
  

 

Abstract—This paper summarizes the work of building the 

autonomous system including detection system and path 

tracking controller for a formula student autonomous racecar. 

A LIDAR-vision cooperating method of detecting traffic cone 

which is used as track mark is proposed. Detection algorithm of 

the racecar also implements a precise and high rate localization 

method which combines the GPS-INS data and LIDAR 

odometry. Besides, a track map including the location and color 

information of the cones is built simultaneously. Finally, the 

system and vehicle performance on a closed loop track is tested. 

This paper also briefly introduces the Formula Student 

Autonomous Competition (FSAC) in 2017. 

Index Terms—Autonomous Vehicle; Environment Detection; 

Localization and Mapping; Trajectory Tracking; Formula 

Student Autonomous; Autonomous Racecar; 

I. INTRODUCTION 

ormula Student China 2017 was held on November 11 in 
Xiangyang, Hubei Province. The competition is divided 

into combust engine group, electric group and driverless group 
which is a new group this year and is named Formula Student 
Autonomous Competition (FSAC). BIT-FSA team which is 
one of the first seven domestic teams is invited to participate in 
the competition. The competition consists of three items: 
acceleration test which purpose is to test the accelerate 
performance and detection and control algorithm under high 
speed; skid pad which test the handling stability; and track 
drive which is a comprehensive test of perception and control 
strategy. The Smart Shark Ⅰ autonomous racecar from BIT 
passed all the technical inspection and accomplished all the 
three items. Finally, BIT-FSA team won the FSAC champion.  
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II. VEHICLE AND SOFTWARE ARCHITECTURE 

The Smart Shark autonomous racecar platform was an 
electric formula racecar (BIT-FSE Silver Shark racecar) and 
we converted and modified it to unmanned vehicles but retain 
the human driving function [1]. The car retains the basic 
characteristics of the formula car such as low center of mass. 
In addition, the vehicle has the high-voltage battery pack with 
160kW peak power. Rear distributed motor drive system 
consists of the two high-power density wheel motor with peak 
80Nm output torque. The two drive motors are independently 
controlled by respective motor controllers. 

A. Vehicle Modification 

Several works need to be done to modify an electric 
formula car to an autonomous vehicle. The original vehicle is 
not driving by wire, team need to add steering and brake 
actuator. Since the rule says the autonomous formula car 
should keep fully functional and suitable for human driver, we 
reserve the mechanical steering system and add servo motor to 
drive the steering linkage. A servo brake system and a 
redundant emergency brake are equipped not only can perform 
the brake force control but also can stop the car safely when 
emergency or failure of the system happen. It is worth 
mentioning that a wireless emergency stop device is designed 
to control the brake and the tractive system power supply 
remotely and it is manipulated by the safety officer of the team. 
State indicator located at the top of the main loop shows the 
system state. Autonomous system switch can activate or stop 
the autonomous system and switch the vehicle mode between 
driver and driverless. Finally, all sensors and computation 
device are mounted according the rules. Fig. 2 shows the 
modifications on the vehicle.  
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Fig. 2. Modifications including sensors, computer, actuators and indicator  

   
     (a) Picture of All Teams             (b) Autonomous Acceleration Test  

Fig. 1. Formula Student China 2017 



  

B. Software Architecture  

    The software is basically divided in to two levels which 
have different task and run on different devices. The structure 
is shown in Fig. 3.  The up-level runs on x86 platform with 
Linux OS and ROS software frame is installed to manage all 
the nodes and data communications. The up-level software 
includes sensor interface, detection node and planning and 
control node. Senor interface communicates with LIDAR, 
camera and GPS-INS and synchronize the data according to 
time label. The main function of detection node is point cloud 
processing for object detection, image processing of cones 
classification, odometry for vehicle motion estimation and 
mapping. The planning and control node is for motion control 
and sending control command such as steering angle and 
target speed to low-level controller via RS232. The low-level 
controller is for the hardware control task such as steering 
servo position control following the control command. In 
addition, the controller also controls the indictors, the tractive 
system and emergency stop according to the competition 
safety rules. We choose a rapid prototype VCU as the platform 
which has the resources to meet the requirement on 
computation and multi-interfaces. It has a 32-bit MCU with 
264MHz router, multiple communication interface including 
CAN-BUS and RS232, PWM driven port and digital I/O. The 
VCU can be programmed by Simulink environment so the low 
level-development can be simplified. 

III. ENVIRONMENT PERCEPTION 

In the FSAC, standard cones are the main track mark, 
which are 30cm high with three kinds of colors: red cones 
mark the left boundary of the cons and the blue cones mark the 
right while the yellow cones mark the start/finish points. So 
our detection algorithm is specialized to find cones and extract 
the color. Multiple sensors including LIDAR, camera and 
GPS-INS are cooperatively working in the mission.  

A.  Laser Obstacle Detection 

1) Point cloud pre-processing  
Choose ROI of the point cloud data. Since the mission 

mainly is detecting the object on the ground, we choose a box 
region with 1m height from ground and the size of 20mx20m. 

In order to detect objects, the points reflect from ground 
plane must be detected and filtered. A simple algorithm for 
detecting obstacles and ground in laser scans would be to find 
points whose vertical displacement exceeds a given threshold. 
Indeed, this algorithm can be used to detect large obstacles 
such as pedestrians and cars. However, the lateral slop of the 
car body and calibration error are high enough that the 
displacement threshold cannot be set low enough in practice to 
detect cone-sized objects without substantial numbers of false 
positives from ground points [2]. 

To alleviate these problems, a ground detection method by 
RANSAC algorithm is implemented to find ground laser 
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Fig. 3.  Flow diagram of the software. 



  

points and delete them from object ROI. We suppose that 
ground is a flat plane without large curve and bulge. Even 
though a plane does not present various terrains, it is 
sufficiently effective for our applications of a racing car. Most 
environments contain flat ground, and roads can be modeled 
as locally planar [3]. Moreover, the locally planar assumption 
is valid for our racing field. So a plane mode can be used as the 
mathematical model to describe ground plane. In this paper, 
we model ground as a 3D plane. Generally, a plane with three 
degree of freedom can be represented by four parameters as 
follows: 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0                               (1) 

Beside the planar assumption, we also assume that the 

LIDAR placed in front of vehicles keeps almost constant 

height from ground. Only the small pitch and roll of ground 

plane are considered. The ground plane is written as: 

𝑦 = 𝑘𝑥 + 𝑗𝑧 + ℎ                                      (2) 

Where h is approximately the height between the sensor 
and ground. 

During the hypothesis evaluation, all the points in the ROI 
will be the input observed data. Error between a point and 
ground plane is commonly defined as their geometric distance,  

error(𝑝𝑖) =
𝑦 − 𝑘𝑥 − 𝑗𝑧 − ℎ

√1 + 𝑘2 + 𝑗2 + ℎ2
                       (3) 

During each iteration, the label representing if a point is 
inlier point under the hypothesis plane parameters is defined 
as 

𝑙(𝑝𝑖) = {
1
0

𝑖𝑓 |𝑒𝑟𝑟𝑜𝑟(𝑝𝑖)| < 𝜏

𝑒𝑙𝑠𝑒
                               (4) 

After setting iterative number and fit threshold 𝜏 , the 
algorithm can find the optimal estimation parameters of the 
plane and tell apart the inliers points whose distributions are fit 
in the solved plane mode and the noise data which are the laser 
points of the objects outside the ground plane. Fig. 4 shows the 
result. White points are in the ground plane while dark points 
represent the obstacles. It can be seen that the algorithm can 
distinguish ground and objects like cones. 

2) Accumulate multiple frame point cloud data  
After the pre-processing, the ROI of objects can be 

extracted. The next step could be the cluster and object 
extraction. However, the detection result will be limited in 
range and stability if only using single frame information. 
Firstly, LIDAR have sixteen layers and the vertical angle 
between layers is two degree. The low resolution will lead to a 
large non-detection zone between layers as the Fig. 5 shows. 
Secondly, the objects with small size or low height such as 
curbs and cones will be hard to detect and cluster due to few 
reflection points. Thirdly, the vertical vibration and ground 
fluctuations during driving lead to a high threshold to reduce 

the influence of the noise points.  

In order to improve the effective recognition range of 
LIDAR and enhance the detection stability and reduce the 
influence of noise point, we use multi-frame accumulation 
algorithm which inspired by the strategy of building high 
definition maps [4]. After accumulation, the data points can 
become dense to improve the effective recognition range.  

The coordinate transformation from previous frames 
coordinates to current frame coordinate need to be calculated 
which is the key part of the algorithm. The coordinate change 
is mainly caused by the three dimensional motion and 3 DOF 
pose transformation of the car since the LIDAR is mechanical 
fixed on the vehicle. In this paper, pose and translation matrix 
T are defined to describe the coordinate transformation. 

Firstly, in order to calculate coordinate transformation 
matrix, the odometer information of the car including the 
position and heading vector in initial coordinate at the scan 
moment of each frame need to be calculated and matched as 
the position label. 

Odometry contains the motion and position information 
including heading and coordinate in initial frame. Multiple 
kinds of sensors including monocular or binocular stereo 
vision sensor, LIDAR, GPS, INS and wheel speed sensor can 
be used as odometry. Wheel speed sensor is widely used as 
odometry on wheeled robot. However, the accuracy is limited 
by slip and wear of the tire. GPS can provide high accurate 
position in RTK mode under open out-door working condition. 
In recent years, many researches have been done on SLAM 
using vision system and LIDAR odometry as the front end [7]. 
In this paper, an odometry using LIDAR and GPS-INS 
coupled data is proposed. LIDAR and GPS-INS data are 
separately used to calculate the position change of the vehicle 
and coupled using complementary filter.  

          
                             (a)                                                           (b) 

Fig. 4. The white points are the inlier ground points and the dark points are the 

objects in (a) while (b) is the image from the camera. 

 
Fig. 6. The accumulation process flow chart. 𝒫𝑘is the point cloud acquired 

at 𝑡𝑘. T𝑘 is the pose-motion transformation to initial coordinate system.  

 
Fig. 5. The interval angle between tow scan layers can cause the dead zone. 

The laser cannot be sure to reach a cone located over 10m at any time. 



  

The problem of LIDAR odometry is that, given the 

LIDAR clouds𝒫𝑘, k∈Z+ arranged in chronological order, the 

registration of point cloud is calculated, and the movement of 
LIDAR in two scans is obtained. The whole algorithm is 
divided into three steps which inspired by LOAM, a high 
accurate LIDAR odometry [5.6]: The first step is to extract the 
registration feature points to improve the registration speed 
and accuracy. The algorithm selects the convex edge and the 
laser radar reflection point on the flat plane as the feature 
points. Set S is a set of continuous points i in the same 
scanning process, and define the evaluation formula of local 
surface smoothness as: 

c =
1

|𝑆| · ||𝑋𝑘,𝑖||
|| ∑ (𝑿𝑘,𝑖 − 𝑿𝑘,𝑗)

𝑗∈𝑆,𝑗≠𝑖

||                      (5)   

Here, the maximum value greater than c indicates the edge 
point, and the minimum value less than c indicates the plane 
point. Taking c as the threshold to select feature points, the 
maximum and minimum thresholds can be obtained 
experimentally. The second step is the matching of feature 
points to complete point cloud registration. Considering that 
the distance between 𝑡𝑘+1 and the adjacent two times when 𝑡𝑘 
moves is not too large, we need to find the nearest neighbor of 
each edge feature point or plane feature point in the point 
cloud set �̅�𝑘 as Matching point. After obtaining the matching 
points of the feature points, we need to calculate the distance 
formula from the feature points to the matching points. We 
calculate the pose movement of the radar by minimizing the 
distances between all the feature points and the matching 
points. We use the ICP algorithm to solve this optimization 
problem. The positioning algorithm rated operating frequency 
of 10Hz. 

Second step is to accumulate points to LIDAR coordinate 

system L̂  at current time  t̂ . After getting the odometry 
information, the coordinate transformation matrix to initial 
coordinate can be solved and the point cloud of the historical 
frame is transformed into the coordinate system of the current 
scan frame. Let the number of fusion frames be m. The point 

cloud set after multi-frame fusion is �̂� and the set of point 
cloud obtained at tk is 𝒫k, where k = 1 , 2 ... m. The coordinate 
system of the point cloud set 𝒫k is Lk and the coordinate of the 
point i ∈ 𝒫k under the Lk is represented as Xi,k. According to 

the odometer information, we can get the pose-motion 
transformation Tk  from the initial system to the LIDAR 
coordinate system: 

Tk = [tx, ty, tz, x, y, z, ω]T                             (6) 

Where tx, ty and tz are the translational changes in the x, y, 

and z axes and x, y, z, and ω are quaternions. For any point 

i ∈ 𝒫k, k = 1,2 ...... m, the fused point X̂ cloud set �̂� can be 
obtained as: 

Xi,k̂ = (R̂Rk
−1 (Xi,k − Tk(1: 3)) + T̂(1: 3))            (7) 

Where Rk and R̂ is the posture transformation matrix from 

initial coordinate system to LIDAR coordinate  Lk  and  L̂ , 
separately. When a Transformation T is given, R is defined as: 

𝑹 = [
1 − 2(𝑦2 + 𝑧2)

2(𝑥𝑦 + 𝑧𝑤)
2(𝑥𝑧 − 𝑦𝑤)

  

2(𝑥𝑦 − 𝑧𝑤)

1 − 2(𝑥2 + 𝑧2)
2(𝑦𝑧 + 𝑥𝑤)

   

2(𝑥𝑧 + 𝑦𝑤)

2(𝑦𝑧 − 𝑥𝑤)

1 − 2(𝑥2 + 𝑦2)

] (8) 

3) Cluster point cloud 
After accumulating the points of objects, Euclidean cluster 

extraction method is used to divide point cloud reflected from 
the same object into groups and compute the centroid location. 
What’s more, the reflection numbered points and the envelope 
size of the object can be calculated after cluster so that we can 
filtrate the object groups with excessively large size compared 
to traffic cones.  

After the cluster and filtration by size, the cones can be 
detected. However, there are still other objects like tyre stacks 
around the track which can be detected as cones. So in the next 
section, the vision information is used to verify.  

B. Vision Based Obstacle classification 

In our work, in order to improve the real time computation, 
a LIDAR-assistant visual detection algorithm is implemented. 
Following three steps show the main process: 

1) Joint calibration of LIDAR and camera 
To achieve LIDAR-assistant detection, the picture is 

projected onto a new viewing plane by perspective 
transformation to project object position in image space onto 
LIDAR coordinate. We can construct the perspective matrix 
between the two planes by choosing four pairs of different 
corresponding points: 

[𝑥′ 𝑦′ 𝑤′] = [𝑢 𝑣 𝑤] [
𝑇1 𝑇2

𝑇3 𝑎33
]                (9) 

Where: u and v represent the pixel coordinate of the 
bottom center of the cones. x′/w′  and y′/w′  represent the 
position of the cones in XoY plane. T1 is the linear 
transformation. T2 is Perspective effect segment and T3 is 
translation matrix. Fig. 7(a) shows the aerial view after 
transformation. The bottom center points of the cones in mage 
coincident with the cluster result.  

Through this matrix, it is possible to map all the cone-like 
objects in the real-world coordinates onto the camera plane 
and delineate the ROI of the corresponding obstacles on the 
image plane according to the mapped points, and the 
subsequent processing only processes these ROI regions 
Image. Fig. 7 shows the transformation process and the 
corresponding ROI bounding box.  

2) Cones detection based on SVM 
The HOG features are calculated for each gray scale 

converted by the ROI. HOG feature is to select the pixel block, 
and then calculate the gradient value in each direction of the 
pixel block, and finally generate the corresponding length of 
the feature vector from these gradient values, which can be 

 
               (a) Aerial View                                     (b) ROI selection  

Fig. 7. Joint calibration by perspective transformation and ROI selection 



  

used as the classification basis to train the SVM classifier. We 
build the dataset of the cones and train the model using 
OpenCV tools. Fig. 8 shows the examples from dataset. 

3)   Cone color detection  
In order to obtain the cones color information in the ROI, it 

is necessary to first determine whether the boxed cone 
analogue matches the color feature and the color of the cone 
inside the ROI. First, the influence of light on the camera 
imaging needs to be reduced. In the HSV color space, H 
represents the hue, S represents the saturation, V represents 
the brightness of the color, and the following conversion 
method can be used to convert from the RGB color space to 
the HSV color space: 
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H, S and V channels can be calculate as: 
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maxV C                     (14) 
It can be seen that if do not use the V component, it can 

greatly reduce the impact of light on cone color recognition. 
After using the k-means clustering algorithm and taking k as 2, 
all the pixels are grouped into two categories. The cones color 
can be obtained by extracting the main color components in 
the ROI.      

IV. EXPERIMENT 

The data is recorded during one track-drive test run. In this 
item, the track will be a loop with 4m width and 5m distance 
between one pair of cones as Fig. 9 shows. During each ride, 
the vehicle need finish two entire loops without any prior data 

of the track and stop after the finish line automatically. The 
fastest lap time will be recorded. 

In the first lap, the vehicle will operate using LIDAR and 
visual system as real-time cones perception. The motion 
control will be based on the real-time planning algorithm to 
follow the middle line of the track as Fig. 10 shows. In the test, 
the odometry and mapping node is also run simultaneously to 
record the trajectory and build the map of the track as Fig. 11 
shows. When the program detects a close loop of the trajectory, 
the vehicle will automatically shift its control mode. 

In the second lap, the vehicle will mainly use GPS-INS to 
positioning and tracking the trajectory generated in first lap 
and the real-time planning just running as backup and will take 
over under receiving bad GPS data. Since the whole loop 
trajectory is known, the tracking algorithm can planning the 
speed precisely at each waypoint. What’s more, the vehicle 
can run steadily without the effect of the detection error. So 
second lap time will have a greatly improved and the vehicle 
can reach a higher speed. Besides, the GPS-INS has higher 
output rate and lower delay than other perception system 
which help to perform a precise and robust control. Fig. 12 to 
Fig. 16 shows the data of the second lap. 

 

 
Fig. 11.  After finish the first lap, the map of the track is built. Blue boxes 

show the position of the cones. The odometry data of each moment is 

represented by red arrow.  

 
(a) The blue marks show the cones cluster result 

 
(b)The SVM classification and color detection result 

Fig. 10. The cones detection result 

 
Fig. 9. The test field environment and track 

 
Fig. 8. Some examples of positive samples which contain cone and negative 

samples such as grass or curbs from training dataset. 
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Fig.12. The black trajectory shows the ground truth of the target trajectory. 

The red trajectory shows the tracking result in the second lap.  

 
Fig 13. The vehicle speed from wheel speed sensor. The vehicle keeps a 

constant speed as the program setting. 

 
Fig. 14.  The yaw rate data from GPS-INS. 

 
Fig. 15.  The lateral acceleration data from GPS-INS. 

 
Fig. 16.  The sideslip angle of the vehicle 


