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Abstract— In this paper, the problem of road friction pre-
diction from a fleet of connected vehicles is investigated. A
framework is proposed to predict the road friction level using
both historical friction data from the connected cars and data
from weather stations, and comparative results from different
methods are presented. The problem is formulated as a clas-
sification task where the available data is used to train three
machine learning models including logistic regression, support
vector machine, and neural networks to predict the friction class
(slippery or non-slippery) in the future for specific road segments.
In addition to the friction values, which are measured by moving
vehicles, additional parameters such as humidity, temperature,
and rainfall are used to obtain a set of descriptive feature vectors
as input to the classification methods. The proposed prediction
models are evaluated for different prediction horizons (0 to
120 minutes in the future) where the evaluation shows that the
neural networks method leads to more stable results in different
conditions.

I. INTRODUCTION

Connected vehicle technology is foreseen to play an im-
portant role in reducing the number of traffic accidents while
being one of the main enabling components for autonomous
driving. One of the application of such connection is to provide
accurate information about the road condition such as friction
level to drivers or the intelligent systems controlling the car.
Road surface friction can be defined as the grip between car
tyre and underlying surface. During winter times when the
temperature decreases dramatically, friction level reduces sub-
stantially, which can increase the risk of car accidents. Studies
indicate that road conditions such as surface temperature, type
of road, and structure of the road sides play an important role
in the measured friction level, and some of these conditions
can vary significantly within short distances under specific
weather situations. Road friction prediction based on the past
sensor measurements available in the cars, e.g., temperature
and sun light, has advantages of being independent of the road
structure and surrounding infrastructure.

Intelligent forecast systems rely on the availability of high
quality data in order to allow their multiple actors to make
correct decisions in diverse traffic situations. These systems
have the potential to increase the safety of roads users by
means of the timely sharing of road-related information. With
the advances in car-to-car communication technology, today,
Volvo cars are equipped with slippery road condition warning
system to improve road safety and traffic flow. In the current
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system, real-time data are transmitted to the cloud and once
slippery road condition is detected this information will be
distributed to nearby cars.

Solutions to the problem of road condition estimation can
be divided into two groups. The first group mainly focuses on
on-board road condition estimation without having any fore-
casting model. For instance tire-road friction estimation that
can be achieved by measuring vehicle dynamic response [1]–
[3]. The second group, on the other hand, focuses on building
predictive models to estimate road conditions ahead of time
using historical data [4]–[7]. For example in [4] the slippery
road condition is estimated using Markov chain Monte Carlo
method. The probability of ice formation is determined by
constructing the joint probability distribution of temperature
and precipitation which results in probability of ice forma-
tion. Similarly a temperature predictive model is introduced
in [5] using artificial neural network (ANN) by performing
a generic algorithm search to determine the optimal duration
and resolution of prior data for each weather variable that was
considered as a potential input variable for the model. These
predictive models are mainly based on using data from weather
stations, where the drawback is that weather stations can not
provide the total map of road network conditions as they are
located mainly on the main roads and usually in far distance
from each other. Hence, providing the full map of entire road
condition is highly challenging [8]–[10].

In this paper, we propose a third group where both data from
weather stations and the historical friction data from fleets of
connected cars are used to predict the slippery road condition
in the future. The proposed approach can easily be integrated
into the available connected vehicle technology to improve
traffic flow management by notifying road administration by
the need to handle slippery road segments. Another potential
service is slippery road warning to vehicles/drivers, where
slippery road segments are identified.

More specifically, in this paper, statistical relationship be-
tween the measured friction levels and the available explana-
tory variables are investigated and proper pre-processing and
feature construction methods are proposed in order to train
supervised machine learning methods to predict the friction
level at a specific road segment for the time horizon of 0
to 120 minutes in the future. The problem is formulated
as a binary classification (slippery or non-slippery) task and
three classification methods are implemented to solve the
task. The main contribution of this work can be seen as
the proposed framework and performing a comparative study
of the available methods to solve the prediction task. Our
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Fig. 1. The graph of friction value measurements during the time period
November 2015 to October 2016. The measurements are color coded with
respect to time where blue dots represent measurements taken in the beginning
and and the yellow dots are measurements taken more recently. Some of
the earlier indicators are not seen since they are hidden behind more recent
measured data.

experiments show that low error rates in the order of 20-30
% can be obtained while slightly different results are obtained
for different road segments and different prediction horizons.

The structure of this paper is as follows. Data acquisition
and data sets are introduced in Section II. The problem
description and the proposed methods are presented in Sec-
tion III. Experimental validations and discussions are reported
in Section IV. Finally, the conclusion of the study is given in
Section V.

II. DATA ACQUISITION

In this section, we will first introduce the structure of our
data set. Then in the second part, the pre-processing phase is
described.

A. Data Set

The road friction prediction is achieved by using the mea-
surements from fleet of connected Volvo cars in the city
of Gothenburg in Sweden between the period of November
2015 until October 2016. Fig. 1 shows the geo-location of
the measured friction values which are used in our prediction
models. In this figure, data is color coded with respect to time
for the considered period of time.

From fleet of connected cars, the following measurements
are used in our prediction model: estimated friction values and
their corresponding confidence/quality of measurement, wiper
speed, ambient temperature, time stamp, and the road segment
id where the measurement accrued. The friction values are
calculated by estimating the wheel slip computed from sensor
signals and each value is labeled with a predefined threshold
value indicating if the road is slippery or not. This confidence
level is defined on an ordinal scale. It is worth mentioning
that those friction values whose confidence level are below a
given threshold are not used for the analysis. In addition to the
measured data from the vehicles, weather data collected from
Swedish meteorological and hydrological institute (SMHI)
stations and Swedish road administration are also used in this

Fig. 2. The position of 9281 friction measurements during the period of
November 2015 to October 2016 is plotted for two road segments.

paper. These stations are located in three different locations
in the city of Gothenburg (Lindholmen, Säve and Gothenburg
city center). The weather data consists of data points measured
at 30-minute intervals and the following fields are used from
the stations: air temperature, road surface temperature, humid-
ity, dewpoint temperature, rainfall, snowfall, and windspeed.
The amount of rain and snowfall is measured in millimeter
per 30 minutes and is collected six meters above the ground.
The temperatures and humidity are measured two meter above
the ground. In this dataset the humidity variable takes values
between zero and one. To better represent density of data in
road segments, an example of collected measurement in two
connected road segments is plotted in Fig. 2.

B. Pre-processing

We quantize the time into discrete intervals, i.e., the con-
tinuous time is quantized to fall into a finite set of intervals.
By averaging the friction values from all measurements within
these intervals, we get a down-sampled representation of the
events. The main reason to do this is that sometimes several
measurements are taken within a very short period of time
which are highly correlated. In the evaluation section, we
investigate the effect of the interval length in the prediction
performance.

Due to the stochastic nature of the measurements, a suitable
pre-processing method has to be used before extracting fea-
tures in order to, e.g., remove outliers and other non-consistent
data points. Moreover by plotting histograms, we analysed
the data distribution, e.g., if there are a few distinct values
or if the the data distribution is Gaussian or heavy tailed
distributions. We aim to develop a friction prediction for both
the current time as well as in the future, where the history data
and previously measured friction values are also used to build
a model. In our setup, measurement data within four hours
are included in the feature set. These past friction values are
stored in the data set along with the distance and duration
from the initial measurement, our responsive variable, and for
each data sample, the previously measured friction values are
weighted with linearly decreasing weights with respect to the
distance and duration from the initial friction measurement in
order to extract feature vectors. It is worth mentioning that



measurements taken after the responsive variable can not be
used in the prediction. For each road segment, we include
measurements in the radios of 3.334 km in the data set for
that segment, and thus samples in data are not strictly limited
to the specific road segments in order to get variety in the
collected data. The choice of this radius was based on field
knowledge in order to incorporate a major part of the regions
we are studying. The final step before training, the models
is normalization of the data. The created data set will be
normalized so that features corresponding to each sample have
zero mean and unit variance. By adjusting values measured on
different scales to a common scale each feature will be of same
importance, which is particularly important for PCA.

As number of passing cars in a street or road might
significantly vary depending on the weather condition, road
connections etc, the number of received measurements also
vary. A related issue arises when the distribution of the passing
cars during the desired interval, e.g., one hour, is different over
time. These issues lead to heterogeneous structure in the input
data, and this has to be fixed before processing. Herein, we
solved the problem in a case by case basis, we down-sampled
the data when there are many measurements. However, we did
not consider the problem of missing data, where there is too
few measurements within a desired time interval. In this case,
imputation methods [11] can be utilized and as a feature work
we are currently looking into this problem.

III. METHOD DESCRIPTION

Our goal with this study is to compare a set of state-of-the-
art classification methods in order to predict the slippery road
condition. The overall procedure after collecting the dataset
and pre-processing can be divided in the following steps: 1)
dimensionality reduction, 2) training the supervised classifiers,
3) evaluation of the learned models. The first two steps are
discussed in this section and then the final step is covered in
Section IV.

A. Dimensionality Reduction

Since our data sets contain an abundant amount of features
compared to the number of samples, we need to reduce the
dimensionality of the data set. Hence, the space complexity of
the data set is reduced which can lead the structure of the data
to be more interpretable to the classification models. In this
paper, we use the PCA method for dimentionality reduction.
This method is based upon the variation of the data itself,
which finds orthogonal basis of the data with basis vectors
that are sorted by the amount of variance in their direction.
With this technique we can extract the subspaces that accounts
for a known amount of variance. We can set a threshold for the
amount of variance that we want to extract or just set a max-
imum number of dimensions. PCA extracts a linear subspace
which we then use as as the feature set. Our assumption is that
subspaces with lower variances will represent the information
which are not changing as much as the other subspaces and
might therefore be less important. Finding a good threshold
between useful data and noise varies from case to case. In this
analysis we’ll use a combination of looking at the results and

Fig. 3. A supervised learning algorithm analyzes the training data and
produces an predictive model, which can be used to predict the friction level.
An optimal scenario will allow for the algorithm to correctly determine the
class labels for unseen instances.

using t-SNE to find a suitable maximum number of dimensions
or a threshold for the variance. In this project we will apply
the PCA algorithm before we train the logistic regression (LR)
and the support vector machine (SVM) models. In principle,
the linear transformation performed by PCA can be performed
just as well by the input layer weights of the neural network,
so it isn’t strictly speaking necessary to use PCA for the
neural network. However, as the number of weights in the
network increases, the amount of data needed to be able to
reliably determine the weights of the network also increases
and overfitting becomes more of an issue.
The benefit of dimensionality reduction is that it reduces the
size of the network, and hence the amount of data needed to
train it. The disadvantage of using PCA is that the discrim-
inative information that distinguishes one class from another
might be in the low variance components, so using PCA can
make performance worse when training the neural network.

B. Overview of Training and Classification Methods

Herein three different classification methods are evaluated
for the purpose of slippery road prediction, namely LR,
SVM, and multi-layer neural networks. We formulate the
prediction problem as a supervised binary classification where
the aim is to predict the friction level if is low or high in
a specific road segment. Supervised machine learning is the
search for algorithms that reason from externally supplied
instances to produce general hypotheses, which then make
predictions about future instances [12]. In other words, the
goal of supervised learning is to build a concise model of the
distribution of class labels in terms of predictor features. The
resulting classifier is then used to assign class labels to the
testing instances where the values of the predictor features are
known, but the value of the class label is unknown. In our case,
the goal is to predict the class labels ”high friction” or ”low
friction”. Fig.3 shows the overall process of using supervised
classification in this context.

By varying the complexity of the classification algorithms
we get a better understanding of the amount of complexity
in the data sets. We use the LR because it is an intrinsically
simple algorithm which has a low variance and so is less prone
to overfitting. Then we have the SVM which is very different
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from LR. The advantage of SVM is that it has techniques
for improving the regularisation. Also, using kernel SVM
version, we can model nonlinear relations. The third algorithm
is the ANN, which usually performs well when it is a priori
difficult or impractical to formulate specific assumptions about
a possible nonlinear relationship of several variables or when a
precise knowledge of the relationship requires some functional
approximation.

For each available labeling, which is denoted by yt at
time t and shows the friction level of the road, we structure
the received measurements from t − T to t to build a dfs-
dimensional vectors zt. These two make an input-output pair
and it has to be noted that given this pair, the rest of the
algorithm does not depend on how this two are coupled. In
the following, a short overview of the considered classification
methods is given.

1) Logistic Regression: To begin with, we implemented LR
through Matlab’s built-in function glmfit. LR is a technique in
statistics to train models that aimes at find the best fitting, most
accurate and sensible model to assess the relationship between
a set of responsive variables and at least one explanatory
variable. It differs from the linear regression in that it can
be applied when the dependent variable is categorical and
does not require rigorous assumptions to be met. LR is
a prognostic model that is fitted where there is a binary
dependent variable. The categories we are trying to predict
are low and high friction, which are coded as 0 and 1. It
results is a straightforward interpretation. We use the logit
transformation which is referred to as the link function in
LR. Although the dependent variable in LR is binomial, the
logit is the continuous criterion upon which linear regression
is conducted.

2) Support Vector Machine: The SVM method differs from
the LR in that it is a discriminative classifier formally defined
by a separating hyperplane. From labeled training data, the
algorithm outputs an optimal hyperplane which categorizes
new examples. The reason we consider SVM is because it
can be used as a non-probabilistic binary nonlinear classifier
and is a very popular technique for supervised classification.
One of the big advantages of SVM is that it is still effective in
cases where number of dimensions is greater than the number
of samples. It also performs good in high dimensional spaces
and the algorithm is very versatile.

SVM is a discriminative classifier formally defined by a
separating hyperplane. From labeled training data, the algo-
rithm outputs an optimal hyperplane which categorizes new
examples. Here, soft-margin is used to improve the results
while we also use radial basis function to build a Kernel SVM.

Here, we train SVM with only two classes. When using
the SVM we can create a nonlinear decision boundary by
transforming the data by a non-linear function to a higher
dimensional space. The data points are then moved from the
original space I onto a feature space we call F . The goal of
the algorithm is to find a hyperplane which is represented with
the equation wTx + b = 0 where w ∈ Rd. The hyperplane
determines the margin between the classes. Ideally we are
looking for a hyperplane that can separate the two classes
of data by maximizing the distance from the closest support

vectors from each class of the hyperplane is equal; thus the
constructed hyperplane searches for the maximal margin. One
trick consist of using a soft margin to prevent overfitting noisy
data. It’s a regularization technique that controls the trade-off
between maximizing the margin and minimizing the training
error. In this case a slack variable ξi is introduced that allows
some data points to lie within the margin, and a constant
C > 0 which determines the trade-off between maximizing the
margin and the number of support vectors within that margin.
The following loss function is minimized to train SVM:

||w||2

2
+ C

n∑
i=1

ξi (1)

where constraints yi(wTφ(xi)+b) ≥ 1−ξi ∀i = 1, . . . , n and
ξi ≥ 0 ∀i = 1, . . . , n are applied. The minimization problem
is solved using Lagrange multipliers which results in

f(x) = sign

(
n∑

i=1

αiyiK(x, xi) + b

)
(2)

where K(·, ·) represents the kernel, sign is the sign function,
and αi are the Lagrange multipliers. SVM is spares and
therefore there will be only few Lagrange multipliers with
non-zero values. We skip the details of the kernel SVM and
instead refer to the references, e.g., [12].

3) Artificial Neural Networks: Neural networks with many
hidden layers have been very successful in recent years and
different architectures are proposed to solve a various range of
problems. In our study, we investigated the use of feed forward
neural networks and using the experiments studied the effect
of the number of hidden layers in the performance.

Before each training session, all weights were set to a
random number between -0.1 and 0.1. We found that Relu
activation function [13] works best with our data sets. This
activation function can be motivated by enabling an efficient
gradient propagation. Meaning that we get no vanishing or
exploding gradient problems. The function is scale-invariant
and enables sparse activation, which means that in a randomly
initialized network, only about half of the hidden units are
activated. This is possible since the activation function is not
continuous below zero which blocks the gradient. This is in
fact part of the rectifiers advantage.
At the output layer we applied a linear activation function,
therefore the network is trained as a regression method rather
than classification. Therefore, we do not quantize yt and use
it as continuous variable. The network is then learned such
that the specific value of yt is predicted from the given input.
In this case, a predefined threshold value is used to classify
friction values into slippery or non slippery values. To avoid
training models that were overfitted, the networks with the
lowest evaluation error was stored. Through cross validation
we could determine the best parameters for the network.

IV. RESULTS

In this section, the performance of the proposed prediction
models are evaluated and the effect of different parameters on
the performance of the classifiers are investigated.
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TABLE I
NUMBER OF AVAILABLE DATA SAMPLES.

Road segment Number of labeled samples High friction Low friction
First 400 119 281

Second 370 271 99
Third 693 370 323

TABLE II
RESULTS FROM VARYING THE TIME INTERVAL FOR THE LR METHOD.

Time intervals Error rate Sensitivity Specificity
2 min 0.2175 0.961 0.361
5 min 0.2299 0.9547 0.310
10 min 0.2282 0.9569 0.300
30 min 0.2530 0.9487 0.245
60 min 0.2637 0.9417 0.244

Table I shows the number of samples in three different road
segment that are used for the evaluation in this section. After
training the models, we can use them to do prediction for
new measurements. All models have been assessed through k-
fold cross validation (with k=5), particularly because number
of available data samples are limited. We use error rate,
sensitivity, and specificity to access the classification perfor-
mance, where low values for error rate and high values for
sensitivity and specificity are preferred. For this purpose, we
first compute the true positives (TP, the correctly classified
slippery samples), false positives (FP, predicted samples as
slippery, when they were non-slippery), true negatives (TN,
correctly classified non-slippery samples), and false negatives
(FN, predicted samples as non-slippery, when they were slip-
pery). Then, error rate, sensitivity, and specificity are defined
as follows:

Error rate =
FN + FP

TP + FP + TN + FN
,

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
.

(3)

A. Effect of the Parameters

The best number of dimensions to keep after PCA was
found to be 14 in our experiments since this gave the best
overall results. The following features have been used in the
feature vector: combination of previously measured friction
values, road surface temperature, dew point temperature, hu-
midity, wiper speed, rain, and snow. We did not observe any
noticeable improvements of using PCA while training the
neural networks, therefore we didn’t use it in this case.

As it was discussed earlier, the continuous time data has
been discredited into small intervals. To achieve the best
results, different time intervals were investigated for down-
sampling of data including {2, 5, 10, 30, 60} minutes. Table II
shows the results for the LR method for one road segment,
while similar results were obtained for the other methods. As
can be seen, using a 2 minute interval results in the least error
rate, and therefore in the rest of the paper we only use this
interval.

To examine the importance of previously measured data
points in the feature vector, we evaluate the performance by

TABLE III
RESULTS USING DIFFERENT DURATION IN THE PAST DATA AS INPUT TO

THE CLASSIFIERS.

History duration Error rate Sensitivity Specificity

L
R

4 hours 0.218 0.954 0.378
3 hours 0.223 0.954 0.361
2 hours 0.243 0.940 0.328
1 hours 0.240 0.9431 0.328

SV
N

4 hours 0.248 0.945 0.297
3 hours 0.235 0.948 0.333
2 hours 0.227 0.941 0.377
1 hours 0.228 0.946 0.361

A
N

N

4 hours 0.222 0.861 0.581
3 hours 0.220 0.875 0.561
2 hours 0.237 0.865 0.524
1 hours 0.248 0.884 0.421

TABLE IV
RESULTS FOR DIFFERENT NUMBERS OF HIDDEN LAYERS USED IN THE

NEURAL NETWORK FOR ONE ROAD SEGMENT.

Hidden layers Error rate Sensitivity Specificity
1 0.207 0.894 0.557
2 0.215 0.855 0.629
3 0.239 0.878 0.523
4 0.230 0.877 0.527

including data from {4, 3, 2, 1} hours ago. Table III shows
the results of this experiment for one road segment. In the
following, we use the 3 hour alternative as it results to better
performance for all methods.

To select the number of hidden layers in the neural network,
we evaluate the performance as a function of the hidden layers.
Tables IV shows the results of this experiment. As can be
seen, one hidden layer results in the best performance, and it is
chosen as the optimal setting for the comparison purposes. One
possible reason for this is that we do not have many samples
in the data set and it is well known that the performance of
neural networks improves by adding more data.

B. Comparative Results

Tables V,VI, and VII show the result of the classifications
methods in three non-overlapping road segments, where each
row shows the prediction results in the specified future hori-
zon, given by the minutes. Several interesting points can be
concluded by studying these results:

1) The error rate increases slightly for road segment 1 and 2
when the prediction horizon increases. For example, for road
segment 2, the error rate increases by around 6% for the LR
method and around 2% for the ANN method.

2) Considering the interesting case of predicting the friction
in the next 30 minutes, ANN and SVM result in comparative
error rates, while their performance regarding sensitivity and
specificity are not always consistent. For example, SVM
results in higher sensitivity for road segment 1 but much lower
specificity for road segment 2. Overall, ANN leads to more
stable results in different conditions.

3) As can be seen, quite similar error rates are obtained for
road segment 1 and 2 while results for road segment 3 are
worse. For road segment 1, a high sensitivity is obtained, i.e.,
most of the slippery samples are correctly classified, while low
specificity values are obtained, i.e., many of the non-slippery
values are classified as slippery. This behavior is reversed for
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TABLE V
COMPARATIVE RESULTS FOR ROAD SEGMENT 1

Error rate Sensitivity Specificity
L

R
0 0.2250 0.9609 0.3361
30 0.2274 0.9312 0.4287
60 0.2298 0.9668 0.2946
90 0.2406 0.9430 0.3243

120 0.2612 0.9283 0.2857

SV
M

0 0.2228 0.9358 0.4029
30 0.2226 0.9305 0.4126
60 0.2278 0.9295 0.3915
90 0.2330 0.9287 0.3838

120 0.2466 0.9122 0.3738

A
N

N

0 0.1945 0.9053 0.5526
30 0.2130 0.8760 0.5720
60 0.2188 0.8526 0.5758
90 0.2299 0.8536 0.5771

120 0.2303 0.8632 0.5666

TABLE VI
COMPARATIVE RESULTS FOR ROAD SEGMENT 2

Error rate Sensitivity Specificity

L
R

0 0.2757 0.5051 0.7823
30 0.3245 0.2556 0.8474
60 0.3234 0.2000 0.8525
90 0.3271 0.1882 0.8475
120 0.3398 0.1375 0.8428

SV
M

0 0.2568 0.1586 0.9568
30 0.2593 0.0994 0.9725
60 0.2763 0.0756 0.9627
90 0.2551 0.1000 0.9771
120 0.2558 0.0669 0.9808

A
N

N

0 0.2648 0.4384 0.8460
30 0.2979 0.2584 0.8621
60 0.3054 0.2649 0.8521
90 0.2866 0.2276 0.8846
120 0.2847 0.3525 0.8427

road segment 2. For road segment 3, the results for different
method differ in their sensitivity and specificity and the error
rates are higher than the other road segments.

These results indicate that the final performance depends
on the road segment and the used classification method. It
should be also noted that in the final application, we might
have different preference for sensitivity and specificity. For
example, it may be argued that it is more important to have
a high sensitivity (i.e., we should not classify any slippery
road segment as non-slippery). In this case, ANN will be the
winner classification method.

V. CONCLUSION

Three classification models are proposed to predict the
friction level in road segments using history data. The pro-
posed classification methods (logistic regression, support vec-
tor machine, and artificial neural network) are evaluated under
different setting including forecast time horizon, feature vector,
and number of hidden layers, and for each method error rate,
sensitivity, and specificity are reported. Data is collected from
fleet of cars and weather stations at the city of Gothenburg in
Sweden. Our experiments show that an error rate in the order
of 20-30 % can be obtained while the prediction accuracy

TABLE VII
COMPARATIVE RESULTS FOR ROAD SEGMENT 3

Error rate Sensitivity Specificity

L
R

0 0.434 0.777 0.381
30 0.467 0.766 0.325
60 0.470 0.749 0.332
90 0.476 0.793 0.266

120 0.459 0.716 0.358

SV
M

0 0.3576 0.552 0.721
30 0.3905 0.506 0.702
60 0.3965 0.540 0.661
90 0.3949 0.523 0.684

120 0.3686 0.654 0.608

A
N

N

0 0.365 0.557 0.713
30 0.349 0.570 0.724
60 0.357 0.554 0.724
90 0.374 0.570 0.679

120 0.355 0.653 0.643

slightly changes for different road segments. Although no
single method leads to the best results in all conditions,
the ANN method results in more stable results considering
different conditions.
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