Using Time-to-React based on Naturalistic Traffic
Object Behavior for Scenario-Based Risk
Assessment of Automated Driving

Sebastian Wagner, Korbinian Groh, Thomas Kiihbeck, Michael Dorfel, Alois Knoll

Abstract—The steady improvement of advanced driving assis-
tance systems (ADAS) and the leap towards automated driving
(AD) require novel methods for assessing the safety of those,
which is a major subject for current research. Different propos-
als cope with the massive testing effort to assure the safety of
such systems. These proposals include virtualization of testing,
usage of stochastic methods and reduction of the necessary real
world driving tests. Despite these different approaches, they all
rely on the same basis: The behavior assessment of the vehicle
under test, which results in a measurement of risk.

This paper presents a novel approach to measure the criti-
cality of a given driving scenario fitted on the requirements of
testing. A Monte-Carlo simulation, which uses the input of a
motion prediction model as variation parameters, determines
the possible evolutions of a scenario at every time step. The
distributions of these parameters have been fitted to data
obtained by a large-scale field tests. These evolutions are then
analyzed individually by considering the Time-To-React (TTR)
measure. Finally a single value of accident risk between 0 and
1 can be assigned to the scenario.

Index Terms—Autonomous vehicles, Vehicle safety, Risk anal-
ysis, Performance analysis

I. INTRODUCTION

Due to the fast emerging field of automated vehicle devel-
opment, the automated assessment of driving scenes became
the interest of current research. Literature agrees, that prior
to the release of automated driving systems to the market,
a vast amount of testing needs to be conducted [1]. Apart
from efforts of reducing the quantity of tests [2]-[5], it is
also necessary to evaluate the performance of the automated
function in those tests. A binary classification of situations
into accident and accident-free would certainly lack relevant
information. A near miss affiliated to no accident would un-
doubtedly lead to the passenger’s rejection of the automated
driving function for example. A continuous measure of a
scenario’s criticality is required.

Within automated driving systems, such assessment met-
rics of scenarios are a key element of the decision making
[6]-[10]. However, those are designed to be calculated in
real-time on resource limited embedded systems and hence
include simplifications due to computational restrictions. This
paper considers a different use case: For testing purposes a
driving situation can be assessed afterwards and therefore
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offline in post-processing on a pc or cluster, overcoming
computational limits.

Furthermore, the requirements on a risk assessment for
safety evaluation purposes differ from those for algorithms
used within automated driving vehicles. First of all, a measure
indicating safety for testing should be free of false negatives,
i.e. a scene that is dangerous in reality is underestimated by
the method (Table I). False negative classification would lead
to the fact that a faulty behavior of the automated driving
function could not be recognized. An existing approach
to fulfill this requirement performs a worst-case estimation
of the scene [11]. Herein, the time to collision (TTC) is
estimated under the assumption that all traffic participants
try to achieve an accident as fast as possible. However, this
approach reveals a lot of false positives by labeling harmless
scenes as risky, since the prior assumption is certainly not
true. The function would be rejected in some cases despite
adequate behavior. For these reasons a slight overestimation
of risk is desired. A second requirement on testing is its
deterministic results. If the test can be repeated with identical
results, critical behavior of the AD system can be debugged
easier.

TABLE I
FALSE-POSITIVES AND FALSE-NEGATIVES
real risk
low T high
low true false
estimated negative | negative
risk hich false true
& positive positive

Hence, this paper presents a novel approach that consid-
ers multiple possible scene evolutions through Monte-Carlo
simulation together with their probabilities of occurrence.
Additionally, time-to react (TTR) is applied as a superior
alternative to TTC for assessing the criticality of a single
possible collision [12].

Common approaches to risk assessment are done in two
steps [11], [13]-[15]:

1) Predicting future evolution of traffic objects (TOs) in
a scene

2) Using the gathered information to generate a measure
of risk
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Fig. 1. Conceptual flow of the proposed risk assessment method through
the abstraction layers of a scenario defined by Ulbrich [16].
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In this context a scene is a certain snapshot in time of a
scenario or test drive based on the definitions of Ulbrich
[16]. These layers of abstraction can be seen in Fig. 1. The
prediction step is covered in section II. For evaluating the
risk in that scene, this work uses possible collisions between
the vehicle under test (EGO) with all TOs to define a TTR-
based value of criticality or risk. Two calculation methods,
one conducted on TO level and one on scene level are
presented in section III. One can get the risk measure for
a whole scenario by computing the maximum scene risk
afterwards. Followed by tests on representative scenarios
and experimental results in section IV. The last section V
concludes the findings and suggests possible future work
within this area of research.

II. MONTE-CARLO SCENE PREDICTION

The prediction of the scene generates knowledge for
possible outcomes within the near future. Some approaches
calculate only the most likely outcome of a scene [12],
[17], [18]. Despite being computationally effective, it ignores
other possible scene evolutions and hence is not suitable for
this approach. A prediction of as many future outcomes as
possible is necessary and can be achieved by either Monte-
Carlo simulation [14], [15] or the computation of reachable
sets in the form of a discretized vehicle state space [10], [19].
The latter is much faster but suffers from additional errors
due to the discretization [10]. Hence, Monte-Carlo simulation
is used for the presented approach. Therefore, the used model
for traffic object simulation is introduced first.

A. Traffic Object Models

The models of traffic objects like vehicles can generally
be categorized into three types [13]. Physics-based models
follow movement equations the kinematic model of a vehicle.
Maneuver-based models consider the traffic environment for
example information about the road structure. The most
complex category additionally includes interactions between
all traffic participants. In their order of appearance, the
models become valid for a longer horizon of prediction,
but also demand more computational resources and are
more difficult to implement. In contrast to online assessment
methods supporting decision making of the AD function, a
shorter period of prediction is sufficient for a post-processing
method. Farther predictions reveal possible risky situations
earlier. However, in post-processing the future is known and
this situation is revealed during the assessment of subsequent
scenes. Hence the prediction is only performed as far as

possible collisions are considered relevant and a physics
based model is sufficient.

For short-term-prediction a simple constant turn rate and
acceleration (CTRA) model is defined. Let x1(t), x2(t) and
1(t) define the Cartesian position of the vehicle in the
world and its orientation towards the x;-axis at a specific
time t respectively, while its velocity in the direction of the
heading is v(¢). Furthermore the inputs to the system are
the acceleration along the vehicles heading a and the turn
rate w. The CTRA model is defined by the following set of
differential equations [14]:

(1) = o) - cos((t))
i2(8) = (1) - sin(1) N
() =w

o(t) =a

The constrained movement defined by those equations is
suitable for objects of the type car, truck or motorcycle. Other
traffic partners such as pedestrians require different formulas
but are omitted as the scope of this paper asses the risk
between motor vehicles.

B. Scene Prediction

As mentioned above, a set of possible scene outcomes is
predicted using Monte-Carlo simulation on the CTRA model
(1). The dimensions of variation are the inputs a and w for
the vehicle model. At the current time step ty the inputs
ag and wg are known. It is a high probability that a human
driver keeps these inputs for a short period of time. However,
deviations from these are also possible. The farther away
from current inputs, the less likely they are. Hence Gaussian
distributions for future inputs based the current inputs are
modeled.

In order to keep in contact with reality, the shapes of these
distributions are derived from recordings of BMW vehicles
from the naturalistic driving study called euroFOT [20]. The
target is to model a Gaussian distributions f,(a|vg,ag) for
future inputs of a depending on the current input ag = a(to)
and velocity vy = v(tp):

1 _1 (a*ua(’vo,am 2
— ¢ 2Umboe ) (2)
Ua(vo, ao)\/ 2w

Hence the parameters mean i, (v, a0) and standard de-
viation o, (vg,ap) are to be determined. For this purpose
the euroFOT dataset is parsed for all situations that are
within a margin around vg and ag., which results in Ny
extracted situations. From the found occasion the acceleration
a(n) (n € {1,...,Np}) in the near future is observed.
Particularly the average turn rate over the next second is equal
to the change of 1 (t) due to the design of the model (1) and
reveals a Gaussian distributed sample set for fitting the curve
from (2). Then the maximum of the logarithmic likelihood
function

fa(a|U07 aO) =

Ny

2
E(%Maﬁa) = _% 10g(27’(’0’§) - Z Wv 3)

n=1
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Fig. 2. Exemplary distribution of possible model inputs a and w around the
actual inputs ap and wq indicated by red lines.

reveals the desired parameters. Repeating the process for a
wide range of vy and ag results in parameter surfaces for
e and o, over vy and ag. The distribution f,(w|vg,wp) is
defined and derived analogously.

An exemplary distribution for ¢ and w is shown in Fig.
2 for the current inputs ap = 177 and wy = —0.1%
indicated by red lines. The top and right plots show the
just derived distribution functions f, and f, respectively.
The distributions form around the actual inputs and verify
the claim that the driver most likely will keep the inputs
stable for a short period of time. A small deviation of the
distribution centers towards the actual inputs can be noticed.
This is due to the natural behavior of drivers which tend
to return to neutral driving. The sampling area in the main
plot is constrained by the 3o-interval around the median.
Thus 99.73% of the possible inputs are covered in both
directions. Within this area are Ny, = 100 points from the
set V uniformly distributed through the full factorial design
fading out with decreasing probability of occurrence. This
joint probability f is calculated through

_ fa(alvo, ao) - fu(w|vo, wo)
f(a,w,vo, a0,wo) = 5 oy Faalv0, @0) - Fu(@lt0,0)
4

Observing the distribution parameters over a wide range of
actual inputs reveals that the distributions are the narrowest at
zero inputs or neutral driving and widen up with actual inputs
farther away from zero. This implies a neutral driver is more
likely to stay neutral while one in a more dynamic situation
is more likely to change the inputs. The standard deviation
also decreases with increasing velocity presumably to the
increasing limitation of vehicle dynamics at high velocities.

The sampled inputs are now used to simulate Ny, = 100
trajectories as possible future evolutions of the CTRA model.
For the exemplary case with actual inputs ap = 177 and
wo = —0.1%‘1, the results are shown in Fig. 3. The initial
state used in this example is a vehicle driving 147+ which
is currently located at x1 = Om, zo = 3.5m and has a
heading along the x1-axis. The prediction horizon is chosen
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Fig. 3. Reachability of the CTRA model for the inputs from Fig. 2.

to be 3s and simulated with 0.1s step size. It is shown that
the area of possible vehicle position widens up with farther
prediction but concentrates around the case where the driver
would keep the actual inputs ay and wy. The tendency to the
right is caused by the initial yaw rate being negative. After
2s (yellow area) the uncertainty of lateral residence of the
vehicle already widens up to more than 6m. This resembles
the realistic distribution of possible future positions due to the
use of natural input distribution and supports the following
calculation of risk.

III. TIME-TO-REACT BASED RISK CALCULATION

After the prediction of possible scene outcomes, the de-
tection of incidents that lead to risk needs to be conducted.
In the case of accidents, those incidents are collisions.

A. Collision Detection

The collision detection itself, given the state of two vehi-
cles at a certain point in time, is calculated by determining
the overlap of two vehicle’s bounding boxes. Collisions of
interest are between the vehicle equipped with an ADAS or
AD function (EGO) and any other TO in the surroundings
of the EGO vehicle. While the trajectories of the TOs
are predicted using the introduced Monte-Carlo simulations,
the future trajectory of the EGO vehicle is assumed to be
certain!. Hence only one trajectory (which is planned by the
system) is considered.

A pair of trajectories can only collide once and for that
reason the first occurring is registered. Continuing the exam-
ple of Fig. 4, the EGO vehicle is initially placed parallel to
the TO 3.5m to the right with the same speed. This situation
might occur, e.g., after an overtaking maneuver, where the
TO wants to merge into the right lane. The results are shown
in Fig. 4. Every detected collision is displayed as a pair of
orange for EGO and purple vehicle for the TO. They can
rarely be distinguished because 86% (86 out of Ny, = 100)
of the possible evolutions of the TO collide with the ego
vehicle.

Solely using this value as a measure of risk would
be wrong, as the collisions themselves are not imminent,
unavoidable or equally probable. This is indicated by the
histogram on the right of the figure, where first collision

IThe exact outcome of the EGO vehicle path is never completely certain
due to sensor inaccuracies or control errors. However on the one hand those
are small compared to the uncertainties due to driver intentions and straight
forward to implement into the framework if desired on the other hand.
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Fig. 4. Collision of the introduced traffic object with an EGO vehicle driving
parallel to it.

could occur 1.0s into the future while most of them will
happen afterwards. The first value is equal to the worst-
case TTC? (WTTC). However, the measured TTCs and their
numbers of occurrences shown in this histogram are not
sufficient for the risk calculation following later. Since not
every possible collision with the same temporal distance is
equally risky as they are differently hard to avoid, the TTC
is replaced by the time-to-react (TTR) measure in the next
step.

B. Time-To-React Measure

In contrast to TTC, the TTR describes the time which
is left to avoid the collision within the physical constraints
of the vehicle [12]. We distinguish three possible types of
evasion. Time-to-steer (TTS) is the last possible time step at
which the application of full negative or positive turn rate
to the EGO vehicle can avoid the collision. Full applied
braking reveals the time-to-brake (TTB) value analogously.
The opposite input full throttle being called time-to-kickdown
(TTK). TTR is the maximum of those three considering a
collision or the possible action that reveals the longest time
until the necessary intervention.

The calculation of the TTR value itself is done by iterating
stepwise through time, calculating paths for full left and right
steering, full braking and accelerating and checking if the
calculated trajectories avoid the collision. The last time step
at which an evasion is possible is then saved as the TTR.
If there is no collision to avoid on the currently observed
trajectories, the TTR is set to infinite. Repeating this for every
collision reveals a distribution of TTR over time similar to
the one of TTC.

Considering the example scene again, the results are shown
in Fig. 5. The constellation of the scene remains the same.
Only movement prediction is faded out from the plot for
better visibility of the evasion paths derived from the TTR
calculations. Evasion by acceleration is not possible in this
situation and hence not shown. Full braking could also avoid
the collision, however it reveals less TTR and is omitted.

2The worst-case TTC (WTTC) is introduced by Wachenfeld [11]. How-
ever they used uniform sampling in the physically constrained input space
in contrast to the realistic distribution from Fig. 2. Hence the worst-case
time can be higher in this case.
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Fig. 5. The same scene as in Fig. 4 but with evasion paths of TTS shown
blue. The counts of possible evasions sum up to the TTR distribution over
prediction time displayed in the right histogram.

Hence full right steering is the best choice and shown by
cyan paths in the plot. The histogram on the right contains
the same colors referencing the type of last possible evasion.
Now the shortest calculated period is 0.8s until a collision is
inevitable.

The TTR measure promises a better reflection of the scene
risk due to the fact that it considers the possibility to avoid
a collision instead of only considering the time until the
impact. Hence, the following risk calculations are based on
this measure and its calculated data, namely the remaining
time to react per possible pair of trajectory as distribution
over time and the probabilities of their occurrence.

C. Risk Calculation

The gathered information so far is to be processed into
a single value of accident risk. It seems convenient that an
imminent or even unavoidable collision should have a greater
effect on such a value than one being further away and
offering enough time to react. Hence, a formula is required
that adds up the possible collisions weighted with a function
depending on TTR and probability of occurrence.

At first, there is a certain amount of time required for an
intelligent vehicle to detect the danger, plan the avoidance
maneuver and initiate the actuators. This is called the point
of no return Tpng up to which regardless if an evasion
is technically possible, the vehicle would not be able to
perform it. Hence, all collisions with a TTR below that
point are weighted 100% into the risk value. The reaction
time value is of course system dependent and can not be
defined globally. The next point T}, is defined as time from
which on detected collisions are not relevant anymore. This
is because the long remaining reaction times do not unveil
a real risk. Between Tpng and 1},., a monotonic decrease
of importance weighting from 100% to 0% is desired. The
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Fig. 6. The TTR weighting function from (5) plotted for steepness parameter
m = {5,2,1,0}.

following function satisfies these requirements

¢g(TTR) = min (1, max (0, g(TTR)))

—m(TTR—TpNR) _ o~ (Tmax—TPpNR)
e e
m >0
_ _ 1—e—"(Tmax—TpNR)
9(TTR) {TmTTR m=
Tmax—TPNR
Tenr < Thax, m >0,
4)

where m is a parameter for controlling the steepness of the
monotonic decrease. This function is plotted in Fig. 6 for
m = {5,2,1,0}, with m = 0 revealing a linear decrease.
Choosing the values for m and T},,,x provides an opportunity
to the user to tune the method, whereas Tpng is defined by
the AD system under test.

Let TOy be the kth TO and Vj the set of all possible
feature trajectories of TOy. Then, the weighting (5) can be
generalized to Q(TTR;M(’@) ), describing the criticality for the

EGO vehicle of the ith trajectory v;*) in V.. The risk 710,
of an accident with a single traffic object TOy, is

N

smp

rTO, = Z Ppy® g (TTka(k)) , (6)
=1

where Néé;)p) is the cardinality of V} and Dy, o) is the prob-

ability of TOy, following trajectory vgk), thus the probability
of the underlying input tuple from (4). Due to the constraint
target domains of P o and g(TTRk’vim) and the weighted
sum rpo, always unveils a value in the interval [0, 1].
However due to the TTR weighting it should not be directly
interpreted as collision probability, but rather as threat level.

Up to now, just the interaction with a single traffic object
TOy, was considered. For further risk consolidation multiple
TOs have to be taken into account by iterating over the
parameter k.

D. Multi-Vehicle Risk Consolidation

Let S be a set similar to the one in [6] including all
outcomes evolving from a given scene and taking Nto TOs
into account. This set is spanned by

S=V1XV2><-~'XVNTO, (7)
and contains |S| = NJTO elements under the assumption

that each TO;, has the same cardinality Ny, for Vj. By
design of the system the TOs are not independent from each
other. An accident with at least one TO at the time step ¢ = ¢,

should prevent further accidents by the remaining TOs with
the EGO for ¢ > ¢,. This kind of system design guarantees
the occurrence of maximal a single accident per specific
scene at t = t, and creates a stochastic dependence between
the collision risks of individual TOs. A valid definition for
the consolidated risk of this multiple vehicles system is given
by

Tdep = Zps g (TTRaCC)
seS

bs = H Dy o

ke{l,...,Nto}

TTRucc = min ({TTR, o |0, € v,

AN ke {1,...,NTQ}}) s

®)
with s describing a specific outcome of the scene by fixing
the trajectory ¢ for each of the k£ TOs to vgk). The weighted
sum over the criticality of all members of S is still valid
analogue to having a single TO in the scene. Taking the
minimal TTR among all TOs in a specific outcome defines
the risk of the outcome. The TTR values for a certain TO
can be calculated independent from the other TOs. This fact
rises from (8) as in case of a collision the accident is unique
and the minimal TTR is exactly the TTR of an TO having
an accident at t = ¢,. To prove the latter one has to examine
in detail the only two types of TOs existing which differ
from their corresponding independent TTR value. The first
are described by TOs causing an accident with the EGO in
the independent case but non in the dependent case because
another TO is already collided with the EGO. Therefore, its
TTR becomes infinite. The second type is collision free in
the independent case but its trajectory crosses the location
of the accident at some time step ¢ > ¢, in the dependent
case. Again the TTR in this case is guaranteed to be larger
than for the TTR of a TO involved in the unique accident.
In addition, the case in the model is labeled not an accident
as it happens later than the unique accident at ¢ = ¢, and
is irrelevant in terms of risk assessment. Being the reason
for the rising dependencies, it is obvious that if no accident
occurs at all there will be no differences as all TOs will
have an infinite TTR and contribute according to the weight
function in (5) with zero risk. Thus, taking each case into
consideration the minimal TTR is unambiguous regardless
of independence or dependence and refers to a TO causing
the unique accident at the time step t = ¢,.

Although saving computational costs by proving that it
is sufficient to deploy the independent TTR values for the
multi-vehicle risk, (8) has still an exponential computational
complexity O (NSJIYITPO). A computational less expensive al-
ternative offers the approximation of r;,4 by the independent
risk

Nto
rna =1— [] @ =710,), €))

k=1
calculated by its complement meaning the probability that
no accident occurs in the complete scene. In contrast to



Tdep, the independent risk calculation via (9) has just a linear
complexity O (Ngmp - NTo) with respect to the number of
TOs Nro in the scene. In addition, TOs which do not collide
with the EGO vehicle within 7},,, can be excluded as their
TTRs are infinite and as mentioned before will either be
neglected by the minimum function in (8) or contribute with
zero impact on the risk. Last but not least, it is claimed that
the independent calculated risk ri,q is always an overesti-
mation to the dependent risk r4ep, and therefore satisfies the
requirements on the method. If a critical threshold riesn Of
risk is exceeded by an independent calculation (9), one can
still apply the dependent formula (8) to revise the result. A
proof for the overestimation is given below.

Proof: Assuming independency overestimates the risk. Let
Aff) be the event of having an accident with TO, in a
specific scenario s € S and P(Agf)) the corresponding risk
of the event

PAY) = g (TTR, ). (10)

For clarity the following substitution is defined:
g (TTRk v@)) . (11)

By inserting (6) in (9) and regrouping the terms, the inde-
pendent risk 7,4 can be expressed as sum over the scene
space S.

rk,vgk) = pk:,vik)

(k)
Nto Nomp

rna=1= [ (1= 2 e
i=1

k=1

= Z rk,vgk) Z Tk,l,vgkl) ' rkg,1)§k2) +..
ke{l NTO} k1#k2
i€{1,...,Namp } k1,k2€{1,....N10}
i1,32€{1,...,Nsmp }
Nto—1
+(71) TO E ’/’kl LD T’k U(kNTO)
Vi Nro Vs
k1#...#kNpg TOiNTo
k17“'7kNTo€{1a"'-,NTO}
i1, yiNpo €41y Nomp}
= op| D0 PAT) = Y PAL)  PAY)
seS ke{l,...,Nto} k1#k2
k1,k2€{1,...,Nro}
Nro
Npo—1 s
4 o4 (=1)Nro -H,P(Ai:))
k=1
(s
- E Ps - 1nd A UANTO)

seS
(12)
The result is in accordance with the original design and
represents as expected the independent risk as the union of
all individual TO risks per scenario s weighted by p, as a
scenario specific occurrence factor.
Similar, the dependent risk (8) can be expressed,

Tdep = Zps TTRacc = Zps : Pdcp (Ag?c)a

seS ses

13)

with A, is the event of the unique accident in the dependent
case and P(A,.) is the corresponding occurrence probabil-
ity.

Equation (12) and (13) can be compared scenario by sce-
nario. However, one has to distinguish between two types of
scenarios. The first type represents an accident free scenario
s’ in &’ for each TO concerning the EGO. As already
mentioned, this kind of scenario will contribute neither in the
independent nor in the dependent model to the risk value.

PdCP(Agsclc)) = Pind(AgS/) U. ANT()) =0 Vs e&
(14)

The second type includes all remaining scenarios s” € S”,
containing at least one accident in the independent model
meaning an unique accident in the dependent model. If only
a single accident of one TO with the EGO occurs in the
independent model the scenario is identical to the dependent
model. For more than one accident in the independent case,
the contribution of the scenario to the risk value is defined
by the joined risk of all TOs having an accident according
to equation (12). As the scenario in the dependent model
doesn’t differ until the unique accident happens, the risk term
of the TO causing the unique accident has to be a part of the
independent risk consideration.

ACD C AP UL UAS) v e s

acc
Therefore, the risk per scenario in the independent model is
estimated regardless of the scenario type equal or higher as
in the dependent model.

Paep(AL)) < Praa(A UL UAT) ) Vses

Taking the equality of ps in both models and the summation
over all scenarios s in consideration, yields the final proof for
the risk overestimation by choosing the independent model.

a7)
O

15)

(16)

Tdep S Tind

IV. EXPERIMENTAL RESULTS

The following evaluations on representative scenarios use
all the same method parametrization listed in Table II. The
reason for the chosen prediction time of 1s longer than the
maximum risk time is that predicted collisions occurring
between those values can have a TTR below 2s and hence
still affect the risk value.

First two simple simulative real world experiments verify
the new measure against expectations and compare it with
common simple threat indicators. Following a more complex
real world experiment featuring two TOs shows the applica-
bility to real driving data.

TABLE II
PARAMETRIZATION OF THE METHOD FOR EVALUATION
Name Symbol  Value
prediction horizon — 3.0s
prediction step — 0.1s
trajectories per TO Nsmp 100
point of no return TPNR 0.5s
maximum risk time Tmax 2.0s

weighting slope m 1.0

consolidation threshold  #i}resh 10%
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Fig. 7. Calculated risk of a simulated rear end collision scenario.

A. Simulative Experiments

A first expectation on a risk measure would be a 100% am-
plitude on a scenario with an actual or unavoidable accident.
Additionally, a monotonic increase of risk up to the collision
is desired. For this test a scenario where the EGO vehicle
driving 21.0% collides with the rear of a TO driving 10.07
is simulated. Three scenes and the temporal development of
the risk measure are shown in Fig. 7. For better comparability
of the scenes this and all following experiment plots are
shown in EGO vehicle fixed coordinates. Snapshot (1) reveals
a scene where first possible collisions are detected, but large
reaction times reveal very little risk. In scene (2) the TTRs
are much lower and a reasonable risk of ~ 50% is measured.
In (3) the collision is unavoidable with respect to the 0.5s
point of no return. Both expectations, the monotonic increase
and the 100% amplitude are met.

In a second experiment an EGO vehicle driving 26.07
bypassing a TO at half the velocity is simulated and shown
in Fig. 8. Again first collisions are detected in scene (1) but
provide plenty of time for reaction. An insignificant peak in
risk is obtained in (2) by collisions with TTR below 2.0s on
improbable TO trajectories. At scene (3) the EGO vehicle is
close enough to the TO that a lateral movement within the
bounds of realistic driving behavior cannot cause a collision
anymore. In reality, such a bypass scenario is common on
highways and considered safe. Again the expectations are
met.

The calculated risk measure for both experiments is again
shown in Fig. 9. The upper plot shows the risk of the rear
end scenario compared to the TTC, WTTC and headway time
(THW). All of the latter (TTX) are measured in seconds
and hence more critical the closer to zero they are. They
all converge linearly towards Os up to the actual collision
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Fig. 8. Calculated risk of a simulated passing by scenario with high relative
velocity.
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Fig. 9. Comparsion of the risk measure with TTC, WTTC and THW

(grouped as TTX) for the rear end collision (top) and the bypass scenario
(bottom).

and neglect the reaction time of the vehicle. Whereas the
proposed risk measure reveals the highest risk earlier and
shows a steeper ascent contemplating reaction times. In the
lower plot the risk of the bypass is compared to common
threat indicators. TTC and THW are not calculable because
there is no collision on the main pathway of the vehicles. The
WTTC reveals approximately the same risk until the vehicles
cannot collide anymore. It assigns the same risk to the bypass
as in the rear end scenario 1.5s before the collision, which
seems to be exaggerated.

B. Real world experiment involving two vehicles

The last experiment is conducted on a real world measure
from a German highway. The EGO vehicle follows another
TO at ~ 26.0%. In (1) a second TO is driving in parallel to
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Fig. 10. Calculated risk of a real cut in scenario involving two TOs.

the first in the left lane until it decelerates and merges into the
safety clearance of the EGO vehicle in the right lane in (2). A
peak of ~ 0.4% risk at this point arises due to the approach
of the cutting in TO to the EGO. The latter immediately
decelerates in (3) to ~ 24.07 to regain safety clearance and
the risk vanishes. The assessment method assigned low risk
to the proper reaction of the EGO vehicle in this scenario.

V. CONCLUSION AND FUTURE WORK

A novel risk assessment method fitted to the requirements
of testing AD is proposed. In order to depict a realistic
measure, a Monte-Carlo prediction for possible future TO
paths in parameterized with naturalistic driving data is de-
veloped. The basis of a single paths threat is based on the
TTR measure to reflect the capabilities of the EGO vehicle
avoiding the collisions. Stochastic consolidation of gathered
information into a single scene risk value between 0 and 1
is derived. To overcome the infeasible computational load
resulting from crowded scenes, an over-approximation of
the risk is suggested and mathematically proven to comply
with the requirement of avoiding false negatives. Finally
simulative and a real road test show that expectations are
met and the proposed risk value reveals more comprehensive
measures than common simple threat indicators.

Within this work a simple vehicle model for prediction is
used under the assumption of suitability for short prediction
times is used. Interesting future research would examine the
effect of more complex, maneuver-based or even interaction
aware models on this risk measure. Furthermore, perceived
subjective risk by the occupant can be coded into the risk
value and compared to the physical risk of this work.
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