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Abstract— The primary focus of autonomous driving re-
search is to improve driving accuracy. While great progress has
been made, state-of-the-art algorithms still fail at times. Such
failures may have catastrophic consequences. It therefore is im-
portant that automated cars foresee problems ahead as early as
possible. This is also of paramount importance if the driver will
be asked to take over. We conjecture that failures do not occur
randomly. For instance, driving models may fail more likely at
places with heavy traffic, at complex intersections, and/or under
adverse weather/illumination conditions. This work presents a
method to learn to predict the occurrence of these failures, i.e.
to assess how difficult a scene is to a given driving model and
to possibly give the human driver an early headsup. A camera-
based driving model is developed and trained over real driving
datasets. The discrepancies between the model’s predictions and
the human ‘ground-truth’ maneuvers were then recorded, to
yield the ‘failure’ scores. Experimental results show that the
failure score can indeed be learned and predicted. Thus, our
prediction method is able to improve the overall safety of an
automated driving model by alerting the human driver timely,
leading to better human-vehicle collaborative driving.

I. INTRODUCTION
Autonomous vehicles will have a substantial impact on

people’s daily life, both personally and professionally. For
instance, automated vehicles can largely increase human pro-
ductivity by turning driving time into working time, provide
personalized mobility to non-drivers, reduce traffic accidents,
or free up parking space and generalize valet service [1]. As
such, developing automated vehicles is becoming the core
interest of many, diverse industrial players. Recent years have
witnessed great progress in autonomous driving [7], [3], [46],
[5], [8], [21], resulting in announcements that autonomous
vehicles have driven over many thousands of miles and that
companies aspire to sell such vehicles in a few years. All
this has fueled expectations that fully automated vehicles are
coming soon.

Yet, significant technical obstacles must be overcome
before assisted driving can be turned into full-fletched au-
tomated driving, a prerequisite for the above visions to
materialize. To make matters worse, an automated car that
from time to time will call on the driver to take over, will, by
many drivers, be considered worse than having no automated
driving at all. Indeed, in such a transition situation, the driver
will be required to permanently pay attention to the road,
as to not be out of context when s/he suddenly needs to
act. And that does not go together well with the boredom
coming with not having to intervene for a long time. The
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more successful the automation, the worse the issue. Add
legal responsibilities to the picture, and the possibility that
the human driver is called upon to take decisions, however
rarely that is, may still be with us for a while.

With so much effort currently going into improving
autonomous driving, such systems will certainly improve
quickly. Yet, as said, during the coming years performance
will probably not be strong enough such that occasional
mistakes can be avoided altogether. Indeed, driving models
may still fail due to congested traffic, bad weather, frontal il-
lumination, road constructions, etc., or simply unexpectedly,
due to the idiosyncrasies of the underlying algorithms. Fail-
ures of a vehicle can be catastrophic [4], and it is therefore
crucial to obtain an early warning for impending trouble.
Despite this importance, the community has so far paid
limited attention to the automated predictions of potential
failures. We therefore decided to push for a capability where
driving models can yield a warning such as I am unable to
make a reliable decision for the coming situation, and can
give the human driver an early warning about a possible need
for human intervention.

We propose the concept of Scene Drivability, i.e. how easy
a scene is for an automated car to navigate. A low drivability
score means that the automated vehicle is likely to fail for the
particular scene. Obviously, scene drivability is dependent on
the autonomous driving system at hand. In order to quantify
and learn this property, we therefore first need to pick a
particular autonomous driving model. We developed one of
our own, solely based on video observations. Videos from
car-mounted cameras were used to train it. In keeping with
modern machine learning, it automatically learned things
like ‘when the vehicle is in the left-most lane, the only
safe maneuvers are a right-lane change or keeping straight,
unless the vehicle is approaching an intersection’. It is clear
that such learning requires the system to be exposed to a
representative sample of scenarios. We therefore trained the
model on a large, real driving dataset, which contains video
sequences and other time-stamped sensor measurements such
as steering angles, speeds, and GPS coordinates [21]. The
driving model achieves a performance similar to other recent
approaches based on video observations [46], [28], [21].
Discrepancies between the predictions by the trained driving
model and the ground-truth maneuvers by human drivers are
then used to assess the likelihood of failure, i.e. the Scene
drivability score.

Due to the success of deep neural networks in supervised
learning [32] and especially in autonomous driving, we
develop a Recurrent Convolutional Network (RCNet) with
four CNNs [42] as visual encoders and three LSTMs [22]
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Fig. 1. The architecture of our driving model which provides future maneuvers (i.e. speed and steering angle) and the drivability score of the scene. The
drivability scores are quantized into two levels: Safe and Hazardous. In this case, the coming scene is Safe for the driving model, so the system does not
need to alert the human driver. FCN stands for fully connected network.

to integrate the visual contents, temporal relationships, and
the previous driving states (steering angle and speed) into
one single prediction model. The model can be trained very
efficiently in an end-to-end manner, and its architecture is
shown in Figure 1. This architecture is used for both tasks:
car driving and its failure prediction. All layers, except
for the task-specific fully-connected layers, are shared for
computational efficiency.

Readers will notice that our model is quite simple. The
emphasis of this paper is not on achieving the state-of-the-
art driving performance. Rather, it is to provide a sensible
driving model and infer failure prediction for it, as a con-
tribution to let autonomous driving survive the risky market
situation ahead. The choice of the model is also due to our
access to sensors and data.

In this work, we quantize the scene drivability scores for
particular driving scenes to two levels: Safe and Hazardous.
They are intended to translate to the two driving modes ‘Full
Automation’ and ‘Driver assisted’. Our experiments show
that scene drivability can indeed be learned and predicted.
Of course, the drivability will increase if the driving model
is improved, especially when information from other sensors
is added, such as from GPS, laser scanners, and radar. Our
method is flexible enough to include those. We also do not
claim to predict the drivability of scenes for any driving
model out there, but rather propose a framework that can
be trained to extract the drivability for other models as well.

II. RELATED WORK

Our work is relevant to both autonomous and assisted
driving, and to vision system failure mode prediction.

A. Driving Models for Automated Cars

Significant progress has been made in autonomous driving,
especially due to the deployment of deep neural networks.
Driving models can be clustered into two groups based on
their working paradigms [7]: mediated perception approaches
and end-to-end mapping approaches.

Mediated perception approaches require recognition of
all driving-relevant objects, such as lanes, traffic signs,
traffic lights, cars, pedestrians, etc. [19], [13], [9]. Some
of these recognition tasks could be tackled separately, and
there are excellent works [18] integrating the results. This
group of methods represents the current state-of-the-art for
autonomous driving, and most of the results are reported with
diverse sensors used, such as laser scanners, GPS, radar and
high-definition maps of the environment.

End-to-end mapping methods aim to construct a direct
mapping from the sensory input to the maneuvers. The idea
can be traced back to the 1980s, when a neural network
was used to learn a direct mapping from images to steering
angles [38]. Another successful example of learning a direct
mapping is [33], which uses ConvNets to learn a human
driver’s steering angles. The popularity of this idea is fueled
by the success of end-to-end trained deep neural networks
and the availability of large driving datasets [3], [35], [21].
Recent advances have been shown in [21] by incorporating
surround-view videos and route planning. The future end-
to-end approaches may also need a mixture of sensors and
modules for even better performance. Possible modules con-
sist of traffic agent detection and tracking [12], [11], [9], [40],
[10], future prediction of road agents’ location and behavior
[34], [24], [25], and driveability map generation [43].



B. Assistive Features for Vehicles

Over the last decades, more and more assistive technolo-
gies have been deployed, that help to increase driving safety.
Technologies such as lane keeping, blind spot checking,
forward collision avoidance, adaptive cruise control etc.,
alert drivers about potential dangers [6], [41], [26]. In the
same vein, drivers are monitored to avoid distraction and
drowsiness [39], [45], and maneuvers are anticipated [23] to
generate alerts in a timely manner. Readers are referred to
[36] for an excellent overview of such work. Our work com-
plements existing ADAS and driver monitoring techniques
by equipping fully automated cars with an assistive feature
to anticipate automation failures and yields a timely alert for
the human driver to take over.

C. Failure Prediction

Performance-blind algorithms can be disastrous. As auto-
mated vision increasingly penetrates industrial applications,
this issue is gaining attention [14], [47]. Notable examples
in computer vision for learning model uncertainty or failure
include: semantic image segmentation [27], optical flow [30],
[2], image completion [31], stereo [37], and image creation
[15]. Our work adds autonomous driving to the list. In
addition to creating warnings, performance-aware algorithms
bring other benefits as well. For instance, they can speed up
algorithms downstream, by adaptively allocating computing
resources based on scene difficulty. For autonomous driving,
this can also mean using sensors adaptively or selectively.
Another paper relevant to ours is [44], which anticipates
traffic accidents by learning from a large-scale incidents
database.

III. METHOD

In this section, we first present our end-to-end direct
mapping method for autonomous driving, based on the
recent success of recurrent neural networks. We then present
how we use the same architecture to learn to predict the
(un)certainty of the system, i.e. our drivability score.

A. Driving Model

In contrast to predicting the car’s ego-motion like previous
work [3], [46], our model predicts the steering wheel (angle)
and the speed of the cars directly. The goal of our driving
model is to map directly from a frontal-view video to the
steering wheel angle and speed of the car. Let us denote the
video by V , and the vehicle’s steering wheel angle and speed
by A and S respectively. We assume that the driving model
works with discrete time and makes driving decisions every
1/f seconds. The inputs V , A and S are synchronized and
sampled at a sampling rate f . In this work, f = 4. Unless
stated otherwise, our inputs and outputs all are represented
in this discretized form.

Let us denote the current video frame by Vt, the current
vehicle’s speed by St, and the current steering angle by At.
The kth previous values can then be denoted by V(t−k), St−k
and At−k, resp., and all k previous values can be denoted
by V[t−k,t) ≡ 〈Vt−k, ..., Vt−1〉, A[t−k,t) ≡ 〈At−k, ..., At−1〉

and S[t−k,t) ≡ 〈St−k, ..., St−1〉, resp.. Our goal is to train a
deep network that predicts driving actions from all inputs:

F : (V[t−k,t],A[t−k,t−1),S[t−k,t−1))→ At × St (1)

where At represents the steering angle space and St the
speed space for the current time. A and S can be defined
at several levels of granularity. We consider the continuous
values directly recorded from the car’s CAN bus, where S =
{S|0 ≤ S ≤ 180 for speed and A = {A|− 720 ≤ A ≤ 720}
for steering angle. Here, kilometer per hour (km/h) is the
unit of S, and degree (◦) the unit of A.

Given N training samples collected during real drives,
learning to predict the driving actions for the current situation
is based on minimizing the following cost:

L(θ) =

N∑
n=1

(
l(Ant , Fa(V

n
[t−k,t],A

n
[t−k,t),S

n
[t−k,t)))

+λl(Snt , Fs(V
n
[t−k,t],A

n
[t−k,t),S

n
[t−k,t)))

)
,

(2)

where λ is a parameter balancing the two losses, one for
steering angle and the other for speed. We use λ = 1 in
this work due to prior CAN signal normalization. F is the
learned function for the driving model. For the continuous
regression task, l(.) is the L2 loss function. Our model learns
from multiple previous frames in order to better understand
traffic dynamics. We assume that the current video frame Vt
is already available for making the decision.

B. Failure Prediction

An automated car can fail due to many causes. Here
we focus on scene drivability – a driving situation is too
challenging for the driving model to make reliable decisions.
We define failure scores based on the discrepancies between
the predicted maneuvers (steering angles and speed) and
the human driver’s maneuvers. In particular, we denote the
predicted speed and steering angle by S̄t and Āt. Then, the
failure for speed and steering angle estimation are signaled
by:

gat = sgn(‖At − Āt‖ − Ta), (3)

and
gst = sgn(‖St − S̄t‖ − Ts), (4)

where

sgn(x) =

{
1 if x ≥ 0,

0 if x < 0.
, (5)

and Ta and Ts are thresholds defining correct and incorrect
predictions for steering angle and speed. Then, the failure
occurrence for the current time is signaled by:

gt = gat ∨ gst , (6)

where ∨ is an OR operator: x ∨ y = 0 if x = y = 0 and
x ∨ y = 1 otherwise.

The definition by Equation 6 quantizes scene drivability
into two levels: Safe and Hazardous. Safe scenes are defined
as those with an absolute error of less than Ta degrees for
steering angle and with an absolute error of less than Ts
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Fig. 2. An illustrative flowchart of the training procedure and solution space of our driving model and the failure prediction model.

km/h for speed. Hazardous are those with a deviation in
either category larger than the defined threshold. A safe
scene allows for a driving mode of High Automation and
a hazardous scene allows for a driving mode of Partial/No
Automation. These thresholds can be set and tuned according
to specific driving models and legal regulations.

Failure prediction is more useful, the earlier it can be
done, i.e. the more time can be given to the human driver to
take over. Therefore, the failure that our model is trained to
predict is from current time t to future time t+m:

g−−−−−→
[t,t+m]

= gt ∨ gt+1 ∨ gt+2 ∨ ... ∨ gt+m. (7)

By learning to predict g−−−−−→
[t,t+m]

, our model will alert the
human driver if either the speed prediction and/or the steering
angle prediction is going to fail at any of the time points in
the time period [t, t+m]. The learning goal is then changed
to training a deep network model to make a prediction for
driving actions for current time t and to make a prediction
for the drivability score for the time period from t to a future
time point t+m. In particular, the learning target is changed
from Equation 1 to:

F : (V[t−k,t],A[t−k,t−1),S[t−k,t−1))→ At × St × G−−−−−→[t,t+m]
(8)

where G−−−−−→
[t,t+m]

= {0, 1} denotes the space of our drivability
score defined by Equation 7. In this work, m is set to 8 to
represent a period of 2 seconds. A different length can be
used if the application needs. Please see Figure 2 for the
illustrative flowchart of the training procedure and solution
space of our driving model and the failure prediction model.

C. Implementations

We adopt a deep neural network for our learning task.
The model learns to predict three targets: the vehicle’s
steering angle, its speed, and the failure score defined by
Equation 7. In particular, our model consists of four copies of
convolutional neural networks (CNNs) with shared weights
as visual encoders, combined with three Long Short Term
Memory networks (LSTMs) to integrate the visual informa-
tion, historical driving speed, and historical steering angles.
The outputs of the three LSTMs are integrated by three fully
connected networks (FCN) to make the final predictions for
the vehicle’s steering angle, its speed, and the failure status of

Equation 7. As shown in Figure 1, all layers of the network
are shared by the three tasks except for the top, task-specific
layers.

The image input sequence consists of four video frames,
taken from a front-facing camera mounted on the roof of
the vehicle. The sequence includes the current video frame
along with three previous frames; this allows for images
in the sequence to vary significantly and thus improves the
predictive performance of the model. Input images are center
cropped to 270 × 270 pixels from an initial resolution of
480×270, resized to 240×240 and finally randomly cropped
to 224× 224 during training and center cropped to the same
dimensions during evaluation. Each image in the sequence is
fed into a ResNet34 [20] with shared convolutional layers.
The convolutional layers are pre-trained on the classification
task of ImageNet [16]. All layers of the ResNet are trainable
with the final layers output being fed into a 2-layer FCN:
fc(1024) - Relu - fc(1024) - Relu. The parameters of the
FCN are randomly initialized. This results in a 4 × 1024
feature vector which describes the high level historical and
current visual input into the system.

We incorporate three parallel LSTMs [22] with 128, 16
and 16 hidden states and 4, 2 and 2 layers, resp. The high
level visual features of the ResNets, the historical speed
information, and the steering angle information are fed into
the three LSTMs, resp. Steering angle and speed information
are sampled at the same sampling rate of 1/f = 4, the same
as for the video. A temporal sequence of length k = 4 is
used for all three inputs.

At this point, we have aggregated a total of three feature
vectors, that describe visual information, historical steering
angle and historical speed. These vectors are then con-
catenated. Our final prediction task varies depending on
whether we train a driving agent or a failure prediction agent.
Consequently the very top layers of our model architecture
will vary depending on the task. In the driving agent case, the
network is continuously trained to output the current steering
angle and vehicle speed using two regression networks. The
two regression networks consist of a 2-layer fully connected
network of fc(512) - Relu - fc(1) each, and are tasked to
output either steering angle or vehicle speed. For the failure
prediction agent, we train our network on a two class Safe or
Hazardous classification task as defined by Equation 7. We



Fig. 3. Visualization of driving model performance for steering wheel angle and vehicle speed prediction. The overlap areas signal the consistency between
the estimations by our driving model (Network) and the measurements from human drivers (Human).

TABLE I
CONTROL PERFORMANCE. COMPARISON BETWEEN MEAN ABSOLUTE

ERROR (MAE) IN M/S AND DEGREE.

Model MAE speed MAE angle
CNN+LSTM [28] N.A. 4.15
Our Model 0.15 3.66

predict to an interval of m = 8 samples (i.e. 2 seconds) into
the future from the current time. This gives us the opportunity
to notify the driver of a potential hazard ahead of time,
allowing for an adequate response. Our classification task
network architecture consists of a 2-layer fully connected
network fc(512) - Relu - fc(2). This network is optimized
via the cross entropy loss.

We optimize our network with the Adam Optimizer [29]
and a learning rate of 0.00001. Our models train for 10
epochs with a mini-batch size of 32 which results in around
15 hours of training time each with a GeForce GTX TITAN
X Graphics Card.

IV. EXPERIMENTS

A. Datasets and Training

We train and evaluate our method on our autonomous
vehicle dataset which consists of around 150, 000 unique
sequences captured by a car mounted camera in Switzerland.
Alongside the video data, time-stamped sensor measurements
are provided by the dataset as well, such as the vehicle’s
speed, steering wheel angle and GPS locations. Thus, this
data is ideal for self-driving studies. The GPS coordinates
allow for compelling visualizations of where the model fails.
In order to properly train and evaluate our model, we split
our dataset to three datasets of equal size: Dataset 1, Dataset
2, and Dataset 3. We train our driving model on Dataset 1,
train the failure prediction model on Dataset 2, and evaluate
both models on Dataset 3. The two models need to be trained
on separate datasets, because the predictions of the driving
model on its own training set are too optimistic to reflect
the real failures. Please refer to Figure 2 for the training
procedure of our models.

B. Driving Accuracy

We first compare the overall performance of our driving
model to the state-of-the-art models based on video observa-
tions [46], [28], and find that our model yields results similar
to these models. This is not only illustrated in Figure 3,
where our driving model is very close to predicting the
human ground truth driving performance, but also in Table
I that highlights the control performance in terms of mean
absolute error.

In addition to reporting the overall quantitative numbers,
we visualize where the most common failures of our driving
model occur. This is achieved by defining a failure of the
driving model when either the predicted vehicle speed or
steering wheel angle deviates more than a defined threshold,
and plotting the performance as a function of color on
the map. We show, in Figure 4, three different threshold
settings: [Ts, Ta] ← [2 km/h, 5◦], [Ts, Ta)] ← [3 km/h, 7◦],
and [Ts, Ta] ← [5 km/h, 10◦], ranging from a maximum
deviation of 5 degrees and 2 km/h for our tightest definition
of failure up to 10 degrees and 5 km/h for our loosest
definition of failure.

In particular, the model is more likely to fail at intersec-
tions, partially due to the unknown destination of the vehicle
and thus the ambiguity of which route the driver will take.
We acknowledge that this is largely due to the lack of route
planning in our driving model. However, route planning has
been used to improve driving models in our recent work [21]
and a fusion of route planned aware driving models with
failure prediction is considered as our next future work. In
addition, we mainly observed failures during sharp corners,
in congested traffic, and in urban environments when many
pedestrians are involved.

C. Failure Prediction

In this section, we evaluate our failure prediction model.
Accurate and timely requests for manual take-over do result
in a safety gain. We now show that our model learns to
accurately alert the driver of impeding driving agent failure,
reducing the risk of collisions. This is also illustrated by the
gain in safety for different budgets of manual driving time
ranging from 1− 100% of total driving time.
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Fig. 4. Visualization of our driving model performance in the left column and our failure prediction model improvement, when allowing 25% manual
driving time, in the right column. Failure is quantized to either: [Ta, Ts] = {[5.0◦, 2.0 km/h], [7.0◦, 3.0 km/h], [10.0◦, 5.0 km/h]} for each row respectively.
Scenes are classified as being either Safe ( ) or Hazardous ( ). As an example, Safe is defined as scenes for which the deviation of the predicted
steering angle and vehicle speed to the human ground-truth is smaller than the respective threshold; Hazardous are those with a deviation in either category
larger than the respective threshold. The right column shows the reduction of Hazardous scenes, for each threshold, due to 25% human driving. Thus
reclassifying the top 25% most hazardous scenes, identified by the network, as Safe.

(a) [Tθ, Tv] = [5.0◦, 2.0 km/h] (b) [Tθ, Tv] = [7.0◦, 3.0 km/h] (c) [Tθ, Tv] = [10.0◦, 5.0 km/h]

Fig. 5. The reduction of failures (%) as a function of the percentage of human driving time (%). In this hybrid, semi-automatic driving system, human
drivers are alerted of potential failures and are asked to take over. Our failure prediction model is compared to a basic model which does not have a
learning policy and alerts the driver at regular intervals, and to an uncertainty based approach [17].

For this work, we train our failure prediction model on
three different thresholds for speed and angle. These range
from a very tight definition of failure using a threshold of 5
degrees and 2 km/h, to 7 degrees and 3 km/h, and finally to a
loose definition of 10 degrees and 5km/h. We use the same

underlying driving agent for each of these three instances,
and thus obtain different metrics for our failure prediction
dataset. It is worth noticing that three failure prediction
models are trained, one for each threshold setting.

We evaluate the method in the setting of image retrieval.
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The scenes for which the driving model is mostly likely to
fail are retrieved and handed over to the human driver to deal
with. We then compute the reduction of failure as a function
of manual driving time. We compare our method to a baseline
method which requires the same amount of manual driving
time but does not have a learned policy about when to ask
for manual intervention; it rather notifies the driver at regular
intervals to take control. We also compare our method to
an uncertainty estimation method for neural networks [17],
for which the human driver is asked to take over when
the driving model is mostly uncertain about its output. The
uncertainty is computed by the dropout technique [17].

The results in Figure 5 show that our method can effec-
tively reduce the amount of driving-model induced failure
by switching to manual driving timely and accurately. Our
model performs significantly better than the baseline model
and the uncertainty model [17], because our method is
specifically trained for the purpose. This trend can also be
observed in Table II, where we depict the percentage gained
safety over the baseline model for all three threshold models.
The experimental results show that failures of a driving
model can be learned and predicted quite accurately, and
the failure prediction can be used to improve driving safety
in a human-vehicle collaborative driving system. Predicting
failure is actually easier than predicting the correct driving
decisions, and thus all the more worthwhile including.

While our method performs better in all three cases, we do
notice a more pronounced improvement when our definition
of failure is more lax. One possible reason is that for the
case with a very strict definition of the failure, the noise in
the recordings of low-level maneuvers is too influential.

Finally, we show in Figure 6 several driving scenes with
the predicted maneuvers (speed and steering angle) and the
drivability scores. While the method is able to alert drivers

TABLE II
SAFETY GAIN OF OUR FAILURE PREDICTION OVER A BASELINE METHOD

IN A HYBRID, HUMAN-VEHICLE COLLABORATIVE DRIVING SYSTEM.

[Ts, Ta]
Manual Driving [5.0◦, 2 km/h] [7.0◦, 3 km/h] [10.0◦, 5 km/h]

10.0% +6.9% +23.1% +52.5%
15.0% +11.0% +35.5% +81.2%
20.0% +15.1% +51.2% +117.4%
25.0% +19.0% +64.7% +153.7%
30.0% +23.8% +78.7% +195.0%
35.0% +29.6% +96.4% +249.4%
40.0% +34.9% +116.2% +349.9%

that a driving scene is hazardous for the driving model, it
is often hard to figure out the underlying reason. A brief
explanation such as ‘too many road constructions’ or ‘road
getting too narrow’ will significantly reduce the confusion
caused to the driver. An investigation into such underlying
reasons is future work.

V. CONCLUSION

In this work, we have presented the concept of Scene
Drivability for automated cars. It indicates how feasible a
particular driving scene is for a particular automated driving
method. In order to quantify it, we have developed a novel
learning method based on recurrent neural networks. We
treated the discrepancies between the predictions of the
automated driving model and the human drivers’ maneuvers
as the (un)drivability scores of the scenes. Experimental
results show that such drivability scores can be learned
and predicted, and the prediction can be used to improve
the safety of automated cars. The learning framework is
flexible and can be applied to other driving models with more
sensors. To the best of our knowledge, this is the first attempt
to predict the failures of automated driving models. Our fu-
ture work includes 1) developing more sophisticated driving



models (e.g. including recognition of traffic relevant objects,
route planning, and 360 degree sensing); 2) extending our
failure prediction model to the new driving models; and 3)
adding diagnostics by making explicit the inferring reasons
for the failures.
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