Abstract:
A control approach for automated highway driving is proposed in this study, which can learn from human driving data, and is applied to the longitudinal trajectory of an a...Show MoreMetadata
Abstract:
A control approach for automated highway driving is proposed in this study, which can learn from human driving data, and is applied to the longitudinal trajectory of an autonomous car. Naturalistic driving data are used as samples to train the model offline. Then, the model is used online to emulate what a human driver would do by computing acceleration. This reference acceleration is tracked by a predictive controller, which enforces a set of comfort and safety constraints before applying the final acceleration. The controller is designed to balance between maintaining vehicle safety and following the model's commands. Thus, the proposed controller can handle dynamic traffic situations while performing like a human driver. This approach is validated on two different scenarios using MATLAB simulations.
Published in: 2017 IEEE Intelligent Vehicles Symposium (IV)
Date of Conference: 11-14 June 2017
Date Added to IEEE Xplore: 31 July 2017
ISBN Information: