentation images can be seen on our project 
page [21]. 

B.  Qualitative analysis 

To show the potential effectiveness of our reconstructed 
depth images we re-trained a baseline pedestrian detection 
model using depth as additional modality. We expect that the 
addition of dense depth information to the available RGB 
data can boost both accuracy and robustness. The KITTI [8] 
object detection benchmark is currently the most relevant 
dataset for evaluation and ranking of object detection 
algorithms in the domain of autonomous and intelligent 
vehicles. It covers different urban scenarios, from university 
campus to downtown and residential areas.  

The Aggregated Channel Feature (ACF) object detector 
[20] is currently one of the best performing algorithms that 
has a publicly available real-time implementation. We 
expanded the original formulation of the ACF architecture by 
adding our up-sampled depth maps to the processing pipeline 
and re-trained a pedestrian detection model. The classifier we 
chose is a multi-stage cascade of weak decision trees. Once 
the models are trained, the detection of pedestrians is 



  

TABLE II.  PEDESTRIAN DETECTION RESULTS 

Method Accuracy 

(moderate difficulty) 

Execution 
time Proposed 50.91% 0.03s 

Fusion DPM[12] 46.67% 30s 

ACF[20] 39.81% 0.2s 

 

performed on the combined RGB and our reconstructed 
depth images. In order to measure and compare our results to 
the literature, we uploaded the detected bounding boxes to 
the KITTI evaluation server where we obtained the results 
presented on a short extract in Table II. In this straight 
forward implementation we observe more than 10% 
improvement over the original ACF algorithm [20], and more 
than 4% improvement over the comparable RGB+D method 
in [11]. Otherwise, our proposed detector is the fastest and 
most accurate non-neural network based algorithm until the 
time of writing this paper. Fig.2 provides a more accurate 
overview of the precision/recall rates for the discussed 
models. Finally, we note that our depth map up-sampling is 
running on a moderately powerful GPU (gtx770) at 15fps and 
the pedestrian detector runs on 6 CPU cores in parallel at 
30fps. Without any specific optimization both algorithms are 
keeping up with the sampling rate of the input data. 

V. CONCLUSION 

We tested the hypothesis that depth information plays an 
important role for the task of object detection in a driving 
scenario. Current trends indicate that the future of 
autonomous sensing systems will likely consist of a ranging 
system coupled with a multispectral video camera. Thus the 
availability of a semi-structured and sparse 3D point cloud 
can be used to generate a virtual depth camera whose images 
can improve the detection rates of the computer vision 
algorithms. Off-line tests on a publicly available pedestrian 
detection dataset showed the potential application of our up-
sampled depth images. We discovered that even in perfectly 
well-lit situations, the pedestrian detection system can benefit 
greatly from additional depth information. We suspect that 
the boost in accuracy will be much greater in situations where 
the information in the visible light image is lacking, such as, 
during the night, under bridges or in tunnels, in harsh light 
conditions (sunrise/sunset), in fog or mist etc. Our main 
direction of future research is exploring these situations of 
bad weather in more detail in order to automatically reinforce 
the visible light image with the up-sampled depth image. We 
are also looking into the possibility to directly apply our 
technique to various automotive grade LiDAR sensors with 
lower specifications.  

The main characteristic our approach is that it relies on 
accurate segmentation of the input image. The proposed 
segmentation technique can cope well with nearly flat roads, 
however our projection on a 2D occupancy grid is sensitive 
to changing road gradient. In traffic situations where the 
vehicle is approaching a ramp or a steep incline, parts of the 
road which are higher than the current surface will be 
segmented as separate objects. In a worst case scenario this 
will cause our segmentation algorithm to under-segment the 
occupancy map by connecting objects to the sloping road 
surface. This is not a catastrophic failure since the 
performance of the up-sampling would then be similar to the 

performance of the classical bi-lateral filter. On the other 
hand, a more accurate and robust segmentation technique can 
expected to yield depth images with higher fidelity. 
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