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Deep Reinforcement Learning-Based Vehicle Energy Efficiency 

Autonomous Learning System   

Abstract To mitigate air pollution problems and reduce 

greenhouse gas emissions (GHG), plug-in hybrid electric 

vehicles (PHEV) have been developed to achieve higher fuel 

efficiency. The Energy Management System (EMS) is a very 

important component of a PHEV in achieving better fuel 

economy and it is a very active research area. So far, most 

of the existing EMS strategies just simple follow predefined 

rules that are not adaptive to changing driving conditions; 

other strategies as starting to incorporate accurate 

prediction of future traffic conditions. In this study, a deep 

reinforcement learning based PHEV energy management 

system is designed to autonomously learn the optimal fuel 

use from its own historical driving record. It is a fully data-

driven and learning-enabled model that does not rely on any 

prediction or predefined rules. The experiment results show 

that the proposed model is able to achieve 16.3% energy 

savings comparing to conventional binary control 

strategies. 

I. INTRODUCTION 

Transportation activities are responsible for a significant 

amount of energy consumption as well as criteria 

pollutant and greenhouse gas (GHG) emissions, which 

has attracted increasing public concerns in recent years. 

As reported in 2014 [1], there was approximately 24.9 

Quadrillion BTUs total amount of energy consumed, and 

around 27% GHG emissions [2] are contributed by 

transportation sectors in United States. Therefore, 

reducing transportation-related fuel consumption and 

emissions has been a very active research area for years. 

Transportation electrification is one promising way to 

significantly reduce fossil fuel consumption and 

emissions from the transportation sector. However, the 

current mass adoption of battery electric vehicles has not 

been realized due to the limited availability of charging 

infrastructure, long charging times, and limited travel 

range per charge. Plugin hybrid electric vehicles (PHEV) 

is an effective way to mitigate the so 

3], due to the hybrid power source. 

For a PHEV, the energy management system (EMS) is 

very critical to achieve higher fuel efficiency, which has 

been a subject of active research for decades. Existing 

EMS strategies are generally classified into the following 

three different categories (see Fig.1): a) rule-based 

strategies that rely on a set of simple rules without a 

priori knowledge of driving conditions [4, 5]. A typical 

example is binary control strategy which controls the 

vehicle to use power from battery and switches to engine 

when the battery reaches the bottom state-of-charge 

(SOC); b) optimization-based strategies which optimize 

the control for the entire trip based the known or 

predicted future driving conditions [6, 7, 8, 9, 10]. The 

obvious downside of this type of models are that it is 

difficult to be implemented due to the lack of accurate 

trip information known beforehand; and a more recent 

category 3) learning-based which is able to learn the 

optimal control strategy from the recorded historical 

driving conditions [11]. These type of methods rely 

neither on the predefined simple control rules nor the 

predicted trip information. However, these type of 

strategies have yet to be fully developed. 

 
Fig. 1. Classification of existing EMS  

In our previous work [11], a reinforcement learning-

based EMS model was designed and tested with real-

world driving data. The model is built upon the 

discretized environmental states and actions and the 

optimal control policy is actually represented by a multi-

dimensional table, which impedes its application when 

the environment state dimension increases or the 

discretization becomes finer due to the exponentially 

increased search-space. To alleviate this so-called 

, a deep reinforcement learning based 

EMS is proposed to autonomously learn the optimal 

control strategy from the historical driving data in a 

continuous state space. The relationship between the 

continuous environment states and optimal control 

decision is represented and captured by a neural network 

whose inputs are the continuous state variables (e.g., 

continues SOC and power-demand) and outputs are 

continuous action variables (e.g., engine power supply). 

To the best of our knowledge, this is the first to apply 

deep-reinforcement learning to PHEV EMS. 
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II. BACKGROUND 

A. PHEV Modeling & Energy Management 

Formulation 

This study is focused on the power-split PHEV and the 

vehicle model was developed in our previous work [12]. 

For the dynamic equations of the vehicle mechanical path 

and details about model derivation including the 

electrical path and parameter selection, please refer to 

[12]. In the control of series-parallel PHEV, The 

decision-making on the power-split ratio between an 

internal combustion engine (ICE) and battery pack is 

called the power-split control problem. Mathematically, 

the optimal energy management (i.e., power-split 

control) for PHEVs can be defined as a nonlinear 

constrained optimization problem. With discretized ICE 

supply power, the optimal PHEV power-split control 

problem in a discretized time space can be formulated as 

follows: 

   

  (1) 

subject to: 

 

  (2) 

           

   (3) 

                 

   (4) 

where  is the entire trip time span;  is number of 

discretized engine supply power level; t is the time step 

index; i is the index of ICE power level;  is the gap of 

initial and the minimum;  is the i-th discretized 

engine power level and  is the corresponding engine 

efficiency; and  is the driving demand power at time 

step . The objective of the energy management problem 

is to find the optimal action (i.e. selection of the optimal 

ICE power level) for each time step to achieve the best 

fuel efficiency along the entire trip. Intuitively, when the 

power-demand for each second is known beforehand, 

then this optimization problem can be easily solved by 

many mathematical methods. However, in most of the 

practical application cases, this information is unknown; 

therefore, reinforcement learning is adopted herein to 

design an EMS model that does not rely on any future trip 

information.  

B. Reinforcement Learning Background 

Reinforcement learning (RL) is originated from 

approximate dynamic programming and is designed for 

incrementally learning optimal control strategy that can 

maximize a reward function [12]. There are two 

important elements in the definition of RL:  a learning 

agent; and environment, which interacts with each other 

in a discretized time space (see Fig.2).  

 
Fig. 2. Reinforcement Learning process 

At each time step t (t = 0, 1, 2, 3, learning agent 

observes the environment state  ( ,where S  is the 

set of all the possible environment states. Then an action 

 is selected from the set of available actions upon state 

  where , and A is the set of all possible 

actions the agent can take. Action  is then 

implemented to the environment. The environment then 

moves to a new state  due to the action and an 

immediate reward  R associated with the 

transition  is determined and fed back to the 

learning agent. At each state transition, the agent 

receives an immediate reward, which is then used to 

update and form a control policy that maps the current 

state to an optimal control action.  

In addition, this control policy is based on action-value 

function, which is defined as the expected future total 

reward starting from that state by taking this action. This 

how good  it is to perform a 

given action in a given state in terms of the expected 

return.  

Here we define the value of taking action a in 

state s under a (i.e.,a series of optimal 

action at each  time step), which is also the expected 

return starting from s, taking the action a, and thereafter 

following policy : 

=  

(5) 

where  is the state at time step t;  is a discount factor 

in (0,1) to guarantee the convergence;   is 

the immediate reward upon the state s and action a at a 

given time step (t+k). The goal of RL agent is to identify 

the best (optimal) control policy that maximizes the 

above action-value function for all the state-action pairs.  

The optimal control policy  is the policy that maximize 

the total experceed reward, can be obtained by the 

following equations: 

=  

                 = E  

                                                      ,          (6) 
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If we assume the state transition probability is known for 

the environment,  can be obtained explicitly by solving 

a Dynamic Programming problem and Bellman 

equations [13]. The existence of  has been proved 

mathematically in [13]:  

= (7) 

=arg (8) 

where  is the probability of transitioning from s to 

upon action a;  is the  immediate reward 

corresponding to this state transition. However, it is 

always difficult to solve the above equations in real time. 

In the following sections, a Deep Q-learning algorithm is 

designed to continuously evaluate and improve the 

control policy. 

III. DEEP Q-LEARNING BASED EMS 

In this study, a deep reinforcement-learning model is 

built by combining a neural network and a conventional 

reinforcement learning to form a real-time controller 

since it makes decision based on only the current system 

state. It is called deep Q-network or DQN. In 

conventional RL, the control policy is represented by a 

table but there are only limited number of states and 

actions that can be taken. However, in the proposed 

DQN, a neural network is adopted to capture the non-

linear relationship between the environment states and 

optimal actions.  Therefore, the environment states and 

actions are continues variable in this model and it is 

impossible to be represented by a table due to the infinite 

number of combinations of states and actions. The 

actions, states, and reward for this specific problem are 

defined in the following. 

A. States and Immediate Reward  

In this study, power demand at wheel ( ) and the 

-of-charge ( ) are selected to form 

a two-dimensional state space for this specific 

optimization problem. The state space is defined as: 

S= (9) 

where  are the lower and upper bound of the 

continuous power-demand state. The value of    are 

calibrated from the real-world commuting trips data; 

 are the lower and upper bound of  battery state-of-

charge (SOC) levels, which are 0.2 and 0.8 respectively 

in this work. 

In real-world RL applications, the appropriate definition 

of an immediate reward is very important. RL agent is 

always trying to maximize the reward it can obtain by 

taking the best actions at each time step. Therefore, the 

immediate reward should be defined in accordance to the 

optimization objective. In this work, the reciprocal of the 

resultant ICE energy consumption at each time step is 

defined as the immediate reward. A penalty value is 

introduced to penalize the situation where the SOC is 

beyond the predefined SOC threshold. Immediate reward 

is defined by the following equations: 

where  is immediate reward generated when state 

change from s to  by taking action a;   is the power 

supply from ICE;  is the numerical penalty and is given 

as the maximum power supply from ICE;  is the 

minimum nonzero value of ICE power supply. This 

definition is used to guarantee the lower ICE power 

supply (action) that satisfies the SOC constraints is 

favored by giving it larger numerical reward.  

B. DQN Structure and Experience Replay 

In this study, a network with multi-layer perceptron (see 

Fig 3) is designed to learn the relationship between 

environment states and optimal actions. The network is 

trained within the iterations of a conventional RL. The 

inputs of the neural network are the continuous state 

variables, and the output are the continuous actions 

variable. Since the PHEV model used in this study is a 

discretized model, hence we choose to discretize the 

actions into different levels (here we use 24 ICE power 

output level). Therefore, the second hidden layer are the 

Q values of each action level and the output layer is the 

outputted action with largest Q-value. The Loss function 

of network training is defined as: 

= (11) 

where w are the weights that obtained by training. 

However, there will be issues if we train the network at 

each iteration of RL since learning directly from 

consecutive samples is inefficient, owing to the strong 

correlations between the samples in a short time period. 

To avoid such issues, experience replay is adopted in 

which we store the experience (i.e., a batch of states, 

action and reward) at each time-step in a data experience 

pool. For each certain time number of Q-learning updates, 

random samples of experience are drawn from the 

experiment pool and used to train the Q-network. In such 

way, every experience that learning agent experienced 

can be used for training multiple times which make the 
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use of data more efficient. The pseudocode of the 

proposed deep Q-learning is given in Algorithm 1. 

 

Fig. 3. Deep Reinforcement Learning 

Algorithm 1:  Deep Q-learning with Experience Replay 

Inputs: Training States ; Action Table a; 

; Exploration probability  (0,1); 

 = 0.8; 

Outputs: Optimal Control Policy  ;  
1: for episode = 1, M do 

2:   Reset environment:  

3:   for t = 1, M do 

4:      With probability select a random action  

          otherwise select  

5:      Choose action  and observe reward  

6:      Set  

7:      Store  in memory D 

8:    Sample random minibatch of  from D: 

9:    if terminal  Set   

       else set  

10: Perform a gradient descent step on  

11:    end for 

12: end for 

IV. CASE STUDY 

A. Data Collection  

For evaluating the proposed system, we collected real-

world traffic data to synthesize speed trajectory (second-

by-second velocity trajectories) for a commute trip by 

applying the technique proposed in our previous work 

[12].  Data are from the inductive loops detector (ILD) 

data archived in the California Freeway Performance 

Measurement System (PeMS) [23]. The detailed 

description of how the trajectory is synthesized can be 

found in one of our previous work [12]. The commuting 

trips data are collected from I-210 freeway segment 

between I-605 and Day Creek Blvd in Southern 

California. The data collection covers the time period 

starting at 8:00 a.m. in the morning (westbound) and 

returning at 4:00 p.m. in the afternoon on January 9th, 

2012 (see Fig.4). The collected data only covers the 

velocity trajectory on the freeway portion due to the lack 

of traffic information along arterials. However, the 

proposed EMS can be well applied to arterial driving 

once the trip data are available. Moreover, the route 

gradient information is also synchronized with the trip 

data to extract the second-by-second power demand. Fig 

5 and 6 provide the velocity and the according power-

demand of the trip respectively. 

 

 
Fig. 4. Example trip with O-D location from Google Map 

 
Fig. 5. Synthesized velocity profile of the example trip. 

 
Fig. 6. Power demand along the example trip. 

 

B. DQN training and Convergence 

To evaluate the performance of the above-mentioned 

DQN network, the collected real-world commute data is 

used for training and testing. The parameters are fixed as 

 

replay size D = 50. In these experiments, we trained the 

model utilizing stochastic optimization with the learning 

rate 0.001 and mini-batches of size 32. The behavior 
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policy during training was -greedy with annealed 

 Two 

GeForce GTX 1080 GPUs are used to assist accelerating 

training phase.  
The network is trained with 300 episodes and each 

episode means a trip (1780 sec data) that is described in 

previous section. The track of Loss (see eq. 11) is 

recorded at two different learning rate (0.0001 ad 

0.000025) in Fig.7.  To avoid the overlap two curves, the 

y-axis is designed in symmetric to the zero at the center. 

It is quite clear that Loss is decreasing along the training 

process and the convergence with higher learning rate is 

much faster than that of lower learning rate. In addition, 

when looking at the zoomed-in figure of a local region, 

there are periodical jumps of Loss which is due to that 

fact that the at the end of each training episode, the SOC 

state and the power-demand state are changed abruptly 

and the environment states are initialized. However, the 

overall trend of Loss is decreasing which indicates the 

improvement of Q-network. Fig. 8 presents the track of 

average reward along the training process. There are 

periodical reward drop the early stage of training process. 

This is because the adding of big penalty when the agent 

selects an action that results in the violation of SOC 

constraint (see eq. (10)). These drops disappeared after a 

certain number of training iterations (e.g., 1.5x ) since 

the agent learned from these penalties and avoids such 

actions in the later stage of training. This is also a 

convincing evidence of performance improvement from 

learning from the historical driving records.  

 

To track the performance improvement, for every ten 

episodes, the model obtained by that time step is 

evaluated with one stranded trip for 10 times, and the 

average fuel consumption is recorded as shown in Fig. 9. 

As we can see in the figure, there is a clear decreasing 

trend in average fuel consumption along the training 

process and there is no significant improvement after 260 

episodes, which indicates the convergence of 

performance within 300 episodes. What is noteworthy is 

that at the beginning of the training process, the fuel 

efficiency is extremely low, which is due to the almost 

random selection of engine power supplies. Fig. 10 

provides more details on the distribution of the fuel 

consumption during a sub-period of the training process 

that is marked with a dashed red box in Fig. 9. The 

proposed system is able to achieve lower fuel 

consumption than binary control strategy (0.404 gallon 

marked by the dashed line in Fig. 10) only after 260 

episodes. The lowest fuel consumption on the standard 

trip is 0.338 gallon. 

C. Performance Comparison 

To further validate the performance of the proposed DQN 

based EMS, the fuel efficiency is compared with that of 

a conventional reinforcement learning based EMS as 

well as a binary control strategy as baseline. The track of 

SOC for each of that strategy on the same standard trip is 

 
Fig. 7. Track of Loss 

 
Fig. 8. Track of reward 

 

 
Fig. 9. Track of average fuel consumption 

 
Fig. 10. Box plot of fuel consumptions  
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given in Fig. 11. It can be seen that deep Q-learning based 

EMS achieves the lowest fuel consumption and it could 

be explained by comparing the resulted SOC track to the 

power-demand depicted in Fig.6. As shown in Fig. 6, 

there are two power-demand peaks at around time step 

200 and 800. The DQN based model consumes more 

battery energy at these time steps with significant SOC 

drops to avoid unnecessary engine energy consumption. 

This result also shows that a smoothed use of battery 

energy along the trip is not necessarily the optimal 

solution. In other words, an optimal EMS controller 

should be always adaptive to the changing driving 

conditions in order to achieve maximized fuel efficiency. 

 

Fig.11. SOC track and fuel consumption of different EMS models.  

V. CONCLUSIONS 

In this paper, a deep reinforcement learning based real-

time energy management system is designed and tested 

with data from a real-world commute trip in Southern 

California. The proposed model combines a Q-learning 

and a deep neural network to form a deep Q-network 

which is capable of learning and providing the optimal 

control decisions in continuous environment and actions 

states. The evaluation with real-world trip data shows 

that an average 16.3% fuel savings can be achieved 

comparing to conventional binary control strategy. The 

future work would be focused on the further testing on 

vehicle platforms with more real-world driving data.  
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