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Analysis of Real World Sensor Behavior for Rising Fidelity of
Physically Based Lidar Sensor Models
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Abstract— Safety validation tests of automated driving (AD)
use simulated environments and perception sensor models. To
achieve the level of fidelity needed for safety approval, such
sensor simulations can be physically based. For formulating
requirements for sensor models to be used in such test
frameworks, the extent to which they must include physical
effects should be determined. One approach is to clarify their
relevance for following processing steps like object detection
or mapping. But at first, an analysis is needed to determine,
which effects are relevant and if they can be implemented at
all. In this work, we focus on one lidar sensor and analyze its
observable real world sensor behavior to derive the possible
effects, physically based lidar sensor models can include.
Consequently, we describe environmental parameters that could
be considered to influence physically based lidar sensor models.
By investigating the specifications given by the manufacturer
with own measurements, we show that some of them should be
implemented in a dynamic manner. In conclusion, we enable
to formulate detailed requirements for sensor models, as their
actual possible fidelity is presented.

I. INTRODUCTION

Since it would take billions of kilometers in road tests to
prove safety of automated driving [1], virtual test methods
are considered to be the more efficient solution in automotive
industry [2]. The German project PEGASUS has the goal
to develop and implement such efficient test methods for
the automotive use case called highway chauffeur [3]. One
part of virtual test environment consists of perception sensor
models and their interaction with the simulated environment
and the following processing steps and functions. Testing of
automated driving systems [4] requires high accuracy and
therefore virtual testing of automated driving functions have
to use accurate models of the simulated environment as well
as of the vehicle’s environment perception sensors. However,
it is still unclear how requirements for sensor models usable
in such validation tests can be defined. Even if there are
several approaches how to model automotive lidar and some
work has been published about validation of such, there is
no methodology or guideline what extend of physical effects
or stochastic behavior one should consider when simulating
lidar. When the intended function of a model is clarified,
we see the main contribution of our work in enabling
formulation of requirements. This is provided by giving
insight into the physical processes during measurement and
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by stating possible implementations. At the end, their impact,
complexity and effort of inclusion can be estimated.

If it comes to safety test by simulation, critical scenarios
are of interest, and by critical not only critical movements
of involved dynamic objects but especially situations critical
from sensor perspective should be considered. To be able to
simulate degraded sensors, physically based sensor models
offer the flexibility to inject failures based on their respective
causation. Ideal, probabilistic, or phenomenological models
as in [5] or [6] have a disadvantage in generalization ability
for unseen situations. All of them are built using a-priori-
knowledge and possibilities based on collected data. Re-
cently, also machine learning approaches have been reported,
[7] however, their performance on unseen scenarios remains
unclear. No expert or algorithm that puts his or data-driven
knowledge into such models can be aware of every combina-
tion of relevant effects affecting the sensors in any possible
situation. Therefore, those models are not fully capable to
be used in safety relevant tests. Nevertheless, solving this
with fully physical simulation in every detail (like FEM,
etc.) is not feasible because of e.g. computation time. So we
analyze the real sensor systematically and propose how to
implement the effects and aspects determined as necessary
in a computational efficient way. Consequently, the model
still stays physically based keeping the simulation efficient.

Another important aspect to consider is the output inter-
face of the developed sensor model. The already mentioned
ideal, probabilistic and phenomenological models are mostly
staying high-level and work on object lists, changing object
positions, existences or types, especially when real time
capability is required. There is already an ongoing standard-
ization process to cover that special data type and establish
a standard for sensor models [8]. Lidar sensors are besides
object classification also commonly used for mapping and
localization, e.g. [9] as well as in sensor fusion setups [10].
Therefore, we consider the point cloud as universal repre-
sentation of lidar data as it allows unrestricted processing
for different applications. Consequently, physically based
sensor models, will need to simulate sensor data on this low
level interface as it delivers unprocessed data. By simulating
point clouds, object lists can still be derived through object
detection and classification algorithms. For implementation
we propose to use state of the art ray tracing, e.g. like
in [11], to apply all the aspects we will describe in the
following chapters. The desired solution after all would be
a model leveling out the existing dilemma between efficient
simulation and high fidelity [12].
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Fig. 1: Sum of Luminous Power on Illuminated Objects [15]

The remainder of this paper is organized as follows: We
introduce definitions at first and review basic principles of
lidar sensors. Then we discuss environmental parameters to
consider and analyze one real lidar sensor. In the course
of this, besides the measurement based investigation of
the given specification by the manufacturer, we determine
existing noise and calculate the temporal effects to explain
its impact on simulations that put the complete environment
on hold for a whole scan period.

II. DEFINITIONS

Verification and validation of sensor models can only be
performed if there are requirements that have to be fulfilled.
Requirements for sensor models are formulated to ensure that
the model fulfills its intended function [13]. Verification, as
a binary decision, means to show the successful implemen-
tation of certain aspects or effects that have to be included
according to the requirements. For validation of physically
based sensor models, there have to exist metrics to compare
for example how close synthetic output data is compared to
real data. A certain degree of fidelity can be postulated in
requirements best, when the full range of includable aspects
and effects is given. Then it is measured during validation if
the sensor model reaches the required fidelity.

To enable formulating requirements for sensor models,
in this work, the necessary fidelity of virtual lidar sensors
is derived from an analysis of real world sensor behavior.
We do not claim to deliver a complete list of all effects,
but every considered section may increase the fidelity of an
implemented model. A possible use of this collection is to
derive requirements for a sensor model and its step-by-step
validation, showing the implementation of all the different
aspects as in [14]. Nevertheless, it is already possible to
evaluate existing approaches claiming to be physically.

III. LIDAR SENSOR BASICS

Before describing all aspects that could and most likely
should be covered by physically based sensor models, this
section contains all necessary lidar basics. The abbreviation
lidar is derived from light detection and ranging what
is referred to the measurement principle explained in the
following lines.

Lidar sensors send out pulsed light beams with a wave-
length of 850 nm to 1 µm [15]. Automotive lidars have a
limited transmission power because of required eye safety.

The transmitted infrared light gets reflected on surfaces
and the portion that reverts to the sensor’s photo diode is
measured. Using the time of flight principle, the distance is
calculated with r = ct

2 , where c is the speed of light and t
is the measured time of flight [16]. More precisely, t refers
to the time interval between emitting of the light pulse and
receiving a signal with a signal strength upon a predefined
threshold.

Parts of the emitted luminous power P0 get reflected on
objects Pr. Besides the portion that directly finds its way
back to the sensor, most of the reflected part of the beam
is dissipated into the environment. Reflection is called ideal
diffuse or Lambertian, if the light is reflected homogeneously
in every direction. In contrast, specular reflection describes
inhomogeneous reflection under specific angles. Apart from
those reflections, it is possible that the light is partly absorbed
Pa and converted into heat or transmitted Pt by the illumi-
nated material. The sum of P0 = Pr+Pa+Pt [15] combines
all the described beam reactions and is illustrated in Figure 1.
The measurable sensed intensity after a reflection on a single
object P1 can be calculated with the Laser-Radar-Equation
[17]

P1 = KrT
2 Asensor

Abeam,r

Arefl

Abeam,0
P0, (1)

where Kr, T and Asensor denotes the reflectivity of the
object, the transmittance of the atmosphere (which is passed
twice), and the receiving lens surface, respectively. The
reflecting surface

Arefl = MIN(Abeam,0, Aobject) (2)

depends on the object size Aobject and the beam size

Abeam,0 = αvαhr
2π, (3)

which is calculated with the distance r and the vertical
and horizontal beam divergence αi using the small-angle
approximation. The beam size of the reflected beam

Abeam,1 = f(θtotal,∆θdiv)r
2 (4)

depends on the effective solid angle towards the lens in
surface normal direction from the object and the distance.

IV. ENVIRONMENTAL PARAMETERS TO CONSIDER

A sensor model for testing of AD is depending on the
level of detail of the whole simulated environment. The
equations in the previous chapter give a list of environmental
parameters that could be considered for physically based
lidar sensor models and will be discussed below.

The first parameter is the transmittance T in (1) which im-
plies atmospheric attenuation. It is affected by temperature,
pressure, humidity [18], and different types of precipitation
as rain [19], [20], wet and dry snow [21], as well as fog
or haze [22]. Even exhaust gases can have a strong impact
on laser scanners at low temperatures causing condensed
water drops [23]. Pollution of the sensor or parts of it is
also included in T .
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Fig. 2: Scan Layers and Vertical Beam Divergence of Ibeo
LUX 2010 [25]

The second parameter to be modeled is the reflectivity of
materials considered in the simulated environment, which is
represented by parameter Kr in (1). Materials and their prop-
erties are included by look-up tables in various simulation
tools. Nevertheless, it can be done in different levels of detail.
We suggest using physically based rendering including a
complete data base of reflectivities and derived from compu-
tation techniques for the visual spectrum of light as described
in [24]. As automotive lidars use a wavelength close to the
visible spectrum, existing data bases for visible light can
be used in a first approximation. Surface normals of the
whole environment as part of (4) are used for computation
of backscattered rays. Therefore, it is in theory possible to
reproduce total reflection and correct multi-path propagation.

As a third environmental parameter, we consider the
surrounding amount of light. It is a direct influence to the
lidar measurement by inducing a specific amount of intensity
into the sensor collected as bias. In consequence, the signal
to noise ratio (SNR) is reduced leading to a change of the
usually dynamic detection threshold and possibly to a worse
performance of the sensor. The solar altitude is of special
interest here, as direct sunlight e.g. at sunrise or sunset has a
strong impact on lidar sensors that even blinding could occur
[15]. The same effect is possible when direct illumination by
other lidar sensors occurs.

V. ANALYSIS OF SENSOR BEHAVIOR IN REAL-WORLD

The aspects of physically based lidar sensor models de-
scribed in the following chapter are derived from an analysis
of the widely used Ibeo LUX 2010 [25]. However, the
presented method of analysis remains applicable for any
automotive lidar sensor.

A. Ibeo LUX 2010 Specification

The Ibeo LUX 2010 [25] uses the 3D scanning principle
having four vertical scan layers with 0.8° difference in
elevation leading to an elevation range of 3.2° as illustrated
in Figure 2. It has an azimuth range from +50° to −60°
with selectable angular resolution and scan frequency. At a
scan frequency of 12.5 Hz the angular resolution in azimuth
can differ by sector. In the central range (1) in Figure 3 the
resolution is 0.125°, in the medium range (2) it is 0.25°, and
in the lateral range (3) 0.5°. The spatial characteristics of
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Fig. 3: Angular Resolution of Ibeo LUX 2010 [25]

the resolution is to be modeled in a physically based model.
To facilitate the interpretations, we chose to use a constant
angular resolution of 0.25° at a scan frequency of 12.5 Hz
for all later described experiments.

The specification lists an object detection range from 0.3 m
to 200 m at an elevation angle of 0°. Further the repeat
accuracy in distance measurement is 0.1 m (1 σ) and the
pulse duration is 4.5 ns. All that describes the field of view
of a sensor and is the only adaption an ideal sensor model
has to enable. For a sensor model utilizing ray tracing, this
corresponds to setting the angle and amount of rays that are
transmitted in the simulated environment. The frequency of
the scanner gives the frequency that the sensor model has to
achieve if real time capability is a requirement, what is not
needed in every test architecture, but becomes important if
it includes real hardware as in HiL or ViL tests.

B. Sensor Position and Orientation

The output of one single sensor is a so called raw point
cloud in relative spheric coordinates including per point its
distance, angle, layer, echo no., and echo-pulse width [25].
The frame origin is the sensor itself, what dictates the origin
of an ideal sensor model or of rays send out in the virtual
environment when ray tracing is applied. The orientation of
the sensor defines the direction of the rays that are sent out.
It is possible to fuse several sensors e.g. using the Ibeo ECU
[25]. As a result, the fused point cloud is given in relative
Cartesian coordinates with its origin at the center of the rear
axle of the vehicle. To be able to compare such a point cloud
with a synthetic one fused of different simulated sensors, they
shall have the same origin as well.

C. Different Orientation of Scan Layers

Figure 4, showing measured data from Ibeo [25], vi-
sualizes measured raw point clouds. 10 % remission here
means 10 % of reflection in contrast to perfect reflector,
what implies that the shown field of view displays no hard
detection border, but gives a good overview. It illustrates
the different angular orientation of the scan layers. Two
(no. 1 and 3) are orientated more to the left and the others
are looking more to the right. The whole azimuth angular
coverage of the sensor is 110°.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.



Accepted article of 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, Suzhou, China, June 26-30, 2018. DOI: 10.1109/IVS.2018.8500511.

-50°

-40°

-30°
-20°

-10°0°10°
20°

30°

0 m 10 m 20 m 30 m 40 m 50 m 60 m

Layer 1

Layer 2

Layer 3

Layer 4

Fig. 4: Ibeo LUX 2010 Angular Dependent Measurement
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Fig. 5: Zipper-like Layer Orientation and Beam Size at 20 m
with an Angular Resolution of 0.25° of Ibeo LUX 2010 [25]

Besides the explained shift for higher angular range, beams
are also shifted to reach a higher angular resolution forming
a zipper-like shape as shown in Figure 5. Both shifts could
be included when programming the ray tracing algorithm in
simulated environments by transmitting accordingly.

D. Accuracy, Range and Noise

Ibeo specifies a repeat accuracy (1σ) of 0.1 m in range
measurements from 0.3 m to 200 m [25]. Figure 6 shows the
repeatedly measured differences Si = rnom,i − rmeas,i for
scan layer 1 and nominal distances rnom from 2 to 200 m.
Measurements were performed under open sky and different
weather conditions from windy and cloudy to sunny, which
made no difference. A Trimble 3600 [26] tachymeter served
as reference measurement system where an ordinary gray
carton was used as reference target. Displaying mean values
as well as median and box plots for all distances, Figure 6
shows that with increasing distance, the error rises, showing
a linear trend, but the precision holds for all distances. Both
should be included in physically based lidar models.

The Ibeo specification gives a maximal range of 200 m
[25]. As expected, this is not a static value as it depends on
the parameters already described in section III. We show its
dynamic with a series of measurements up to 350 m with
gray carton in size and reflectivity of a dirty back of a car
and with a stop sign. The stop sign can partly be measured
up to 325 m, appearing in every scan up to 300 m. Gray
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Fig. 6: Accuracy of Layer 1 of Ibeo LUX 2010
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Fig. 7: Cumulative Distribution Function from 2 to 3.5 m

carton is recognized in 95 % of all scans at 200 m going
down to 8 % at 271 m. These findings should be included in
physically based models, complementing the equations for
backscattered power in section III as explained in section IV.

Measurement data is naturally affected by different noise
sources. Besides randomly distributed parts, in case of the
investigated lidar sensor we find deterministic noise caused
by its counter resolution. If the distance is continuously and
slowly changed and measured as it has been done for Figure
7, the counter resolution is implied in the step height of the
graphs. Figure 8 displays the ratio of all occurring step sizes
of a performed measurement series targeting gray carton
over the distance r from 6.056 m to 6.156 m in 1 mm wide
steps, and from 6.156 m to 6.256 m in 5 mm wide steps.
It states, that definitely only the four indicated step sizes
occur, as their ratios always sum to 1. Resulting in very
detailed and expensive investigations, such investigations can
most likely not be performed for the whole measurement
range, but it should be repeated for more intervals and then
the found discrete distribution should be implemented in a
sensor model. It should be stated, that no other than the
described deterministic noise has been found in our range
measurements. We conclude, that this noise can be modeled
as quantization noise rather than Gaussian white.

E. Beam Divergence

It has been mentioned that the angular difference in
elevation is 0.8°. But as stated in [25], the vertical beam
divergence from (3) is exactly the same as the angular
resolution of 0.8°. This determines the position of the beam

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.



Accepted article of 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, Suzhou, China, June 26-30, 2018. DOI: 10.1109/IVS.2018.8500511.

6.1 6.15 6.2 6.25 6.3

0

0.5

1

Distance r in m

R
at

io
of

St
ep

Si
ze

0.01 m
0.02 m
0.03 m
0.04 m

Fig. 8: Counter Resolution of Layer 1 of Ibeo LUX 2010

to the center of the angular ranges shown in Figure 2. The
horizontal beam divergence, which is also part of (3), as
given in [27], is 0.8°. Both divergences are visualized in
Figure 5, forming an idealized rectangle shaped beam, 0.28 m
high and 0.028 m wide, at a distance of 20 m.

Beam divergence is critical if the object size is smaller
than the beam size like for long distances or when the
reflectivity over the surface in (2) shows a step. This happens
for example at the change from car paint to the headlights or
license plates. For the implementation of beam divergence,
one infinitesimal thin ray is not enough. We suggest to shoot
more than one ray to approximate the beam divergence and
find the closest or most intense hit in that beam volume in
a still computational efficient way.

F. Multi-Echo Perception, Echo-Pulse Width and Signal In-
tensity

In contrast to sensors like Velodyne’s HDL-64E [28],
which measure the intensity P1 in (1) directly, Ibeo sensors
measure the echo-pulse width of the received signal. The
Ibeo LUX detects up to three echoes from one transmitted
pulse, which is called multi-echo perception. Multiple echoes
can occur if e.g. a laser beam bounces at adherent snow, then
at a window and then at the inside of a car. Condition for a
multi-echo reception is, that the signal strength falls under
the detection threshold after the first echo and rises again.

To be able to compute the intensity out of the echo-
pulse width, its height needs to be sampled with sufficient
frequency as well. As this is not the case for the Ibeo LUX
2010, the given echo-pulse width cannot be used as intensity
indicator. To prove that statement, two perceived objects can
have the same echo-pulse width, but if their reflectivity is
not the same, they are not causing the same intensity to be
measured. Recent work has shown that the implementation of
the echo-pulse width will not improve the model quality: As
its does not appear to be a highly descriptive feature, typical
object classification algorithms do not necessarily benefit
from echo-pulse width information [29]. We therefore cannot
emphasize the need to model the echo-pulse width. Because
of the information it adds to a specific hit point, intensity
should be included in a physically based sensor model, if
the real sensor has it as an output. Again, the equations and
parameters in section III and explained in section IV can be
used for physically based rendering.

G. Temporal Order of Transmitted Beams

The last aspect to be considered when simulating a (raw)
point cloud is the temporal order of the transmitted beams.
As different beams are sent out at different time, the ego ve-
hicle and dynamic objects are moving in the meantime. This
can lead to well known effects like rolling shutter and motion
blur, which all have in common to suggest wrong shape and
size of recorded objects. In contrast, actual simulations stop
the environment for the whole scan duration eliminating such
effects. Rolling shutter for example is caused when recording
different lines of a picture, or scan layers in lidar context,
leading to different positions of the same object in different
layers causing distorted point clouds. This effect can occur
using the Ibeo LUX 2010 as the layers are scanned interlaced
with two of four simultaneous layers.

Motion blur in lidar context means a wrong perceived size
of an object, caused by the scan duration and the movement
of the object in the meantime. For the lidar point cloud, it
can lead to wrong positions and amounts of points belonging
to one object and therefore to wrong cardinalities of the
later clustered points. The error in perceived object width
∆wobj by motion blur is equivalent to the way xobj that
the object moves relative to the scan direction during its
scan time tscan. If we consider that the scan itself and the
post processing is fulfilled during one scan period and that
the duration needed to scan one object is much smaller
than one scan period, the actual scan will only take e.g.
tscan,actual = 0.25 · tscan. Therefore, the error is calculated
by ∆wobj = vobj,lat · tscan,actual. As an example, we
consider a static ego vehicle waiting at an intersection and a
vehicle passing by in lateral direction with a relative velocity
of vobj,lat = 15 m/s and a length lobj = 5.0 m at a distance
r = 5.0 m. The lidar sensor is orientated to the front and has
a scan frequency of fscan = 12.5 Hz, which leads to an object
width error ∆wobj = 15 m/s·20 ms = 0.30 m.

Continuing this example, we consider an angular reso-
lution ∆φres = 0.25°. The mentioned object length leads
to an angular range φrange = 60° covered by the vehicle,
what results in an amount of beams targeting the vehicle
of nbeams,obj = φrange/∆φ = 240 beams in a static case.
In case of the moving object, the theoretical beam error is
∆xbeam = ∆wobj/nbeams,obj = 1.25 mm. But, as this error
is summing up on every beam, in the dynamic case, the beam
n hits the moving object n ·∆xbeam besides the point in the
static case. As a consequence, the beams with high number
n could end up missing the moving object if the scanning
direction is opposite to the movement of the object. If the
object moves in the scanning movement direction, this could
result in more reflections on the object as in the static case.

This theoretic example shows the necessity of that aspect
in physically based modeling. Implementation of rolling
shutter and motion blur in a virtual environment could be
done e.g. by an artificial movement of the sensor origin, as
a first approximation, that considers only the ego movement
between two computation steps of the environment.
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Aliasing as another typical sampling phenomenon can
happen when objects with periodic movements are scanned
with a frequency that breaks the Nyquist-Shannon sampling
theorem. The objects then seem static or move with a wrong
frequency. For lidar sensor systems used in automotive use
cases aliasing should not have an effect, because object
detection, localization or mapping should not rely on move-
ments rather than size and shape of surrounding objects.
Even though, the implementation of correct aliasing in sensor
models comes naturally by selecting the same sampling
frequency as the real sensor.

VI. CONCLUSION

The contribution of the presented systematic analysis is
that it now enables to postulate a certain fidelity of lidar
sensor models when knowing the intended function of the
model, having the modeling effort and the impact of the
implemented effects in mind. Still, even if there have been
reported several implementations and modeling approaches
of many effects we describe here, neither have been found
implementations of correct temporal scan orders, nor has
there been fulfilled a systematic analysis beforehand to
formulate requirements about what aspects are really needed
in specific cases. Consequently, in future work, development
of sensor models with beforehand defined requirements and
afterwards performed verification and validation will follow.
Thereby, research is needed to provide a better insight in the
impact of synthetic data on several functions that use lidar
point clouds, such as object detection and tracking, sensor
fusion or localization and mapping. Their robustness to small
deviations in real data will influence the needed fidelity of
the sensor models. Additionally, it will be necessary to find
applicable holistic validation methods and metrics as well.
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