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Lane-Level Map-Matching With Integrity on High-Definition Maps

Franck Li'2, Philippe Bonnifait!, Javier Ibanez-Guzman? and Clément Zinoune

Abstract— Navigation maps provide important information
for Advanced Driving Assistance Systems (ADAS) and Au-
tonomous Vehicles. This paper presents a method estimating
a set of likely map-matched hypotheses containing the correct
solution with a high probability. This addresses the problems
encountered when using a high definition map when a large
number of ambiguities arise. These occur for instance, when
only inaccurate prior information on position is available at
initialization. The method uses lane-level accurate maps with
dedicated attributes, such as connectedness and adjacency,
and an automotive Global Navigation Satellite System (GNSS)
receiver assisted with dead-reckoning (DR) sensors. GNSS can
be so inaccurate that map-matching relies mainly on DR
estimates, the GNSS fixes being used as uncertain estimates
with protection levels. This paper proposes a formalization of
the map-matching integrity problem as well as a sequential
method using a Particle Filter providing a reliable set of map-
matched hypotheses. The performance is evaluated using data
acquired in public roads.

I. INTRODUCTION

To navigate, an intelligent vehicle needs a digital repre-
sentation of the world as perceived by its on-board sensors.
To this end, a priori information on features of the road
network is mandatory. These are stored in digital road maps
where description of the road network provides geometric
and contextual information such as lane markings, traffic
signs, etc.

A strong effort is currently made by map suppliers to
meet the requirements of intelligent vehicles, that require
high level of accuracy for new advanced tasks.

To access the relevant information, vehicles must be
localized with respect to these maps. For this purpose,
vehicles rely on Global Navigation Satellite Systems (GNSS)
receivers which provide an absolute position on Earth. The
process of associating these position estimates to roads
on a map is known as Map-Matching. Considering GNSS
measurements generally bear errors that can reach several
meters [1], matching the true position on a lane-level map
remains a challenging issue.

This paper presents a method for a lane-level map-
matching using a Particle Filter (PF), focusing on the in-
tegrity of the result. Section II introduces the concept of map-
matching integrity and demonstrates how PFs can be used
in this sense. Secondly, Section III presents an optimized
use of the map in the context of map-matching: as PF is
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usually calculation-heavy, efficiently use the map is very
important. The implementation of the algorithm is explained
in Section IV before presenting experimental results of this
algorithm using data acquired in public roads in Section V.

II. MAP-MATCHING INTEGRITY
A. Multiple Hypotheses Policy

The goal of the method described here differs from the
most common use of map-matching for automotive appli-
cation used in navigation systems for which map-matching
should give a single position estimate to the user as a result.
This corresponds to the usual need of such a system: a single
position must be used to calculate a route and, in most cases,
if this position is erroneous, the user is able to see the error
and wait for a correct matching by disregarding the given
information.

On the opposite, map-matching aimed to autonomous nav-
igation systems must not be over-confident about its results:
the worst-case scenario would be to provide an erroneous
single position as there may be no human to detect the error
and to apply a correct action. If there is an ambiguity in the
matching, then the algorithm should keep it in mind and not
make a decision. This is the notion of map-matching integrity
[2]: the desired result is to get a method providing in real-
time a set of likely matched lanes in which the correct lane is
highly likely to make part. The size of the set has to be kept
as small as possible. In other words, that would be a single
lane if the pose estimate uncertainty is small and if there
is no ambiguity or multiple ones that must include the real
matched solution. This topic begins to be very important as
progresses in intelligent vehicles are made and starts being
developed in the literature [3], [4].

B. Farticle Filtering

Most of existing map-matching algorithms do not tackle
this integrity problem as they perform at the macro-scale
road-level. Ambiguities can be present at this scale, espe-
cially in dense areas, but advanced techniques, such as fuzzy
logic map-matching applied by Quddus et al. [5] have a great
capability to resolve them. A single solution can be found
most of the time once the matching has converged. When
coming down on the lane level, a lot of ambiguities rise. For
example, Quddus’ fuzzy inference system uses the vehicle’s
heading as an input criterion, but on a 2-lane road, both lanes
have very close headings: it is therefore no longer a strong
discriminant information. The algorithm will most likely not
be able to decide on which lane to match and therefore fail.

With this perspective, a Particle Filtering approach is cho-
sen here, as it is able to manage multiple hypotheses. Another



solution is to assign a Kalman filter to each hypothesis in a
multiple model framework with a Gaussian mixture posterior
approximation [6] but it leads to a more complicated im-
plementation. Some matching algorithms have already been
implemented using PF [7], [8], [9], but did not emphasize
on the integrity possibilities of such methods.

In our model, the state of each particle is hybrid (contin-
uous and discrete, see Eq. 1). X/ = (x',y",1)") represents
the 2D pose and ml®, the matched link of the ith particle.
Each particle has an associated weight w’ representing its
likelihood.

X'=(X,,ml") = (a", 4", 0", ml’) (1)

Please note that the particles are not constrained to the links
(e.g. [10]) which can induce curvilinear distortion at nodes
or junctions difficult to handle and need careful management
of the abscissa like proposed in [11].

The algorithm described in this paper uses an automotive
GNSS receiver, DR sensors and a centimeter-accuracy lane-
level map (as described in more details in Section III).

1) Evolution model: The evolution model is a unicycle
since we measure the speed and yaw rate of the car:

Ty =g v At-cosy_y

Yi =yi_q+ou - At-sinyp_; . 2)
Vi =iy Fw At

Ul = [vi,wi? is the input vector of the ith particle,
with v} ~ N(vyaw,02) and wi ~ N(Wpaw,0?2), based
on raw measurements of the vehicle’s speed and yaw rate
(Vraw, Wraw ) With an added random noise. The noise allows
the particles to spread during their evolution, being added
independently for each particle.

For matching the link, two approaches are used: particles
are map-matched once at the filter initialization (see Sec-
tion IV-A) and then follow the links logically using attributes
stored in the lane-level map describing connectedness and
adjacency (as described in Section III). This choice is very
efficient in terms of real-time computation.

2) Map Likelihood Computation : When a map is pro-
cessed as a raster (see [7]), a likelihood field can be computed
in advance to accelerate the processing. In our case with a
vectorial map, the likelihood is modeled as a Gaussian to
compute the probability of belonging to a given lane. The
lateral (also called cross-track) distance y; to the closest
matched point is used to compute it. Gaussian cuts being
fitted on links, the likelihood is maximum if the distance
is null (the particle is right on the centerline) and quickly
decreases as the particle gets to a distance greater than the
half width of a driving lane. This likelihood is then used
to update the weight of each particle recursively using a
bootstrap strategy:

wi =wj_y - p(y| X} 3)

Note that this calculation takes into account the complete
pose: the likelihood depends on the cross-track distance but
also on the heading difference between the hypothesis and
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Fig. 1. Lane Forking where particle cloning occurs: the particle M4 p is
duplicated into Mo, Mpg and Mpp

its matched link. Indeed, a vehicle is more likely to follow
a heading close to the direction of the road it is following.

3) GNSS positions as points with Protection Levels: In
order to provide map-matching with high integrity, estimated
positions computed by the GNSS receiver are only used
to limit the spread of the particles and not to update the
weights of the particles. We suppose that every position is
associated with a Horizontal Protection Level (HPL) which is
a bound of the estimation error (associated with an integrity
risk) and used in aeronautics for monitoring the integrity of
a GNSS position [12]. As positions can be greatly biased,
especially in urban environments, the filter considers an
area around every position computed by the GNSS receiver
instead of a single point as an input. This area is the HPL,
i.e. an area where the true position is highly likely to be
located: all the particles inside this HPL are considered
valid whereas the other are eliminated by the filter. This
strategy can be seen as a gating process. The HPL depends
greatly on the environment the vehicle evolves in: it can be
conservative in poor satellites visibility conditions (e.g. tens
of meters) or, inversely can be very small with high accuracy
receivers and modern point computations like Precise Point
Positioning [13].

4) Resampling Strategy: To avoid the degeneracy of the
particles set, resampling is applied using Kitagawa’s strat-
egy [14], with a threshold of 66% effective particles. A
low variance resampling [15] is performed to redraw the set
of particles. Kitagawa’s method is preferred to a systematic
resampling at every step to favor particles spreading which
allows a better exploration of the 2D-space.

5) Particle Cloning: In the same perspective of through-
out exploration, a new strategy is adopted at lane forking:
to be sure to explore all possible path, a particle arriving
on a lane forking is cloned and each clone follows one of
the connected path hypotheses (see Fig. 1). This creates a
variable size of the set of particles (which is not a problem in
practice if enough memory has been allocated for the filter).
To avoid an exponential rise in complexity, a maximum
number of particles is set (e.g. 150% of the original number
of particles). Moreover, at each resampling, only the original
number of particles is redrawn; the additional particles are
of course taken into account during this step, but only the
most likely will survive.

III. SEMANTIC USE OF THE MAP

The map used in this study is considered faultless and
highly accurate like in [11] and [16]. This allows to focus



Fig. 2. Detail of the map of a roundabout in Compiegne, France. The
centerline of the lanes are drawn in brown and the lane markings in blue.
Complete connectedness is notably visible in the roundabout entrances and
exits

on the map-matching algorithm considering no error from
the map. This assumption is acceptable as map providers are
currently working on high accuracy maps of public road with
a large coverage. To comply with this assumption, a high
accuracy lane-level map has been made by a mapmaker, cov-
ering 4 km of open roads in Compiegne (details on Fig. 2).
An absolute accuracy of 2 cm is guaranteed. This prototype
study map is oriented towards an intelligent automotive use:
it includes additional details that are not present in most
maps used in current navigation maps (e.g. lane markings
information).

A. Lane-Level Map Structure

This mesoscale map [17] is stored in a SQLite database.
The Spatialite library is used, extending SQL functionalities
with useful geographic utilities such as spatial requests and
data structures (e.g. 2D/3D points, polylines). The main
layers in this map are described as follows:

o Links that represent each driving lane’s centerline. They
are represented by polylines. A polyline is a sequence of
Shapepoints (2D or 3D points, depending on the type of
map) that follows the geometry of a drivable lane. This
allows to not be limited in the representation of straight
lanes but also curves. Subdivision of links (delimited
by two shapepoints) will be referred to as segments.

o Nodes that binds consecutive links together; they denote
most of the time intersections, but could also mark lane
merging, splitting. Nodes represent the connectedness
information in the link network. They enable fast link
searching methods by storing parent and child links IDs.

o Lane markings are also stored in the database. In addi-
tion to the geometric description of the road marking,
this layer contains attributes to identify the marking type
(e.g. solid line) and associated link ID.

These three tables form the basis on which the database is
built.

B. Semantic Information

A digital road map can be viewed only as a Geographic
Information Database, containing the coordinates of the
different road structures. This is the natural approach when
dealing with a digital map. But the most recent digital maps,
such as the one used in this article, contain richer information
that enables a more interesting processing. Once matched
on the map, a hypothesis can heavily rely on the semantic
information about the road network to evolve. For instance,
every link accessible from a given matched position is easily
accessible from the database, without the need of costly
distance calculation. The map thus provides an evolution
framework relatively independent to the 2D-plan geometry,
as such a position can be projected on the map for a 1D
evolution.

C. Adjacent Links

Another important feature in our research map is the
adjacency information: every link is aware of the links on its
sides. This is mandatory to check for matching ambiguities,
as adjacent links present the biggest challenge for map-
matching. This information being available directly from
the map, no costly calculation is neither needed and the
exploration of hypotheses is greatly improved. This adds the
second dimension of the map exploration, after the longitu-
dinal one, provided by the link succession information. The
matching algorithm thus have a complete framework to use
efficiently the map, removing part of the heavy calculation
and taking advantage of the efficient map design.

IV. METHOD IMPLEMENTATION

In this section, we describe the main steps to implement ef-
ficiently the map matching method described in the previous
sections and illustrated by Fig. 3. SQL based map format are
efficient when using large map (i.e. large database size) due
to the possibility to make spatial queries. Although the query
is fast to execute, query formatting and returned data parsing
cause significant CPU load. Its use is therefore limited to
punctual queries using caching methods as implemented
by Bonnifait et al. [18], where the map information was
stored into memory as the car is moving from one position
to another. The approach presented here loads the whole
map information once when starting, as its size is relatively
limited.

The initial filter sample set is populated and matched to the
road network to finalize the initialization process. The filter
then runs the real time execution loop. These two processes
(see Fig. 3) are described in the following paragraphs.

A. Initialization Step

After loading the SQL map into an internal data structure,
the filter initializes on the first valid GNSS position received.
Particles are then generated around this position, in a circular
pattern to cover the full area corresponding to the associated
HPL. Each particle is then matched to its corresponding
link. This step follows a point-to-curve method which selects
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Fig. 4. Particle Initialization: colors denote the matched link. The initial
heading corresponds to the matched link. Some particles are far from the
links due to the 50 m HPL (high value chosen to be very conservative), but
will be quickly eliminated during an resampling step.

the link candidate with the lowest Euclidean distance to the
particle.

The algorithm makes the assumption that the vehicle is
driving on-road, and that this road is in the map. Therefore,
it is reasonable to initialize the particles’ heading to be the
link’s (see Fig. 4). This initialization ensures considering all
the links present on the map around this position. Some
particles are notably created outside the drivable area rep-
resented in the map. It illustrates the fact the particles are
not strongly constrained onto the map and can evolve in the
2-dimensional space and not only on the centerlines. This
provides a spatial flexibility to the filter, only limited by the
decreasing likelihood of particles that get too far away from
a link. These particles will be quickly eliminated by the filter
during the update step.

A 0<r<1 B r>1

Fig. 5. Particle M is still on the current segment (AB) while My leaves
it. This is determined by calculating the ratio described by Eq. 4

B. Main Filtering Loop

Once associated to the road network, the free 2D spatial
evolution of the particles becomes an evolution heavily tied
to the map. The distance calculation is therefore simplified
and the filter efficiency is improved. This process is synchro-
nized with the proprioceptive information input rate (10 Hz).

The ID evolution of the particle is easily determined by
simply calculating if its projection has left the currently
matched segment. It is done simply by projecting the particle
as shown on Fig. 5. The ratio

r = (AB - AM)/||AB|* )

is computed and if » > 1 (respectively r < 0), the particle
has left the current segment and has to be associated with
the next one (respectively the previous one) by simply using
the connectedness information of the table of the map.

This is the only calculation needed to make the particles
evolve on the map. Cloning and resampling are then applied
as explained before. Each time a new GNSS position is
available, the HPL gating is applied. The filter is designed
to need as little calculation as possible.

C. ID Estimates Of The Map-Matched Points

To estimate the matching hypotheses, the filter simply
takes the weighted mean of the particles’ pose. This calcu-
lation is done separately for each different link hypothesis:

= Zw_JXp 5)

Xnyp,is the jth matching hypothesis, w§ is the normaljzed
weight of the ith particle of the jth hypothesis and X, its
pose. This computes an estimate for each hypothesis with its
associated weight. It is therefore possible to determine the

most probable one.

X hyp;

V. RESULTS
A. Experimental Setup

A C++ implementation of the algorithm has been de-
veloped using the Pacpus framework', that provides easy
integration in the laboratory’s test vehicle and offline data
replay. An experimental vehicle was used for real road data
acquisition. The car was equipped with a Septentrio PolaRx4
GNSS receiver and DR information was accessible directly
from the vehicle CAN bus.

The algorithm has been tested using Pacpus data replay
capability running in real time. The test trajectory (see

Ideveloped at Heudiasyc. More info at pacpus.hds.utc.fr
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Fig. 6. Test GNSS trace (in white) over the lane map (in blue). Large
GNSS errors are clearly visible.

Fig. 6) is representative of a peri-urban trip (2x2 lanes
roads, including roundabouts). Some high-rise building are
present, as well as open-sky conditions at the bottom of the
figure. The algorithm runs in real-time conditions with 1000
particles on an AMD A8-4500M CPU@1.90 GHz with 8 Go
RAM.

Fig. 7 shows the GNSS positioning error during the test.
The error is relatively contained with a mean error of 0.5 m
and a standard deviation of 0.82 m but can still interfere
with a lane-level map-matching. Lots of spikes (up to 8 m)
are notably present which can be highly problematic for the
matching stability. The filter performs well even with these
errors (note that losses of GNSS signal occur in the dataset,
but are not reflected in Fig. 7 as no error can be computed).
The HPL is set to 50 meters, largely exceeding the GNSS
error. This high value reflects a low confidence on the GNSS
position, the algorithm being very conservative. It could be
tuned to reflect the situation more closely and put higher
confidence to this input.

As the test trajectory is quite long (about 4 km in a
10 minute-long acquisition), the following graphs split it to
focus on specific points. They represent the variation of the
different hypotheses weights over time.

Fig. 8 shows the situation right after initialization, 4
hypotheses are found (the initialization is done next to a
roundabout, a difficult situation). 2 of them are eliminated
as the vehicle leaves the roundabout, leaving the 2 driving
lanes as the only surviving hypotheses. Ground truth is the
green line, fluctuation is visible between the two adjacent
lanes, as ambiguities cannot be resolved by the filter at this
time instant.

Inside roundabouts (Fig. 9), a high fluctuation is observ-
able: this is explained by the high variation of yaw rate in
these locations. It is a difficult scenario, but the algorithm
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Fig. 7. Errors of GNSS fixes compared to real positions. Error spikes are
clearly visible.
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Fig. 8.  Probabilities of the map-matched hypotheses with respect to
samples. At initialization, 4 hypotheses are found but soon collapse into
2, corresponding to the 2-lane road (ground truth in green).

still manage to determine a correct set of hypotheses.

Fig. 10 shows a cloning event happening at the location
shown on Fig. 11: the rightmost lane forks and forms a new
lane (a deviation) which the test vehicle is taking. In the first
half of Fig. 10, the ground truth is represented by the green
line. Then the purple hypothesis emerges after the forking
and becomes the new ground truth. The two old hypotheses
lose weight while the new one gets more and more important,
until becoming the dominant hypothesis.

Repeatability has been studied by executing the filter
on the same input data 15 times. Ground truth has been
determined by manually labeling the dataset with the correct
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Fig. 9. Fluctuations inside roundabouts (high yaw rate variation, ground
truth in green).
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Fig. 10. Filter behavior at a lane forking: the hypothesis corresponding to
the new lane (actual path taken) quickly gains importance, while the other
two drop.

Fig. 11. Details of the location described in Fig. 10. A new lane is created
a the rightmost (top of the figure): cloning happens.

lane. Results are shown in Table I: the filter does not keep
the correct matching hypothesis only 2.4% of the time.
Otherwise, the set of hypotheses always includes the ground
truth. But the ground truth is only identified as the most
probable hypothesis 51.3% of the time. This illustrates that
the filter cannot discern two hypotheses on which ambiguity
is still present. These two figures are in consistent with
the idea of a map-matching integrity (keeping the correct
matching but also the other likely candidates). Moreover, the
availability of the algorithm is correct as it provides 2 or less
hypotheses 76% of time, and 3 or less 94% of the time.

VI. CONCLUSION

The lane-level map-matching algorithm presented in this
paper developed a new approach for solving the problem. It
aims at providing results with high integrity by estimating
more than an unique solution that could be erroneous. The
map-matching output can therefore be a set of multiple
lane hypotheses in ambiguous situations or when pose
uncertainty is high. This result is beneficial for all the
systems that need to get confidence indicators associated
with the map-matching procedure. The proposed method has
been designed to exploit as much as possible the semantic
information stored in the high definition map. As shown
by the results, its behavior is reliable, the convergence is
quite fast (in the order of seconds after a first GNSS fix,
with a moving vehicle and dead-reckoning information). This
quick convergence is crucial when guiding an autonomous

TABLE I
MATCHING CORRECTNESS IN PERCENTAGE FOR 15 REPETITIONS

Metrics ‘ %o
Set including Correct Matching | 97.6
Set of 3 or less hypotheses 94.1

Correct Best hypothesis 51.3

vehicle, in particular if the approach resides only on relative
localization

To be used more effectively such a technique has to be
further improved. The current algorithm uses only a GNSS
receiver in a very careful way thanks to HPL indicators. To
improve the matching, a next step is to add data from a
perception system and fuse them with the algorithm output.
This data fusion is necessary to remove more ambiguity on
the lane-level matching. The filter could also be implemented
using a graphics processor (GPGPU) to associate the parallel
paradigm of these architectures with the highly parallel
nature of Particle Filtering.
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