
Improved Robustness and Safety for Autonomous Vehicle Control
with Adversarial Reinforcement Learning

Xiaobai Ma, Katherine Driggs-Campbell, and Mykel J. Kochenderfer

Abstract— To improve efficiency and reduce failures in au-
tonomous vehicles, research has focused on developing robust
and safe learning methods that take into account disturbances
in the environment. Existing literature in robust reinforcement
learning poses the learning problem as a two player game
between the autonomous system and disturbances. This paper
examines two different algorithms to solve the game, Robust
Adversarial Reinforcement Learning and Neural Fictitious Self
Play, and compares performance on an autonomous driving
scenario. We extend the game formulation to a semi-competitive
setting and demonstrate that the resulting adversary better
captures meaningful disturbances that lead to better overall
performance. The resulting robust policy exhibits improved
driving efficiency while effectively reducing collision rates
compared to baseline control policies produced by traditional
reinforcement learning methods.

I. INTRODUCTION

Robust control has a long history of providing guaranteed
stability despite disturbances and modeling errors [1]. Such
methods aim to achieve robust performance, given bounded
disturbances or errors. In a learning setting, the controls
community has also used reachability tools to synthesize ro-
bust controllers [2]. These safe learning approaches provide
guarantees on safe interaction and efficiency, but tend to be
overly conservative [3], [4].

The reinforcement learning community has also addressed
robustness through adversarial learning [5], [6]. Instead of
optimizing for expected reward, the system is optimized
to reduce risk (i.e., maximize the rewards associated with
the worst case trajectories [7]). Traditional reinforcement
learning methods sample trajectories from the simulator’s
natural distribution, meaning that the probability of danger-
ous rollouts is very low. Thus, even with a large negative
reward on failures, the expected reward could still be high
due to averaging. The rareness of such trajectories makes
it hard to train effective polices, which is undesirable for
risk-sensitive tasks.

One solution is to bias the rollouts towards the worst case
trajectories (e.g., trajectories from the tails of the disturbance
distribution), and incorporate these samples in the training
process. Rajeswaran et al. propose to sample a collection of
trajectories from a source distribution and use a subset of low
percentile trajectories to update the policy [8]. This method
effectively biases the training towards effectively handling
extreme disturbances, but is not sample efficient. Another

This material is based upon work supported by SAIC Innovation Center,
a subsidiary of SAIC Motors.

X. Ma, K. Driggs-Campbell, and M.J. Kochenderfer are with the Aero-
nautics and Astronautics Department, Stanford University, Stanford, CA,
USA (e-mail: {maxiaoba,krdc,mykel}@stanford.edu).

approach is to formulate the training as a two-player game
between the system we wish to control and the environment
disturbance. This method is referred to as Robust Adversarial
Reinforcement Learning (RARL) [9].

There is a trade-off between expected efficiency and
robustness for safe driving. Intuitively, if the worst case
scenario is assumed in the design process, then the resulting
controller will be overly cautious [3]. In this work, we ex-
amine both worst-case performance, as is typically assessed
for robust methods, as well as average reward to quantify
this trade-off and compare different learning methods.

While these methods address some safety problems, rein-
forcement learning approaches require simulation and there-
fore often fail to generalize to the real world. This drawback
is apparent in adversarial settings where the adversary may
not capture real-world disturbances.

There has been a great deal of recent research focusing
on how to model and train the adversary from a learning
and game theoretic perspective. One method called Fictitious
Self-Play (FSP) solves for the Nash Equilibrium in this two
players game using a reservoir buffer to train the adversary
[10]. Not only does this approach address some of the
problems of overly cautious behavior and unrealistic distur-
bances by “averaging” the adversarial disturbances used in
simulation, but also provides theoretical guarantees.

The RARL and FSP approaches do not necessarily capture
real-world disturbances, as we will demonstrate in this paper.
Moreover, these methods do not necessarily improve safe
transfer for model mismatch and disturbances [11].

In this work, we extend these adversarial learning methods
to a semi-competitive game setting, where the adversary in
the two-player game is incentivized to adjust the disturbance
magnitude according to the current capability of the control
policy. We show that this not only improves safety, but also
improves robustness under different environment models.
We compare this trade-off between expected efficiency and
safety for different game formulations and algorithms.

Finally, we apply our method to a transfer learning setting,
where the training and testing are executed in different
environments or with different dynamical models. To do this,
we propose a framework for training the system against an
adversary that accounts for modeling errors and mismatch
between the simulation used in training and real-world
dynamics. These real-world dynamics are derived from a
test vehicle, which differs significantly from the model used
to train the controller in simulation. In doing so, we not
only improve the performance, but also the computational
efficiency of the learning and training process. In summary,

ar
X

iv
:1

90
3.

03
64

2v
1

 [
cs

.L
G

]
 8

 M
ar

 2
01

9

this paper presents the following contributions:
1) We implement robust learning methods and assess the

efficiency and safety trade-off for autonomous driving;
2) We augment and improve existing game theoretic

frameworks by adding non-competitive incentives to
actively adapt the disturbance magnitude; and

3) We demonstrate how these robust methods can account
for model errors to improve transfer learning from
simulation to real-world dynamics.

II. PROBLEM FORMULATION

Suppose we would like to control a vehicle governed by
a dynamical equation:

x[k + 1] = f(x[k], u[k]) + g(x[k], u[k], d[k]) (1)

where f is the dynamics of the vehicle, x[k] ∈ Rn is the
vehicle state at time k ∈ N, u[k] ∈ Rm is the control input,
and g is a function that captures the uncertainty in the system
and the external environment as a function of the state, input,
and disturbances d[k].

A precise dynamical model may be unknown or difficult
to compute. We approximate the vehicle dynamics with a
simple discrete time bicycle model and noise model:

x[k + 1] = f̂(x[k], u[k]) + v(x[k], u[k], d[k]) (2)

where f̂ is an approximate model of the true dynamics,
v is a function that attempts to capture modeling error
and environment disturbances, and all other variables are as
previously described. Section III provides further details.

One approach to train a policy that is robust to model
mismatch and noise is by introducing a two-player Markov
game [9], which is a special case of a stochastic, dynamic
game, for which one or more players have probabilistic
transitions between states. In the Markov game, it is assumed
that the distribution of next state of the game only depends on
the current state and action. In this formulation, the modeling
error and uncertainties are modeled as external disturbances.
Player 1 (the protagonist) is trained to effectively control the
vehicle, and the external disturbances are generated by player
2 (the adversary).

A. Game Theoretic Formulation

This two player game can be expressed as a tuple
(S,A1, A2, P, r1, r2, γ, s0), where S is the state space of
the vehicle initialized at s0; A1 is the action space for
protagonist, which will be the acceleration and steering
commands (u[k] in eq. (2)); A2 is the action space for the
adversary, which will be the disturbances (v(·) in eq. (2));
P : S × A1 × A2 × S → R is the transition probability
density defined by equation eq. (2); r1 : S ×A1 ×A2 → R
and r2 : S × A1 × A2 → R are the rewards for protagonist
and adversary; and γ is a discount factor.

The reward function determines the type of game and has
a significant impact on equilibria, and therefore performance
of the resulting policy. We consider the following two types
of games: strictly competitive and semi-competitive.

1) Strictly Competitive Games: In the existing literature
on robust adversarial learning, the game is generally posed as
a zero-sum or strictly competitive game, where the protag-
onist and the adversary are in direct opposition [9], [10].
Specifically, the reward for the adversary is the opposite
of the protagonist: r1 = −r2, where the protagonist is
maximizing γ-discounted rewards while the adversary is
minimizing them. With this setup, the adversary is helping
to sample worst case trajectories for the protagonist. In
RARL, the adversary’s role is to sample trajectories from
the worst α-quantile. The α parameter is determined by the
magnitude of the disturbance available to the adversary [9].
One drawback of a zero-sum game is that a disturbance at
maximum magnitude is almost always the best output for the
adversary, as it disrupts the system most.

In our experiments, as will be presented in Sections IV
and V, we observed three key different failures caused by
training in a strictly competitive setting: (1) The protagonist
becomes too conservative, thus exhibiting poor performance.;
(2) The protagonist is unable to recover from failures early
in the training processing and falls into a local minimum at
a low performance region; and (3) The adversary becomes
predictable by consistently outputting maximal disturbance,
causing the protagonist to overfit and thus poorly generalizes
over different disturbance distributions.

2) Semi-Competitive Games: We propose augmenting the
traditional zero-sum game approach to a semi-competitive or
nonzero-sum setting, where the adversary has both a com-
petitive and a cooperative component in its reward function.
Formally, we change the adversary reward to r2 = −r1 +rc,
where rc is a cooperative reward that actively regulates the
disturbance magnitude.

In the early stages of training when the protagonist is rel-
atively weak, disturbances with different magnitude receive
similar competitive reward −r1. To earn some cooperative
rewards, the adversary would prefer weak disturbances. As
the protagonist iteratively learns and becomes more robust,
a weak disturbances receives less competitive reward, while
a stronger disturbance with higher competitive reward but
lower cooperative reward is preferable. Thus, the adversary
would need to trade-off between the competitive and cooper-
ative rewards. The desired disturbance distribution would aim
to cause a failure while using the minimal disturbance mag-
nitude. This disturbance is also desired for the protagonist
since it is easier for the protagonist to recover. By adding a
cooperative reward, we make the adversary adaptively adjust
its disturbance magnitude such that it allows the protagonist
to effectively learn, while being adversarial.

While there are many forms which rc may take, for the
adversary that outputs disturbances following a Gaussian
distribution, we found that a simple rectangle function rc =
ra·{|d[k]| < dmax} works well, where d[k] is the disturbance
to be applied, dmax is the maximum allowed disturbance,
and ra is a positive constant. The magnitude of ra is a
weighting between the competitive and cooperative reward,
and is inverse related to the α-percentile that would be
sampled.

Algorithm 1 RARL Training Procedure [9]

Input: Environment E; Stochastic policies π(0)
P and π(0)

A

for i = 1, . . . , Niter
π
(i,0)
P ← π

(i−1)
P

for j = 1, . . . , N1

paths← ROLLOUT(E, π
(i,j−1)
P , π

(i−1)
A)

π
(i,j)
P ← POLICYOPTIMIZER(π

(i,j−1)
P , paths)

π
(i)
P ← π

(i,N1)
P

π
(i,0)
A ← π

(i−1)
A

for k = 1, . . . , N2

paths← ROLLOUT(E, π
(i)
P , π

(i,j−1)
A)

π
(i,j)
A ← POLICYOPTIMIZER(π

(i,j−1)
A , paths)

π
(i)
A ← π

(i,N2)
A

B. Solution Methods

To solve this high-dimensional, complex game and train a
policy with reinforcement learning, we implement two meth-
ods to find the equilibria in the game: Robust Adversarial
Reinforcement Learning (RARL) and Neural FSP (NFSP).

1) RARL: As originally proposed by Pinto et al., this
approach uses neural network policies to represent each
of the players and iteratively trains the protagonist and
the adversary against each other, alternating at each train-
ing epoch [9]. The adversarial network learns to perturb
the vehicle trajectories to maximize its reward. Then, by
optimizing the protagonist against this evolving adversary,
hypothetically, the protagonist learns to perform robustly
over the entire disturbance space. The training algorithm is
shown in algorithm 1 assuming the protagonist and adversary
follow stochastic policies πP and πA.

2) NFSP: Fictitious Self-Play is a method for finding
the Nash equilibrium in two-player, multi-step games [10].
Instead of iteratively training against an optimized opponent,
players choose best responses to other players average behav-
ior. Neural Fictitious Self-Play (NFSP), listed in algorithm 2,
combines FSP with neural network polices to minimize
divergence in common multi-agent reinforcement learning
methods [12]. An agent consists of two neural networks:
one network to learn an approximate best response to the
average response of other agents, and a second network that
averages the agent’s own historical strategies. The average
response is determined by using a reservoir buffer to store
the agent’s past behavior.

III. EXPERIMENTAL METHODS

This section presents the experiments designed to train and
test the different robust adversarial reinforcement learning
algorithms as well as the implementation details.

A. Experimental Setup

We hypothesize that using robust learning techniques will
not only lead to safer control policies, but will also improve
performance when transferring this policy to the real-world
system, which will likely operate with different dynamics.

Algorithm 2 NFSP Training Procedure

Input: Environment E
Initialize: Reservoir buffers MP and MA; best response
policies: π(0)

P,br, π
(0)
A,br; average policies: π(0)

P,avg, π(0)
A,avg

for i = 1, . . . , Niter
π
(i,0)
P,br ← π

(i−1)
P,br

for j = 1, . . . , N1

paths← ROLLOUT(E, π
(i,j−1)
P,br , π

(i−1)
A,avg)

π
(i,j)
P,br ← POLICYOPTIMIZER(π

(i,j−1)
P,br , paths)

POPULATE(MP , paths)

π
(i)
P,br ← π

(i,N1)
P,br

π
(i)
P,avg ← FIT(π

(i−1)
P,avg,MP)

π
(i,0)
A,br ← π

(i−1)
A,br

for k = 1, . . . , N2

paths← ROLLOUT(E, π
(i)
P,avg, π

(i,j−1)
A,br)

π
(i,j)
A,br ← POLICYOPTIMIZER(π

(i,j−1)
A,br , paths)

POPULATE(MA, paths)

π
(i)
A,br ← π

(i,N2)
A,br

π
(i)
A,avg ← FIT(π

(i−1)
A,avg,MA)

Ta
rg

et
 L

an
e

In
iti

al
 L

an
e

Fig. 1: Scenario representation of lane changing experiment setup.

To study this, we created a training environment where the
protagonist controls the ego vehicle for lane keeping or lane
changing. The ego vehicle drives on a straight three-lane
roadway with infinite length, and there are no other vehicles
on the road. The simulation environment is built upon a 2D
traffic simulator, AutomotiveDrivingModels.jl.1 The vehicle
is initialized in the center lane with an initial velocity of 10
m/s. At the beginning of each trial, a target lane is randomly
assigned. The time step of the simulation environment is
0.05s, and the maximum time duration of each path is 10s.
This experiment is illustrated in fig. 1.

The Markov decision process used in the Markov game is
defined as follows:

The state of the vehicle st ∈ S is represented as st =
[xt, yt, vt, θt], where (xt, yt) is the position, vt is the speed,
and θt is the orientation of the vehicle.

1https://github.com/sisl/AutomotiveDrivingModels.jl

The action of the protagonist a1,t is a two dimensional
vector representing the acceleration and steering of the
ego vehicle at each timestep, where a1,t = [αt, φt]. The
acceleration is limited to −3 to 3 m s−2, and the steering is
limited to −20◦ to 20◦.

The action of the adversary a2,t is the disturbance on the
acceleration and steering, a2,t = [δαt, δφt]. The magnitude
of the disturbance is limited to 20% of the maximum
acceleration and steering.

The state transition model, as generally stated in eq. (2)
and visualized in fig. 1, follows a simple discrete time
bicycle model, where la = lb = 1.5 m are distances between
the vehicle’s center of mass and its front and rear axle,
∆t = 0.05 s is the time step, and all other variables are
as previously described.

The reward function of the protagonist r1,t is a weighted
sum of the rewards on vehicle state and action:

r1,t = 0.5rvt + 0.5rθt + 0.1rαt + 0.2rφt + 1.0ryt (3)

where the reward on the velocity is given by a smooth,
increasing function with range [−1, 1]:

rvt = log vmax−vmin
2

(100 · vt − vmin
vmax − vmin

+ 0.99)− 1

The reward associated with orientation is given by:

rθt =

{
−1.0 if |θt| > π/4

0.0 otherwise

The reward associated with the acceleration is given by:

rαt = − |αt|
αmax

The reward associated with the steering is given by:

rφt = − |φt|
φmax

The reward associated with the vehicle position is determined
by the lateral offset:

ryt =

{
3.0 if |yt − ygoal| < 0.05

1.0− |yt−ygoal|lw
otherwise

where ygoal is the lateral position of the center line of the
target lane and lw = 3 m is the lane width. If the ego vehicle
goes off the road, meaning that a failure and collision has
occurred, r1,t = −5.0 and the trajectory ends.

In the zero-sum setting, the adversary’s reward is strictly
competitive, meaning r2,t = −r1,t. In the nonzero-sum
setting, the adversary’s reward is given by r2,t = −r1,t+rc,t,
where rc,t is the additional adversary reward taking the form:

rc,t =rδα,t + rδφ,t (4a)

rδα,t =

{
ra if |δαt| < δαmax

0 otherwise
(4b)

rδφ,t =

{
ra if |δφt| < δφmax

0 otherwise
(4c)

where the maximum disturbance limit, δαmax and δφmax,
is predefined. Note that ra = 0 means a zero-sum setting. In
the experiment, ra is set to 3.2

B. Implementation Details

To compare the performance of different policies, we train
five different networks. First, we train a baseline policy using
traditional reinforcement learning. Then, we train policies
using the RARL and the NFSP methods in a strictly compet-
itive and a semi-competitive settings. We used the following
parameters for training.

1) Baseline Policy: The baseline policy is trained with
Trust Region Policy Optimization (TRPO) as implemented
by RLLab with no disturbances in the environment [13],
[14]. The baseline uses a Gaussian Multilayer Perceptron
architecture with hidden layer sizes of 256, 128, 64, and 32
with ReLu nonlinearity activation functions. The training is
conducted over 15000 iterations with a batch size of 4000
and a step size of 0.01.

2) RARL: For training the policies with RARL, we use the
same policy structure as the baseline for both the protagonist
and the adversary. The protagonist is initialized with a base-
line policy trained with 5000 iterations, and the adversary
is randomly initialized. The training is conducted over 4000
iterations, and N1 = N2 = 5, which is the number of policy
updates performed for the protagonist and adversary policies
in each iteration. The batch size is 400. The policy optimizer
and other parameters are consistent with the baseline. The
training parameters are chosen so that the training time for
the baseline (starting from 5000 iterations) and RARL is
approximately the same.

3) NFSP: For NFSP training, we use the same network
structure as the baseline for the protagonist and adversary’s
best response policy, Pbr and Abr. The average response
policies, Pavg and Aavg , use RLLab’s Gaussian Multilayer
Perceptron Regressor implementation. The hidden layer sizes
and nonlinearities are consistent with the baseline. The
reservoir buffers MP and MA have size 2× 104. Other
parameters are consistent with RARL.

C. Validation Dynamics

We hypothesize that using the proposed robust methods
will improve performance when the policy is executed on
a real vehicle, despite modeling errors and noise. This
hypothesis is validated using a dynamical model closer to
the test vehicle provided by the SAIC Innovation Center.
Figure 2 shows the test vehicle.

While testing on the vehicle, we observed that much of the
model mismatch was caused by the steering response of the
vehicle. In training, we assume that the steering of the vehicle
perfectly tracks the the command steering, which is not true
in practice. The limits on the steering and angular rate is an
important constraint that is often tuned and modified in the
low-level controller on the vehicle.

2The magnitude of ra is inversely related to the α-percentile that would
be sampled. We ran several experiments on different ra values and found
that 3 gives the best result.

Fig. 2: Test vehicle provided by SAIC Innovation Center.

For vehicular control, there are many vehicle specific
model parameters that significantly impact the dynamics,
such as the axle distance (la and lb shown in fig. 1). The
resulting policy should be robust to model mismatch with
respect to changes in these parameters so that it is applicable
on different vehicles.

D. Evaluation Metric

To test the control policy, we run each policy for 500
rollouts. We need two metrics to evaluate the efficiency and
the safety of the polices. For efficiency, we use the the
average undiscounted path reward introduced in section III-
A, which is a combined metric on difference aspects of the
driving. We subtract the collision part of the reward to make
it orthogonal to the safety metric. For safety, we use the
collision rate which is the number of failures divided by the
number of rollouts.

IV. ROBUSTNESS TO ADVERSARIAL DISTURBANCES

To validate our methods and demonstrate robustness, we
conduct several tests with different disturbance distributions
and vehicle dynamics to evaluate the performance of the
trained protagonists. First, we test the robust policy with a
disturbance that follows a Pareto distribution. Second, we
show robustness to an adversarial disturbance.

A. Pareto Disturbance Test

To validate the systems’ robustness, we test the policy
using a heavy tailed distribution. The disturbances on accel-
eration and steering are sampled from a Pareto distribution
with shape parameter β that varies from 1 to 10 and scale
parameter xm = 1.3 The probability density function is βxβm

xβ+1

if x > xm and 0 otherwise. As β increases, the disturbance
is more concentrated on boundaries. This heavy-tailed distri-
bution captures extreme disturbances, giving insight into the
worst case performance.

Figure 3 gives the results under the disturbance described
above. The horizontal-axis is the shape parameter β and
the vertical-axes are the average reward and collision rate.
As the disturbance concentrates more on the boundary (β
increases), the reward of baseline drops more rapidly than
other policies, which shows the robustness of game theoretic

3This distribution gives the normalized disturbance magnitude. In testing,
this value is scaled to 20% of the maximum acceleration or steering.
Additionally, half of the tests use the opposite of the sampled disturbance.

2 4 6 8 10

200

300

400

500

600

Shape Parameter β

U
nd

is
co

un
te

d
A

ve
ra

ge
R

ew
ar

d

Baseline
RARL Zero-Sum
RARL Nonzero-Sum
NFSP Zero-Sum
NFSP Nonzero-Sum

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Shape Factor β

Fa
ilu

re
R

at
e

Baseline
RARL Zero-Sum
RARL Nonzero-Sum
NFSP Zero-Sum
NFSP Nonzero-Sum

Fig. 3: Average path reward (top) and failure rate (bottom) of
different policies under Pareto disturbance with increasingly heavy-
tailed shape parameter, β.

methods. Policies trained with nonzero-sum rewards show
better performance than ones trained with zero-sum, demon-
strating the influence of the additional adversary rewards.
The NFSP policy for the nonzero-sum game implementa-
tion demonstrates the most robust performance and highest
reward when the variance is high.

Further, the NFSP nonzero-setting policy exhibits the
safest performance as well; the resulting policy always
results in no collisions. The baseline policy performs nearly
as well, despite more rapidly degrading performance in terms
of expected reward.

B. Adversarial Disturbance Test

Inspired by RARL [9], we test the robustness of the policy
with adversarial disturbances. We train an adversary to apply
disturbance on acceleration and steering while holding the
protagonist’s policy constant (for NFSP, this is the best
response policy of the protagonist). The training setup is
the same as RARL. We then test the protagonist under the
disturbance generated by this adversary.

Figure 4 shows the average path rewards and collision rate
as a function of the adversary’s training iterations. The policy
trained by NFSP with ra = 3 in the nonzero-sum setting
shows strong robustness to the adversarial disturbance. The

0 50 100 150 200

100

200

300

400

500

600

Adversary Iteration Number

U
nd

is
co

un
te

d
A

ve
ra

ge
R

ew
ar

d

Baseline
RARL Zero-Sum
RARL Nonzero-Sum
NFSP Zero-Sum
NFSP Nonzero-Sum

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

Adversary Iteration Number

Fa
ilu

re
R

at
e

Baseline
RARL Zero-Sum
RARL Nonzero-Sum
NFSP Zero-Sum
NFSP Nonzero-Sum

Fig. 4: Average path reward (top) and failure rate (bottom) of dif-
ferent policies under adversarial disturbance in which an adversary
iteratively trains against the protagonist.

failure rate remains zero, while the expected reward is
approximately 400. The baseline policy initially has a high
average reward and zero collision rate, but its performance
drops rapidly as the adversary becomes stronger. Policies
trained with RARL result in rewards similar to the baseline,
while the policy with non-zero formulations exhibit better
performance with respect to the failure rate. These results il-
lustrate how reformulating adversarial learning as a nonzero-
sum game improves overall performance.

V. ROBUSTNESS TO MODEL MISMATCH

We apply the policy to the real-world dynamics described
in the previous section. Using the same metrics as before,
we quantify the trade-offs between the policies. We test the
policies on a limited steer change model that approximates
the real vehicle behavior (LSC test), and a setting where we
change the axle distance for the vehicle (DA test).

A. Limited Steer Change Test

In this test, we limit the steer change of the ego vehicle
in one time step (0.05 s) to 4.5◦. We also add a uniformly
distributed disturbance in the same limit as previous tests.
This test shows the policies robustness against model error.

As shown in fig. 5, the proposed methods shows a reduced
average reward compared to the baseline. While many of

0 0.2 0.4 0.6 0.8 1
0

200

400

600

Failure Rate

U
nd

is
co

un
te

d
A

ve
ra

ge
R

ew
ar

d

Baseline
RARL Zero-Sum
RARL Nonzero-Sum
NFSP Zero-Sum
NFSP Nonzero-Sum

Fig. 5: Scatter plot showing the trade-off between average path
reward and failure rate of different policies under limited steer
change constraint and uniform disturbance.

0 0.2 0.4 0.6 0.8 1
0

200

400

600

Failure Rate

U
nd

is
co

un
te

d
A

ve
ra

ge
R

ew
ar

d

Baseline
RARL Zero-Sum
RARL Nonzero-Sum
NFSP Zero-Sum
NFSP Nonzero-Sum

Fig. 6: Scatter plot showing the trade-off between average path
reward and failure rate of different policies under different axle
distance and uniform disturbance.

these adversarial learning methods show degraded safety,
the NFSP solution in the nonzero-sum formulation improves
safety with only a slightly degraded expected reward.

B. Different Axle Distance Test

In this test, we vary the vehicle’s axle distance la and
lb uniformly from 0.5 to 2.5 m. Recall that during training,
the axle distance is fixed to 1 m. Again, uniformly distributed
disturbance is also added to the inputs. The results are shown
in fig. 6.

This test exhibits similar results as was previously ob-
served. While many of the adversarial methods do not
improve performance relative to the baseline, the NFSP
nonzero-sum formulation improves safety with only a slight
sacrifice in expected reward.

C. Discussion

To summarize the findings of this work, fig. 7 illustrates
the efficiency and safety trade-off for tested methods across
all validation tests. The color indicates the policy and for-
mulation and the shape indicates the robustness test.

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

Failure Rate

U
nd

is
co

un
te

d
A

ve
ra

ge
R

ew
ar

d
Baseline
RARL Zero-Sum
RARL Nonzero-Sum
NFSP Zero-Sum
NFSP Nonzero-Sum
Pareto β = 10
DA
LSC

Fig. 7: Scatter plot showing the trade-off between average path
reward and failure rate of different policies for all tests.

Generally, the performance variance of policies trained
with robust learning methods is smaller than that of the
baseline. We also observe that augmenting previous solu-
tion methods with a nonzero-sum formulation significantly
improves robustness with respect to efficiency and safety.
Overall, the NFSP method in the nonzero-sum formulation
results exhibit the best performance with regard to maintain-
ing safety with minimal sacrifice in efficiency.

Interestingly, most robust learning methods degrade both
efficiency and safety, exhibiting worst performance than
baseline. This phenomenon is likely a result of the game
theoretic formulation and solution methods converging on
suboptimal equilibria. Thus, our hypothesis that using robust
learning methods improves robustness and efficiency is con-
firmed, but only by using semi-competitive games and the
NFSP solution method.

VI. CONCLUSIONS

In this paper, we tested a variety of the two player
Markov game formulations for robust reinforcement learn-
ing, varying the training methods (RARL and NFSP) and
reward structure (zero-sum and nonzero-sum with additional
adversary reward). The resulting policies were validated
under different disturbance distributions and different vehicle
dynamic models. Under all tests, the NFSP with nonzero-
sum rewards shows overall strong robustness, safety, and
more conservative performance than the TRPO single agent
learning baseline. This method is also significantly more
consistent between tests than the other approaches, which
implies that the policy is more generalizable.

The other approaches (RARL variants and NFSP solving
a zero-sum game) exhibited poor performance in both safety
and efficiency metrics. This behavior is likely induced by the
adversary becoming too “strong” for the current protagonist
to recover from, and thus converges to a low performance

point. However, with the addition of the cooperative reward
and the averaging from fictitious self play, the protago-
nist and the adversary policies evolve more smoothly and
converge more closely to the game’s equilibrium. We will
expand this work to a multi-player setting to capture a
wider variety of disturbances and test more solution methods
that can be applied to multi-player games like Policy-Space
Response Oracles [15]. We will also explore the application
of this robust training method on the test vehicle.

ACKNOWLEDGEMENTS

We thank Alex Kuefler and Kunal Menda for inspiring this
work and the members of the Stanford Intelligent Systems
Laboratory for their help on the implementation.

REFERENCES

[1] T. Başar and P. Bernhard, H-infinity optimal control and related
minimax design problems: a dynamic game approach. Springer, 2008.

[2] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N.
Zeilinger, and C. J. Tomlin, “Reachability-based safe learning with
gaussian processes,” in IEEE Conference on Decision and Control
(CDC), 2014, pp. 1424–1431.

[3] J. H. Gillula and C. J. Tomlin, “Reducing conservativeness in safety
guarantees by learning disturbances online: iterated guaranteed safe
online learning,” Robotics: Science and Systems VIII, p. 81, 2013.

[4] K. Driggs-Campbell, R. Dong, S. S. Sastry, and R. Bajcsy, “Robust,
informative human in the loop predictions via empirical reachable
sets,” in arXiv: 1705.00748, 2017.

[5] D. Lowd and C. Meek, “Adversarial learning,” in ACM International
Conference on Knowledge Discovery in Data Mining, 2005, pp. 641–
647.

[6] P. Laskov and R. Lippmann, “Machine learning in adversarial envi-
ronments,” Machine Learning, vol. 81, no. 2, pp. 115–119, 2010.

[7] A. Tamar, Y. Glassner, and S. Mannor, “Optimizing the CVaR via
Sampling,” in AAAI Conference on Artificial Intelligence (AAAI), 2015,
pp. 2993–2999.

[8] A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine, “Epopt:
Learning robust neural network policies using model ensembles,”
arXiv: 1610.01283, 2016.

[9] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adver-
sarial reinforcement learning,” arXiv: 1703.02702, 2017.

[10] J. Heinrich, M. Lanctot, and D. Silver, “Fictitious self-play in
extensive-form games,” in International Conference on Machine
Learning (ICML), 2015, pp. 805–813.

[11] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no. 10,
pp. 1345–1359, 2010.

[12] J. Heinrich and D. Silver, “Deep reinforcement learning from self-play
in imperfect-information games,” NIPS Deep Reinforcement Learning
Workshop, 2016.

[13] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine
Learning (ICML), 2015, pp. 1889–1897.

[14] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel,
“Benchmarking deep reinforcement learning for continuous control,”
in International Conference on Machine Learning (ICML), 2016, pp.
1329–1338.

[15] M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, J. Perolat,
D. Silver, T. Graepel, et al., “A unified game-theoretic approach to
multiagent reinforcement learning,” in Advances in Neural Information
Processing Systems (NIPS), 2017, pp. 4193–4206.

	I Introduction
	II Problem Formulation
	II-A Game Theoretic Formulation
	II-A.1 Strictly Competitive Games
	II-A.2 Semi-Competitive Games

	II-B Solution Methods
	II-B.1 RARL
	II-B.2 NFSP

	III Experimental Methods
	III-A Experimental Setup
	III-B Implementation Details
	III-B.1 Baseline Policy
	III-B.2 RARL
	III-B.3 NFSP

	III-C Validation Dynamics
	III-D Evaluation Metric

	IV Robustness to Adversarial Disturbances
	IV-A Pareto Disturbance Test
	IV-B Adversarial Disturbance Test

	V Robustness to Model Mismatch
	V-A Limited Steer Change Test
	V-B Different Axle Distance Test
	V-C Discussion

	VI Conclusions
	References

