
Sequence-to-Sequence Prediction of Vehicle Trajectory
via LSTM Encoder-Decoder Architecture

Seong Hyeon Park, ByeongDo Kim, Chang Mook Kang, Chung Choo Chung and Jun Won Choi∗

Hanyang University

Abstract— In this paper, we propose a deep learning based
vehicle trajectory prediction technique which can generate the
future trajectory sequence of surrounding vehicles in real time.
We employ the encoder-decoder architecture which analyzes
the pattern underlying in the past trajectory using the long
short-term memory (LSTM) based encoder and generates the
future trajectory sequence using the LSTM based decoder. This
structure produces the K most likely trajectory candidates over
occupancy grid map by employing the beam search technique
which keeps the K locally best candidates from the decoder
output. The experiments conducted on highway traffic scenarios
show that the prediction accuracy of the proposed method is
significantly higher than the conventional trajectory prediction
techniques.

I. INTRODUCTION

Ensuring safety is a top priority for the autonomous driving
and advanced driver assistance systems (ADAS). In order
to promise high degree of safety, the ability to perceive
surrounding situations and predict their development in the
future is critical. The vehicle on driving encounters various
types of dynamic traffic participants such as car, motor bike,
and pedestrian which could be a potential threat to safe
driving. In order to avoid an accident, the system should be
able to analyze the pattern in their motion and predict the
future trajectories in advance. If the system predicts where
the surrounding vehicles are heading in the near future, the
vehicle can plan its driving path in response to the situation
to come such that the probability of collision is minimized.
However, the trajectory of the surrounding vehicles is quite
complex to analyze since it is governed by various latent
factors determined by complex traffic situations and the state
of these latent factors can change dynamically in real time.

Thus far, various vehicle trajectory analysis techniques
have been proposed. The traditional approaches are the
Bayesian filtering methods such as Kalman and extended
Kalman filters [1], [2]. However, the structure of these
methods might be too simple to analyze the complicated
pattern of the vehicle motion and they do not often perform
well for long term prediction, e.g., ∆ = 2 sec. In order
to overcome the limitation, more sophisticated trajectory
models were introduced, including Gaussian process model
[3], [4], Gaussian mixture model [5], and dynamic Bayesian
network (DBN) [6]. In particular, the DBN provides a flexible

∗ corresponding author
The authors are with the Department of Electrical Engineering, Hanyang

University, Seoul, Korea.
{shpark,bdkim}@spo.hanyang.ac.kr
{kcm0728,cchung,junwchoi}@hanyang.ac.kr

(𝑥𝑥𝑡𝑡
(1),𝑦𝑦𝑡𝑡

(1), �̇�𝑥𝑡𝑡
(1),𝑦𝑦𝑡𝑡

(1))

1st Vehicle

(𝑥𝑥𝑡𝑡
(𝑁𝑁),𝑦𝑦𝑡𝑡

(𝑁𝑁), �̇�𝑥𝑡𝑡
(𝑁𝑁),𝑦𝑦𝑡𝑡

(𝑁𝑁))

Nth Vehicle

(𝑣𝑣𝑡𝑡 , �̇�𝜓𝑡𝑡)

Ego Vehicle

LSTM
Encoder

LSTM
Encoder

𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝒗𝒗𝒔𝒔𝒗𝒗𝒔𝒔𝒗𝒗𝒗𝒗

LSTM
Decoder

(with beam search)

LSTM
Decoder

(with beam search)

Occupancy Grid Map

𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝒗𝒗𝒔𝒔𝒗𝒗𝒔𝒔𝒗𝒗𝒗𝒗

Fig. 1. The proposed trajectory prediction system. (x
(n)
t , y

(n)
t , ẋ

(n)
t , ẏ

(n)
t)

denotes the nth surrounding vehicle’s relative position and velocity at time
t and (vt, ψ̇t) denotes the ego vehicle’s speed and yaw rate at time t.

trajectory analysis framework where various latent factors
determining the vehicle trajectory are described using the
graphical model, and the interactions among these factors
are learnt from the data. Though the DBN leads to explicit
modeling of physical process that generates a vehicle’s
trajectory, the performance for real traffic scenarios is limited
in that the model structure determined by the designer’s
intuition is not sufficient to capture a variety of dynamic traffic
scenarios. Furthermore, the computational complexity for its
inference step is quite high for the real time applications.

Meanwhile, the era of deep learning has begun with the
success of many revolutionary deep neural network (DNN)
architectures [7]–[9]. Being applied to numerous machine
learning tasks, DNN architectures have successfully learned
the representation that generalizes well for various situations
arising in the real data. Among various kinds of DNN
architectures available, recurrent neural network (RNN) is
widely used to analyze the structure of the time series data.
One popular variant of RNN is long short-term memory
(LSTM) model, which can control the information flow
between the input, output, and cell memory through the gating
mechanism [10]. The LSTM has shown excellent performance
for various tasks such as speech recognition, image captioning,
language translation and so on [11]. Recently, LSTM or
similar RNN variants have also been applied to analyze the
vehicle trajectory [12]–[15]. In [12], the LSTM is used to
track the position of the object based on the ranging sensor
measurements. In [13], the driver’s intention is identified
based on the trajectory data using the LSTM. In [14], the
LSTM is applied to predict the location of the vehicle after
∆ seconds using the past trajectory data. In [15], another
RNN variant called gated recurrent unit (GRU) combined

ar
X

iv
:1

80
2.

06
33

8v
3

 [
cs

.L
G

]
 2

2
O

ct
 2

01
8

with conditional variational auto-encoder (CVAE) is used to
predict the vehicle trajectory. Although these RNN based
vehicle trajectory models are effective for their own tasks,
they either cannot generate the full trajectory sequence or do
not provide a simple probabilistic framework that does not
require extra components such as CVAE.

In this paper, we propose a new vehicle trajectory analysis
and prediction technique to generate the future trajectory
of surrounding vehicles given the sequence of the latest
sensor measurements. The proposed method is built upon
the LSTM encoder-decoder architecture which has shown
excellent performance for sequence to sequence tasks [8].
Fig. 1 depicts the structure of the proposed technique. The
LSTM encoder takes the latest trajectory samples for the
surrounding vehicles as well as the state information on
the ego vehicle and produces the fixed length vector which
captures the temporal structure of the past trajectory. Based on
the fixed length vector, the LSTM decoder generates the future
trajectory on the occupancy grid map (OGM). The decoder
recursively uses the predicted trajectory sample to generate
the subsequent trajectory samples adopting beam search
algorithm. With the algorithm, the decoder keeps K locally
best sequence candidates in generating the future trajectory
sample for each time step [16]. As a result, the proposed
model can predict the K most probable hypotheses of the
vehicle trajectory under the probabilistic framework. Our
experiment results show that the proposed scheme generates
the reasonable trajectory hypotheses of the surrounding
vehicles and its prediction accuracy is significantly better
than the conventional prediction methods.

The rest of this paper is organized as follows. In Section II,
we briefly review the LSTM encoder-decoder architecture and
the beam search algorithm. In Section III, we describe the
proposed trajectory prediction model in details. In Section
IV, the experimental results are presented and Section V
concludes this paper.

II. REVIEW ON LSTM ENCODER-DECODER
ARCHITECTURE

A. Long-Short Term Memory (LSTM)

The long short-term memory (LSTM) is an RNN variant
which effectively overcomes the vanishing gradient issue in
naively designed RNNs [10]. The LSTM consists of the cell
memory that stores the summary of the past input sequence,
and the gating mechanism by which the information flow
between the input, output, and cell memory are controlled.
The following recursive equations describe how the LSTM
works;

ft = σ(Wufut +Whfht−1 + bf) (1)
it = σ(Wuiut +Whiht−1 + bi) (2)
ot = σ(Wuout +Whoht−1 + bo) (3)
ct = ft � ct−1

+ it � tanh(Wucut +Whcht−1 + bc)
(4)

ht = ot � tanh(ct), (5)

𝒉𝒉𝒉1

Decoder Network

Encoder Network

LSTM LSTM LSTM

𝑢𝑢1 𝑢𝑢2 𝑢𝑢𝑇𝑇

LSTM LSTM LSTM

𝑠𝑠(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

𝒄𝒄𝑇𝑇

𝑠𝑠1 𝑠𝑠2 𝑠𝑠𝑇𝑇′−1 𝑠𝑠𝑇𝑇′

𝒄𝒄0

𝒉𝒉1

𝒄𝒄1

𝒉𝒉2

𝒄𝒄2

𝒉𝒉𝑇𝑇−1

𝒄𝒄𝑇𝑇−1

𝒄𝒄𝒉0 𝒄𝒄𝒉1

𝒉𝒉𝒉2

𝒄𝒄𝒉2

𝒉𝒉𝒉𝑇𝑇′−1

𝒄𝒄𝒉𝑇𝑇′−1

Fig. 2. The LSTM encoder-decoder architecture.

where

• σ(x) , 1
1+exp (−x) : sigmoid function (element-wise)

• x� y: element wise product
• ut: input vector
• Wui,Whi,Wuf ,Whf ,Wuo,Who,Wuc,Whc:

linear transformation matrices
• bi, bf , bo, bc: bias vectors
• it,ft,ot: gating vectors
• ct: cell memory state vector
• ht: state output vector.

The amount of information for the cell memory to update,
forget, and output its state is determined by the gating vectors
in (1), (2), and (3). The cell state and output are updated
according to (4) and (5). Note that depending on the state
of the forget gating vector ft, the cell state can be reset or
restored, and the other two gating vectors it and ot operate
in the similar manner to regulate the input and output.

B. LSTM Encoder-Decoder Architecture

The LSTM encoder-decoder architecture was first intro-
duced for machine translation task [8], [16], [17]. It has
an ability to read and generate a sequence of arbitrary
length as illustrated in Fig. 2. The architecture employs two
LSTM networks called the encoder and decoder. The encoder
processes the input sequence u1, ..., uT of the length T and
produces the summary of the past input sequence through
the cell state vector ct. After T times of recursive updates
from (1) through (5), the encoder summarizes the whole input
sequence into the final cell state vector cT . Then, the encoder
passes cT to the decoder so that the decoder uses it as initial
cell state (i.e., c′0 = cT) for the sequence generation. The
decoding step is initiated with a dummy input s(init). The
decoder recursively generates the output sequence s1, ..., sT ′

of the length T ′. In every update, the decoder feeds the
output st−1 obtained in the previous update to the input for
the current update. Note that the output of the decoder are
derived by applying the affine transformation followed by

the function that suits for the specific tasks (e.g. Softmax
function for classification task).

Basically, the LSTM encoder-decoder aims to model the
conditional probability of the output sequence given the input
sequence, i.e., p(s1, ..., sT ′ |u1, ..., uT). The encoder provides
the summary of the input sequence u1, ..., uT through the
LSTM cell state cT . Given the encoder cell state cT , the
conditional probability is approximated to

p(s1, ..., sT ′ |u1, ..., uT) ≈
T ′∏
t=1

p(st|cT , s1, ..., st−1). (6)

The decoder successively produces the probability distribution
of p(st|c′t−1, st−1) given the decoder cell state c′t−1 and the
(t− 1)th sample of the output sequence st−1, i.e.,

p(s1, ..., sT ′ |u1, ..., uT) ≈
T ′∏
t=1

p(st|c′t−1, st−1). (7)

Unfortunately, the decoder does not know the true value of
the previous output sample. Hence, in every decoding step,
the decoder makes a decision on st based on the probability
distribution p(st|c′t−1, st−1) obtained from the decoder output
and use the tentative decision for the next update of the
decoder state.

C. The Beam-Search Algorithm

As mentioned, the LSTM decoder aims to produce the
probability distribution of st given the decoder cell state
c′t−1 and the (t − 1)th output sample st−1. One way to
determine st is the greedy search strategy that simply picks the
value for st that maximizes the probability p(st|c′t−1, st−1)
and feed it back to the decoder to generate the next output
sample. Unfortunately, such greedy strategy suffers from
the error propagation since wrong decision made at the
current time step would be propagated to the subsequent time
steps. Furthermore, p(st|c′t−1, st−1) might be a multi modal
distribution having multiple peaks which correspond to the
equally promising candidates for st. In this case, generating
only a single hypothesis is not sufficient to represent all
probable outcomes.

In order to alleviate the error propagation, the beam search
algorithm has been introduced for the machine translation
tasks [16]. The basic idea of the beam search is to keep the
K most probable hypotheses for each sequence generation
step where the parameter K is called beam width. For each
of K hypothetical sequences found in the previous decoding
step, the decoder generates |S| candidates for st resulting in
total K × |S| candidates where |S| denotes the cardinality of
the set of all possible selections for st. Then, it chooses the
K best hypotheses according to the conditional probability
p(st|c′t−1, st−1) produced at the decoder output. After T ′

iterations, the K best hypotheses would survive as a final
result of the decoding step. Note that the beam search with
K = 1 reduces to the greedy search algorithm.

III. PROPOSED TRAJECTORY ANALYSIS TECHNIQUE

In this section, we describe the system design, the detailed
network structure, and the training methodology of the
proposed technique.

A. System Description

(0.0, 0.0)
(14.1,−7.1)

(30.1, 7.4)

(158.1, 6.9)
𝒚𝒚

𝒙𝒙

(104.4,−1.1)
180m

18.4m

(a)

𝑤𝑤𝑡𝑡
1 , 𝑙𝑙𝑡𝑡

1 = (2,3)

𝑤𝑤𝑡𝑡+1
1 , 𝑙𝑙𝑡𝑡+1

1 = (5,10)

𝑤𝑤𝑡𝑡+1
1 , 𝑙𝑙𝑡𝑡+1

1 = (2,13) 𝑤𝑤𝑡𝑡+1
2 , 𝑙𝑙𝑡𝑡+1

2 = (9,15)

𝑤𝑤𝑡𝑡+1
2 , 𝑙𝑙𝑡𝑡+1

2 = (7,14)

𝑤𝑤𝑡𝑡
2 , 𝑙𝑙𝑡𝑡

2 = (9,5)

𝑸𝑸𝒘𝒘

𝑸𝑸𝒍𝒍

(b)

Fig. 3. The description of (a) relative coordinate system and (b) grid
representation on occupancy grid map.

Our system assumes that the ego vehicle can estimate the
current state of the relative coordinate and velocity of the
surrounding vehicles from the measurements acquired by the
sensors (e.g. camera, lidar, and radar sensors). In addition, it
can obtain the information on its own motion using the inertial
measurement unit (IMU) sensor. The set of the observations
used for prediction of the trajectory of the nth surrounding
vehicle at the time step t is given by

O(n)
t = {vt, ψ̇t, x(n)

t , y
(n)
t , ẋ

(n)
t , ẏ

(n)
t } (8)

where
• vt: the ego vehicle’s speed
• ψ̇t: the ego vehicle’s yaw rate
• {x(n)

t , y
(n)
t }: the nth vehicle’s relative coordinate

• {ẋ(n)
t , ẏ

(n)
t }: the nth vehicle’s relative velocity.

As illustrated in Fig. 3 (a), we adopt the relative coordinate
system where the ego vehicle’s location is fixed to (0, 0). The
longitudinal and lateral ranges are set to be x ∈ [0, 180] and
y ∈ [−9.2, 9.2] in meters which are determined according to
the valid detection range of the sensors.

Occupancy Grid Map

𝒪𝒪𝑡𝑡
(𝑛𝑛) = 𝑥𝑥𝑡𝑡

𝑛𝑛 ,𝑦𝑦𝑡𝑡
𝑛𝑛 , �̇�𝑥𝑡𝑡

𝑛𝑛 ,𝑦𝑦𝑡𝑡
𝑛𝑛 , 𝑣𝑣𝑡𝑡 , �̇�𝜓𝑡𝑡

for 𝑡𝑡 = 𝑇𝑇 −𝑀𝑀 + 1, … ,𝑇𝑇
for n = 1, … ,𝑁𝑁 K best hypotheses

for N vehicles

LSTM
Encoder-Decoder

Encoder

Decoder

Beam
Search

FC Layers
[256,256,256]

𝑪𝑪𝑇𝑇
(1𝑠𝑠𝑡𝑡)

𝑪𝑪𝑇𝑇
(2𝑛𝑛𝑛𝑛)

LSTM Stack
[256,256]

LSTM Stack
[256,256]

FC Layers
[256,256,757]

Softmax

Top 𝐾𝐾
Selection

Embedding
[128] ⊞ [128]

𝑷𝑷𝑇𝑇+𝛿𝛿,𝑘𝑘
(𝑛𝑛)

for δ = 1,2, … ,Δ

𝑪𝑪′0
(1𝑠𝑠𝑡𝑡)

𝑪𝑪′0
(2𝑛𝑛𝑛𝑛)

Observations

Observation
for 𝑵𝑵th vehicle

Observation
for 𝟏𝟏st vehicle

Observation
for 𝟐𝟐nd vehicle

𝒪𝒪𝑇𝑇−𝑀𝑀+1
(2) , … , 𝒪𝒪𝑇𝑇

(2)

𝒪𝒪𝑇𝑇−𝑀𝑀+1
(𝑁𝑁) , … , 𝒪𝒪𝑇𝑇

(𝑁𝑁)

⊞∶ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪

Fig. 4. The overall structure of the proposed trajectory analysis technique.

In order to represent the future trajectory of the surrounding
vehicles in the proposed system, we use the occupancy grid
map (OGM) which has been widely used in robotics for the
object localization [18]. The OGM divides the region around
the ego vehicle into Qw ×Ql rectangular grid elements. As
shown in Fig. 3 (b), we represent each element of OGM by
the grid index. In the proposed system, we use (36 × 21)
grids, where each grid span 5.0 meter by 0.875 meter region
in longitudinal and lateral directions, respectively. This design
is adopted in order for a single grid to cover the length of a
typical sedan and the quarter lane width. Using the OGM, the
trajectory prediction task becomes a classification problem
with Q = Qw ×Ql + 1 classes, each of which corresponds
to one of the Qw×Ql grid elements on the OGM or the out-
of-map state. We formulate the vehicle trajectory prediction
as a sequential multiclass classification problem where the
grid element occupied by a surrounding vehicle should be
chosen sequentially for each time step.

The overall workflow of the system is illustrated in Fig. 4
and described as follows. For the nth surrounding vehicle, the
sequence of the latest M observations O(n)

T−M+1, ...,O
(n)
T is

fed into the encoder. Given the latest cell memory produced
by the encoder through M updates, the decoder sequentially
generates the future trajectory for ∆ time steps ahead. Note
that using the beam search, the decoder generates the K most
likely trajectory sequences in parallel. At the (T + δ)th time
step (δ ∈ {1, ...,∆}), the decoder calculates the probability
P

(n)
T+δ,k,q that the nth vehicle occupies the OGM element

indexed by q ∈ {1, ..., Q}. This constructs the probability
map of size Q i.e., P

(n)
T+δ,k = {P (n)

T+δ,k,1, ..., P
(n)
T+δ,k,Q}.

Since this decoding process is performed for all survived K
trajectory sequences, we come up with K probability maps
P

(n)
T+δ,1, ...,P

(n)
T+δ,K . Then, based on the K probability maps,

we pick the K best trajectory candidates which yield the
largest probability of occupancy. Note that these candidates
are fed back to the LSTM decoder through the data embedding
process. Repeating the above process with ∆ updates, the
decoder ends up with the final K best trajectory sequences

for the nth surrounding vehicle. Sharing the parameters of
the encoder and decoder for all surrounding vehicles, we can
collect the results of trajectory prediction for N surrounding
vehicles on the single OGM. A total of K×N future trajectory
hypotheses shown on the single OGM presents the unified
view on how the state of the dynamic objects around the ego
vehicle would develop in ∆ time steps ahead.

B. Network Structure

1) Encoder: The encoder consists of three fully connected
(FC) layers followed by two LSTM layers stacked. Each
FC layer contains affine transformation followed by ReLU
(Rectified Linear Unit) activation function. They are designed
for two purposes; 1) transforming the 6 dimensional input
data into 256 dimensional feature being consistent with the
LSTM cell dimension and 2) extending the network capacity
enough to capture the complex structure of the trajectory
data. The output from the last FC layer is then fed into
the LSTM stack. The LSTM stack is constructed with two
LSTMs with 256 dimensional cell memory for each. Inside
the stack, the output vector from the the first LSTM is fed
to the second LSTM as an input. After M recursive updates
in the two LSTMs, their latest cell states C(1st)

T and C(2nd)
T

are determined and passed to the decoder.
2) Decoder: The decoder consists of the two LSTM layers

stacked followed by three FC layers, the Softmax layer, and
the embedding layer. The decoder LSTMs use the cell state
vectors passed from the encoder as their initial cell states.
The first LSTM of the decoder is initialized by C(1st)

T and
the second decoder LSTM is by C(2nd)

T . The output from
the second LSTM is fed to the FC layers. While the first
and second FC layers have the same structure as those in
the encoder, the last FC layer has the output dimension
of 757 corresponding to the number of class (i.e., Q =
36 × 21 + 1). Then, the output of the FC layers is passed
through the Softmax function, which produces the probability
of the occupancy on the probability map of the size 757.
Based on all K probability maps derived for all hypothesis,

most probable K trajectory candidates are selected by the
beam search algorithm. The selected K OGM indices are
fed back to the decoder through the embedding process. In
the embedding step, we employ two embedding matrices of
size 128 × 37 and 128 × 22 in which each column vector
corresponds to the longitudinal (wit ∈ {1, ..., 36}) and lateral
(lit ∈ {1, ..., 21}) grid indices on the OGM as well as the
out-of-map state. Among these column vectors, K vectors are
gathered from each embedding matrix, that is, 2×K vectors
in total according to the selected longitudinal and lateral OGM
indices. Then, they are concatenated into 256 dimensional
vectors where each of them represents the selected OGM
indices and delivered to the decoder LSTM to be used in the
next decoding step. This procedure is repeated until we reach
the prediction length of ∆.

C. Training Methodology

The parameters of the LSTM encoder-decoder (including
the embedding matrices) are trained in an end to end fashion.
We generate the training data set by cropping all available
(M + ∆) length trajectory samples from the trajectory record
for each surrounding vehicles. Assuming that the trajec-
tory data collected from the sensors O(n)

T−M+1, ...,O
(n)
T+∆

is sufficiently good in terms of accuracy, the OGM grid
indices extracted from the subsequent ∆ measurements (i.e.,
O(n)
T+1, ...,O

(n)
T+∆) can be used as the label for the supervised

training. The loss function to be minimized is given by the
negative log likelihood function

L(θ) =−
J∑
j=1

∆∑
δ=1

Q∑
q=1

(
oj,T+δ,q ln zj,T+δ,q

)
(9)

where J is the total number of the training samples, ∆ is
the prediction length, and Q is the total number of classes.
The variable oj,T+δ,q is the OGM grid label represented in
the one hot encoding. For the jth example, the label oj,T+δ,q

becomes one if the surrounding vehicle occupies the qth grid
element and zero otherwise. Note also that zj,T+δ,q is the qth
output of the Softmax layer in the LSTM decoder for the jth
example. For the minimization of the loss function, we adopt
the stochastic gradient decent method with a momentum,
called ADAM optimizer [19] with mini batch size B. The
training is stopped if the validation error (obtained from 15%
of the training data) does not decrease anymore.

IV. EXPERIMENTS

In this section, we present the performance of the proposed
trajectory prediction technique based on the experiments
conducted on real highway driving.

A. Data Collection

We collected the large set of vehicle trajectory data from
several hours of highway driving around Seoul, Korea. The
test vehicle was Hyundai Genesis equipped with Delphi long
range front radars (Fig. 5). The sampling rate for the data
was set to 10ms during the data collection, but the raw
data was too noisy and often imbued with cut-offs because
of asynchronous sampling. To cope with this problem, we

Fig. 5. The test vehicle.

averaged the samples over 100ms duration and thus the update
period of the final data became 100ms. As a result, there were
total 1325 trajectory sequences recorded from 26 different
highway scenarios including lane changes, cut-in, and merging
at the junction. From the training dataset, we used 85% (1126
sequences) for the training and 15% (199 sequences) for
validation.

B. Experiment Setup

In our experiments, the maximum prediction range is set
to ∆ = 20 (corresponding to 2 seconds). The initial learning
rate is set to 0.0008 and halved whenever the validation
error is plateaued. The mini batch size B is set to 256.
Through intensive empirical optimization, we determine the
hyperparameters of the LSTM encoder-decoder network as
• The depth of fully connected layers: 3
• The LSTM cell state dimension: 256
• The depth of LSTM stack: 2
• The beam width K: 10
• The observation length M : 30

Predicting trajectory sample every 0.1s requires 20 decoder
updates to reach the prediction horizon of 2 sec. We found that
this is not desirable for the accuracy of long term prediction
and it leads to high computational cost for inference. Hence,
we trained the decoder to generate the trajectory sample
every 0.2 sec. This allows the proposed system to reach the
prediction horizon of 2 sec only with 10 updates.

For the performance evaluation, we use the Top-Ω mean
absolute error (MAE) as a performance metric. Given the
top Ω trajectory candidates among the trajectories produced
by the proposed scheme, the Top-Ω MAE is obtained by
finding the trajectory which is closest to the ground truth and
evaluating the absolute error between them, i.e.,

Top-Ω MAE =
1

L

L∑
i=1

∥∥∥∥∥
[
w∗i
l∗i

]
−

[
w

(gt)
i

l
(gt)
i

]∥∥∥∥∥
2

(10)

where L is the number of the test examples and (w∗i , l
∗
i)

is the candidate grid index closest to the ground truth and
(w

(gt)
i , l

(gt)
i) is the corresponding ground truth grid index,

respectively. This metric explains how well the ground
truth trajectory can be predicted by one of top Ω trajectory
candidates. Note that the Top-Ω MAE is measured in the unit
of the grid on the OGM. We can calculate the Top-Ω MAE
for each future time step δ ∈ {1, ...,∆}, which is denoted as
“Top-Ω MAE(δ)". We can measure the error in longitudinal

TABLE I
MAE, MAE_X, AND MAE_Y OF SEVERAL TRAJECTORY PREDICTION ALGORITHMS

MAE (Grids)
Proposed
(Ω = 1)

Proposed
(Ω = 3)

Proposed
(Ω = 5)

Baseline 1
(Kalman filter)

Baseline 2
(Basic LSTM)

Baseline 3
[14]∆

0.4s 0.64 0.46 0.41 1.52 N/A N/A
0.8s 0.84 0.66 0.59 2.79 N/A N/A
1.2s 0.99 0.79 0.73 3.92 N/A N/A
1.6s 1.14 0.95 0.83 5.27 N/A N/A
2.0s 1.27 1.02 0.93 6.36 1.93 1.31

MAE_X (Grids)
Proposed
(Ω = 1)

Proposed
(Ω = 3)

Proposed
(Ω = 5)

Baseline 1
(Kalman filter)

Baseline 2
(Basic LSTM)

Baseline 3
[14]∆

0.4s 0.24 0.15 0.14 0.54 N/A N/A
0.8s 0.30 0.20 0.18 1.17 N/A N/A
1.2s 0.36 0.25 0.23 1.38 N/A N/A
1.6s 0.43 0.33 0.27 1.80 N/A N/A
2.0s 0.50 0.35 0.32 2.07 0.96 0.44

MAE_Y (Grids)
Proposed
(Ω = 1)

Proposed
(Ω = 3)

Proposed
(Ω = 5)

Baseline 1
(Kalman filter)

Baseline 2
(Basic LSTM)

Baseline 3
[14]∆

0.4s 0.45 0.34 0.31 1.29 N/A N/A
0.8s 0.63 0.52 0.46 2.35 N/A N/A
1.2s 0.75 0.63 0.58 3.51 N/A N/A
1.6s 0.87 0.75 0.67 4.78 N/A N/A
2.0s 0.95 0.81 0.73 5.84 1.34 1.06

and lateral directions using Top-Ω MAE_X(δ) and Top-Ω
MAE_Y(δ), respectively.

C. Experiment Results

We first present the MAE performance of the proposed
prediction method. For performance comparison, we compare
our method with the conventional Kalman filter based on the
constant velocity model. We also consider the basic LSTM
model trained to predict the probability of the occupancy over
OGM and more complex LSTM based prediction method
proposed in [14]. We also present the performance of the
proposed algorithm with Ω = 1, 3 and 5. Table I presents
the MAE, MAE_X, and MAE_Y achieved by the trajectory
prediction algorithms of interest for the prediction time steps
of ∆ = 0.4, 0.8, 1.2, 1.6 and 2.0 sec. Since Kalman filter can
also generate the future sequence by repeating the prediction
update steps, we provide the MAEs for all time steps of
∆. On the contrary, the LSTM model and the prediction
scheme [14] only predict the future location of the target
vehicle after particular time ahead (e.g., 2.0 sec). Hence, we
provide the MAEs corresponding to ∆ = 2.0 sec only. We
see that the prediction accuracy for all schemes of interest
decreases with ∆ since it is more difficult to predict the
distant future. We observe that the proposed algorithm with
Ω = 1 significantly outperforms both the Kalman filter and
the basic LSTM model. With Ω = 1, the proposed scheme
achieves the performance comparable to the baseline [14]. But
with Ω = 3 and 5, the performance of the proposed scheme
exceeds that of the baseline [14] since our method generates
more trajectory samples which are strongly likely to appear.
Note that as compared to the baseline [14], the proposed
scheme has the advantage of generating the full sequences

1 2 3 4 5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

G
rid

)

=2.0sec
=1.6sec
=1.2sec
=0.8sec
=0.4sec

Average

Fig. 6. MAE versus Ω of the proposed method

of the promising trajectory candidates in each time step. The
above mentioned trend appears for all MAE, MAE_X, and
MAE_Y results provided in Table I.

Next, we investigate how the proposed method behaves
with respect to the parameters ∆ and Ω. Fig. 6 shows the plot
of MAE as a function of Ω for several values of ∆. We also
include the MAE averaged over all values of ∆ considered.
As Ω increases, the proposed system generates more trajectory
hypotheses and the MAE performance improves for all cases.
Note that the performance improvement due to increasing Ω is
more dramatic for the case of higher ∆, yielding the decrease
of MAE by around 0.2 grid for the change from Ω = 1 to
3. This implies that including more trajectory hypotheses
increases the probability that one of the trajectory candidates

found by our algorithm is close to the ground truth trajectory.
Therefore, the ability of the proposed method to generate
the multiple trajectories would provide more informative and
reliable prediction results to the subsequent path planning
and control steps for autonomous driving.

V. CONCLUSIONS

In this paper, we proposed the new vehicle trajectory
prediction method based on the LSTM encoder-decoder
neural network architecture. The proposed system employs
the LSTM encoder to analyze the past sensor measurements
and the LSTM decoder to generate the future trajectory
samples based on the encoder output. In order to alleviate
the error propagation issue appearing in iterative decoding
step, we applied the beam search algorithm, which keeps
the K best trajectory candidates for each decoding iteration.
As a result, the proposed method can generate multiple
trajectory hypotheses that might develop in many different
ways given the same previous situation. Our experiment
results confirmed that the proposed method can achieve the
significant improvement over the existing methods in terms
of the prediction accuracy while being able to generate the
full sequence of the predicted trajectory in one shot.

ACKNOWLEDGMENT
This work was supported by the Technology Innovation

Program(10083646) funded By the Ministry of Trade, Industry
& Energy(MOTIE, Korea) and Institute for Information &
communications Technology Promotion(IITP) grant funded
by the Korea government(MSIT) (No. R7117-16-0164, De-
velopment of wide area driving environment awareness and
cooperative driving technology which are based on V2X
wireless communication)

REFERENCES

[1] S. Ammoun and F. Nashashibi, “Real time trajectory prediction for
collision risk estimation between vehicles,” in IEEE Inter. Conf. on
Intel. Computer Commun. and Proc. (ICCP), 2009, pp. 417–422.

[2] C. Barrios and Y. Motai, “Improving estimation of vehicle’s trajectory
using the latest global positioning system with kalman filtering,” IEEE
Trans. on Instru. and Meas., vol. 60, no. 12, pp. 3747–3755, 2011.

[3] Q. Tran and J. Firl, “Online maneuver recognition and multimodal
trajectory prediction for intersection assistance using non-parametric
regression,” in IEEE Proc. Intel. Vehicles Symp. (IV), 2014, pp. 918–
923.

[4] C. Laugier, I. E. Paromtchik, M. Perrollaz, M. Yong, J.-D. Yoder, C. Tay,
K. Mekhnacha, and A. Nègre, “Probabilistic analysis of dynamic scenes
and collision risks assessment to improve driving safety,” IEEE Intel.
Transport. Syst. Magazine, vol. 3, no. 4, pp. 4–19, 2011.

[5] J. Wiest, M. Höffken, U. Kreßel, and K. Dietmayer, “Probabilistic
trajectory prediction with gaussian mixture models,” in IEEE Intel.
Vehicles Symp. (IV), 2012, pp. 141–146.

[6] T. Gindele, S. Brechtel, and R. Dillmann, “Learning driver behavior
models from traffic observations for decision making and planning,”
IEEE Intel. Transport. Syst. Magazine, vol. 7, no. 1, pp. 69–79, 2015.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Proc. Syst., 2012, pp. 1097–1105.

[8] K. Cho, B. van Merriënboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder–decoder for statistical machine translation,” in Proc. of
2014 Conf. on Empirical Methods in Natural Language Processing
(EMNLP), Oct. 2014, pp. 1724–1734.

[9] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[11] A. Karpathy, “The unreasonable effectiveness of recurrent neural
networks,” http://karpathy.github.io/2015/05/21/rnn-effectiveness, 2015.

[12] P. Ondruska and I. Posner, “Deep tracking: Seeing beyond seeing
using recurrent neural networks,” in Proc. AAAI Conf. on Artificial
Intelligence, 2016, pp. 3361–3367.

[13] A. Khosroshahi, E. Ohn-Bar, and M. M. Trivedi, “Surround vehicles
trajectory analysis with recurrent neural networks,” in IEEE Conf. on
Intel. Transport. Syst. (ITSC), 2016, pp. 2267–2272.

[14] B. Kim, C. M. Kang, S. H. Lee, H. Chae, J. Kim, C. C. Chung, and J. W.
Choi, “Probabilistic vehicle trajectory prediction over occupancy grid
map via recurrent neural network,” arXiv preprint arXiv:1704.07049,
2017.

[15] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. S. Torr, and
M. Chandraker, “DESIRE: distant future prediction in dynamic scenes
with interacting agents,” in IEEE Conf. on Computer Vision and Pattern
Recog. (CVPR), 2017, pp. 2165–2174.

[16] G. Neubig, “Neural machine translation and sequence-to-sequence
models: A tutorial,” arXiv preprint arXiv:1703.01619, p. 31, 2017.

[17] M. Luong, E. Brevdo, and R. Zhao, “Neural machine translation
(seq2seq) tutorial,” https://github.com/tensorflow/nmt, 2017.

[18] A. Milstein, “Occupancy grid maps for localization and mapping,” in
Motion Planning. InTech, 2008.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. of 2015 Inter. Conf. on Learning Representations (ICLR),
2014.

	I Introduction
	II Review on LSTM Encoder-Decoder Architecture
	II-A Long-Short Term Memory (LSTM)
	II-B LSTM Encoder-Decoder Architecture
	II-C The Beam-Search Algorithm

	III Proposed Trajectory Analysis Technique
	III-A System Description
	III-B Network Structure
	III-B.1 Encoder
	III-B.2 Decoder

	III-C Training Methodology

	IV Experiments
	IV-A Data Collection
	IV-B Experiment Setup
	IV-C Experiment Results

	V Conclusions
	References

