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Abstract— Collision mitigation and collision avoidance sys-
tems in intelligent vehicles reduce the severity and number of
accidents. To determine the optimal point in time at which
such systems should intervene, time-based criticality metrics
such as the Time-To-React (TTR) are commonly used. The
TTR describes the last point in time along the current trajec-
tory at which an evasive trajectory exists. In this paper, we
present a novel approach to determine the point in time after
which it is guaranteed that no evasive maneuver exists, i.e.,
by using reachable sets, we over-approximate the TTR. Our
deterministic upper bound of the TTR can be used to trigger a
collision mitigation system or to find a feasible emergency ma-
neuver which avoids the collision. We demonstrate the efficient
computation of the tight over-approximated TTR in different
urban and rural traffic scenarios, and compare our results to an
estimated TTR using an optimization-based trajectory planner.

I. INTRODUCTION

A. Motivation

Risk assessment is a crucial component of intelligent
vehicles to avoid collisions within and beyond the planning
horizon [1]. Advanced driver assistant systems (ADAS) have
to reliably determine whether the driver is able to avoid
potential collisions. If the assumed motion of the vehicle will
(most likely) end in a crash, a collision mitigation system
can reduce the severity of the impact. Such systems should
only intervene if no evasive trajectory exists so that the
driver has control of the vehicle as long as possible and to
prevent unnecessary interventions (false positives). However,
a system also has to detect every unavoidable collision so
that no missed intervention occurs (false negatives). Self-
driving vehicles, in addition, can use risk assessment to avoid
collisions and to obtain optimal trajectories which are the
least critical.

B. Related work

We review existing work in the categories a) detecting
unavoidable collisions, b) computing the Time-To-Collision,
and c) computing the time until the last evasive maneuver.

a) Detecting unavoidable collisions: Collision mitiga-
tion systems only intervene at unavoidable collisions, which
are often approximately detected by checking a finite set
of possible evasive maneuvers [2], [3]. To describe states
in which the system eventually collides regardless of what
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trajectory it follows, the notion of Inevitable Collision States
(ICS) was introduced [4]. In order to guarantee that a
collision is unavoidable, one has to employ methods which
consider the set of all possible trajectories. For this purpose,
reachable sets, which are the set of states reachable for a
system subject to a set of inputs, are often used. The work
in [5] uses backward reachable sets for the example of a lane
departure system. The authors of [6] determine all reachable
positions while ignoring the velocity domain, which results
in overly large reachable regions. In our previous work
[7], we compute an over-approximation of the reachable set
considering position, velocity, and acceleration constraints.
This over-approximation can be used to determine the nonex-
istence of evasive trajectories [8].

b) Time-To-Collision: For practical employment, one
does not only wish to detect whether a collision is unavoid-
able given the current state, but rather wants to know the
time until a collision when continuing the current trajectory.
Time-To-Collision (TTC) denotes the time until impact,
given a predicted trajectory of the ego vehicle and of each
surrounding object [9]. A worst-case analysis of the TTC is
described in [10]. To account for uncertainties, one can use
stochastic predictions to obtain a probabilistic TTC [11]–
[13].

c) Time until last evasive maneuver: The TTC is not
sufficient for collision avoidance, since it provides no infor-
mation about possible evasive maneuvers. For that reason, the
Time-To-React (TTR) has been proposed as the remaining
time along the current trajectory until which a collision-
free and dynamically feasible trajectory still exists [14]. The
authors of [14] define the TTR as the maximum of the
Time-To-Brake (TTB), Time-To-Steer (TTS), and Time-To-
Kickdown (TTK), which correspond to maximum possible
braking, steering, and acceleration trajectories, respectively.
These time-based metrics are often generalized as Time-To-
X (TTX), i.e., the time remaining for an action X to avoid
a collision. Since [14] is only designed for restricted traffic
situations with one other object, an iterative search strategy
using predefined evasive trajectories is proposed in [15] for
scenarios with multiple objects. An active safety system for
pedestrian avoidance employing the concepts of TTB and
TTS is described in [16]. To consider uncertainties when
computing the TTR, one can use probabilistic collision detec-
tion systems [17]–[19], which are similar to the probabilistic
TTC as described above.

It is difficult to exactly determine the TTR, since all
possible evasive trajectories have to be evaluated. If only
a finite number of evasive trajectories is considered, it
cannot be guaranteed that one has found the latest possible



trajectory. However, we wish to know when to react at the
latest, i.e., the earliest point in time at which an evasive
trajectory definitely does not exist.

C. Contribution
We propose an efficient method to over-approximate the

TTR. Existing sampling-based methods (e.g., [14]–[16])
under-approximate the TTR, since they determine the time
at which they can still obtain a feasible evasive trajectory. In
contrast, our novel set-based approach determines an over-
approximation of the TTR, since by using reachable sets, we
determine the time at which it is guaranteed that no evasive
maneuver exists.

Given an assumed motion of the vehicle, our upper bound
of the TTR makes it possible for collision mitigation systems
to know beforehand when, at the latest, to definitely intervene
or warn the driver. Similarly, collision avoidance systems
or autonomous vehicles can use the over-approximated TTR
as the upper bound when searching for evasive trajectories,
since it is guaranteed that no collision-free trajectory exists
after that time.

Using our over-approximated TTR, one can now judge the
accuracy of existing TTR computations. We show that our
upper bound is a tight over-approximation by estimating the
TTR using an optimization-based trajectory planner. Note
that our method is deterministic, i.e., it always returns the
same TTR for the same configuration. Furthermore, our
approach is independent of a particular prediction of other
objects and can be used with any given set-based traffic
prediction.

The remainder of this paper is organized as follows: After
defining the problem statement in Sec. II, we present our
algorithm to over-approximate the TTR in Sec. III. Sec. IV
describes the optimization-based trajectory generation we
use for comparison. Examples of traffic scenarios in Sec. V
illustrate that we can tightly over-approximate the TTR. We
conclude our paper in Sec. VI.

II. DEFINITIONS AND PROBLEM STATEMENT

A. Definitions
We model the motion of the vehicle by a dynamical system

ẋ(t) = f
(
x(t), u(t)

)
, (1)

where x(t) ∈ X is the state within the state space X ⊆
Rn, u(t) ∈ U is the input within the set of admissible
control inputs U ⊆ Rm, and t is the time. The solution
of (1) for an input trajectory u(·) and an initial state x0 at
time t0 is denoted by the state trajectory x

(
t;x0, u(·)

)
. We

further introduce the planning horizon T and the final time
tf := t0 + T . Since we require that possible trajectories
are collision-free, the vehicle must avoid the occupancy of
(dynamic) obstacles O(t) ⊆ R2. Thus, we define the set of
all colliding states by

F(t) :=
{
x(t) ∈ X

∣∣A(x(t)
)
∩ O(t) 6= ∅

}
, (2)

where A
(
x(t)

)
⊆ R2 denotes the occupancy of the vehicle

on the road. Using the set of colliding states (obtained from

a given prediction), we can assess the risk of the current
input trajectory uc(·) ∈ U of the vehicle with initial state
x0 /∈ F(t0):

Definition 1 (Time-To-Collision) The Time-To-Collision
(TTC) is the maximum time we can continue the current
trajectory uc(·) ∈ U before we enter the set of colliding
states F(·):

TTC := sup
t∗∈R

{
t∗ − t0

∣∣ t∗ ∈ [t0, tf ],

∀t ∈ [t0, t∗] : x
(
t;x0, uc(·)

)
/∈ F(t)

}
.

Definition 2 (Time-To-React [14]) The Time-To-React
(TTR) is the maximum time we can continue the current
trajectory uc(·) ∈ U before we have to (and still can)
execute an evasive trajectory to avoid entering the set of
colliding states F(·) within the planning horizon T :

TTR := sup
t∗∈R

{
t∗ − t0

∣∣ t∗ ∈ [t0, tf ],∃u(·) ∈ U ,

∀t ∈ [t0, t∗] : x
(
t;x0, uc(·)

)
/∈ F(t) ∧

∀t ∈ [t∗, tf ] : x
(
t;x
(
t∗;x0, uc(·)

)
, u(·)

)
/∈ F(t)

}
.

An evasive trajectory in Def. 2 is any trajectory which
is collision-free until the end of the planning horizon. To
consider all evasive trajectories in the set of admissible
inputs, we define the reachable set of (1) given a set of
possible initial states X0:

Definition 3 (Reachable set) The reachable set is the set of
states which are reachable at time t from an initial set X0

at time t0 without entering F(·):

R(t;X0, t0) :=
{
x
(
t;x0, u(·)

) ∣∣∣x0 ∈ X0, u(·) ∈ U ,

∀τ ∈ [t0, t] : x
(
τ ;x0, u(·)

)
/∈ F(τ)

}
.

The reachable set is closely related to the existence of an
evasive trajectory:

Remark 1 (Existence of collision-free trajectory) From
Def. 3 it immediately follows that a collision-free trajectory
exists if and only if the reachable set of the current state x0

is nonempty at the final time tf :

R(tf ;x0, t0) 6= ∅ ⇒
∃u(·) : ∀τ ∈ [t0, tf ] : x

(
τ ;x0, u(·)

)
/∈ F(τ).

Thus, the TTR can also be expressed in terms of R:

Proposition 1 (Time-To-React using reachable sets) The
TTR is the last point in time along the current trajectory
from which the reachable set is nonempty at the end of the
planning horizon:

TTR = sup
t∗∈R

{
t∗ − t0

∣∣ t∗ ∈ [t0, tf ],

∀t ∈ [t0, t∗] : x
(
t;x0, uc(·)

)
/∈ F(t) ∧

R
(
tf ;x

(
t∗;x0, uc(·)

)
, t∗
)
6= ∅
}
.



Proof: Prop. 1 directly follows from Def. 2 and Def. 3.

In order to efficiently search for the TTR, we want to
know the time interval in which the TTR is monotonic with
respect to time. Using the TTC from Def. 1, we can express
the monotonicity:

Proposition 2 (Monotonicity of the TTR) Given a set of
colliding states F(·) and the current trajectory uc(·) of the
vehicle starting at x0. If there is no emergency trajectory
starting from uc(·) at t1 ≥ t0, there cannot be any trajectory
starting from a later point in time t2 ∈ [t1, t0 + TTC]:

t0 ≤ t1 ≤ t2 ≤ t0 + TTC ≤ tf :

R
(
tf ;x

(
t1;x0, uc(·)

)
, t1
)

= ∅ ⇒
R
(
tf ;x

(
t2;x0, uc(·)

)
, t2
)

= ∅.

Proof: From Def. 3, it follows that x
(
t2;x0, uc(·)

)
∈

R
(
t2;x

(
t1;x0, uc(·)

)
, t1
)

and thus ∀t ∈ [t2, tf ] :
R
(
t;x
(
t2;x0, uc(·)

)
, t2
)
⊆ R

(
t;x
(
t1;x0, uc(·)

)
, t1
)
.

B. Problem statement

In this paper, we want to estimate the Time-To-React
according to Prop. 1 for a given obstacle prediction O(t)
by a strict and tight over-approximation TTRmax ≥ TTR,
so that we know the maximum time we have to avoid a
collision.

To model the motion of the vehicle, we use a velocity-
and acceleration-bounded point mass:

f(x, u) =


ṡx
ṡy
v̇x
v̇y

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



sx
sy
vx
vy

+


0 0
0 0
1 0
0 1

[uxuy
]
,

(3)
vmin,x ≤ vx ≤ vmax,x, |ux| ≤ amax,

vmin,y ≤ vy ≤ vmax,y, |uy| ≤ amax,

and assume that the occupancy of the vehicle on the road is
a circle with radius rego:

A
(
x(t)

)
=
{
y
∣∣∣ y ∈ R2,

∥∥∥[sx sy
]T − y∥∥∥

2
≤ rego

}
. (4)

The dynamical system (3) is deliberately simple and
cannot accurately model a vehicle in emergency situations.
However, with the two basic assumptions of bounded veloc-
ity and acceleration, it is a valid abstraction of more accurate
vehicle models, i.e., the reachable set of the abstract model
contains the reachable set of more accurate models, and we
may use Prop. 1 to find a valid over-approximation of the
TTR.

III. OVER-APPROXIMATION OF THE TTR

To determine an over-approximative TTRmax according to
Prop. 1, we have to compute the reachable set of (3). Since
the computation of the exact reachable set is often compu-
tationally not feasible, we resort to a method computing an
over-approximation (superset) of the reachable set, i.e., ∀t ≥
0 : R⊃(t;X0, t0) ⊇ R(t;X0, t0), as described in Sec. III-A.

t0 t1
t2

t3 t4 t5

initial position

y

x

obstacle region

Bk5
Bl5

Bj5

Fig. 1. Reachable set approximation for five time steps. Bold arrows indi-
cate which subsets Bqi−1 contribute to which subsets Bqi in the succeeding
time step ti.

Given a method to compute an over-approximation of the
reachable set, we can determine an upper bound of the TTR
using Prop. 1: If for a candidate t∗, our over-approximation
R⊃
(
t;x
(
t∗;x0, uc(·)

)
, t∗
)

vanishes at t = tf , there is no
evasive trajectory starting from t∗, and t∗−t0 is a valid over-
approximative TTRmax. To minimize TTRmax ≥ TTR, we
search the set of candidates t∗ ∈ [t0, tf ] to find the earliest at
which the reachable set vanishes, as described in Sec. III-B.

A. Over-approximation of the reachable set

We compute an over-approximation of the reachable set by
using [7], which is briefly described in the following. Our
method computes R⊃i iteratively at discrete points in time
ti. In each iteration, we first propagate R⊃i−1 one time step
forward to obtain the set of states Xi:

Xi ⊇
⋃

xi−1∈R⊃
i−1

⋃
u(·)∈U

x
(
ti;xi−1, u(·)

)
. (5)

Then, we remove the set of colliding states:

R⊃i ⊇ Xi \ F(ti). (6)

Note that this approach uses several approximations which
are necessary for an efficient numerical computation. These
are due in particular to an efficient set representation (convex
polytopes) and required set operations (e.g., set difference
and union). For further details, we refer the reader to [7].

The resulting set R⊃i is represented by the union of four-
dimensional convex polytopes Bqi (in the position/velocity
domain):

R⊃i =
⋃
q

Bqi . (7)

As an example, Fig. 1 shows the computed reachable set
at different time steps in the position domain. Each of the
polytopes Bqi originates from one or more parents Bqi−1. The
relationships between each Bqi−1 and its succeeding Bqi can
be represented as a directed acyclic graph. Each trajectory
which visits the set Bqi must have visited one of its parents
Bqi−1 and must visit one of its children Bqi+1, as is illustrated
in Fig. 1 for i = 1, . . . , 5.



B. Search for the minimum TTRmax

The reachable set R⊃ allows us to determine whether a
candidate t∗ yields a valid TTRmax. To efficiently find the
minimum TTRmax in the set of candidates t∗ ∈ [t0, tf ], we
propose to use binary search. Alg. 1 gives an outline of the
discrete-time binary search for TTRmax. As the upper bound
for the search, we use the TTC, since uc(·) is only collision-
free from t0 until t0+TTC (cf. Def. 1 and Prop. 2). The TTC
is easily determined using uc(·) and F(·). We do not refine
the lower bound of the search, since this requires additional
computing resources; however, one could use the Time-To-
Brake as a lower bound. To compute this time, one can start
at the TTC and apply the maximum feasible acceleration
backwards along the path of uc(·) until a state x

(
t;x0, uc(·)

)
is reached [20].

Algorithm 1 Discrete-time binary search for TTRmax

Input: x0 at t0, ∆t, tf , TTC, F(t), uc(·)
Output: TTRmax

1: low = 0, high = dTTC/∆te
2: while low < high do
3: mid ← b(low + high)/2c
4: t∗ ← mid ·∆t+ t0
5: if R⊃

(
tf ;x

(
t∗;x0, uc(·)

)
, t∗
)

is not ∅ then
6: low ← mid + 1
7: else
8: high ← mid
9: end if

10: end while
11: return TTRmax ← low ·∆t

Usually, the TTR is computed online, i.e., during runtime
of the vehicle with regular updates of x0, uc(·), and F(t).
Thus, we can use the TTRmax based on the information from
the previous planning step to compute the TTRmax based on
the current information. By refining the previously obtained
TTRmax, we can enhance the search and save computation
time.

IV. ESTIMATION OF THE TTR THROUGH
OPTIMIZATION-BASED TRAJECTORY GENERATION

In order to evaluate the tightness of the over-approximation
of our proposed set-based algorithm, we compare the upper
bound TTRmax (computed with Alg. 1) with an estimate
TTR≈. We determine TTR≈ by searching for the latest point
in time from which we can explicitly generate a valid evasive
trajectory using the same vehicle model (3). Suppose we
have a set of possible TTR≈ candidates. For each candidate,
we try to find a feasible trajectory starting from t∗ = t0 +
TTR≈. Finally, we choose the longest TTR≈ for which a
feasible trajectory can be found. Each trajectory is generated
by iteratively solving a convex optimization problem around
an initial trajectory guess, as described below.

To generate a collision-free initial trajectory, we use a
depth-first search in the reachable set. The initial trajectory
guess

[
x̂0, . . . , x̂∗, . . . x̂n

]T
is constructed so that it matches

(a) yi, ri yi+1, ri+1
optimized trajectory

initial trajectory

(b)

ri rego
g

regox̂i

yi

obstacle region

Fig. 2. (a) We obtain the locally optimized trajectory (red) from the initial
trajectory (blue). At each time step i, the optimized trajectory may deviate
from yi at most by the radius ri. (b) The center points yi and radii ri are
determined from the initial trajectory by searching a circular region which
is collision-free and contains the initial trajectory x̂i. The circular region
is found by increasing ri and moving yi from x̂i along the direction g
(an approximation of the gradient of the distance function to the obstacle
region).

the intended trajectory from time t0 until time t∗ and lies in
the reachable set for the remaining time steps. The optimized
trajectory is obtained by displacing the states at the points in
time t∗+1, . . . , tf . As shown in Fig. 2(a), we constrain the
displacement to be smaller than r∗+1, . . . , rn to ensure that
the initial trajectory is only locally optimized, smooth, and
collision-free. Instead of directly using the center points x̂i
for the optimization, we introduce the positions yi, since if x̂i
is close to an obstacle, the allowed displacement ri would be
small and there would only be little space for optimization.
We determine yi and rj by a local search starting from x̂i,
as shown in Fig. 2(b).

The optimization problem is to minimize the absolute
maximum acceleration:

minimize
u∗,...,un−1

∥∥∥[u∗, . . . , un−1

]T∥∥∥
∞

subject to xi = Axi−1 +Bui−1,

x∗ = x̂∗,[
vmin,x

vmin,y

]
≤ C1xi,[

vmax,x

vmax,y

]
≥ C1xi,

‖C2xi − yi‖2 ≤ ri, i = ∗+ 1, . . . , n

(8)

where

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , B =


∆t2

2 0

0 ∆t2

2
∆t 0
0 ∆t


and

C1 =

[
0 0 1 0
0 0 0 1

]
, C2 =

[
1 0 0 0
0 1 0 0

]
.



If we obtain a trajectory with ‖
[
u∗, . . . , un−1

]T ‖∞ ≤ amax,
we accept the trajectory as a valid solution; otherwise, we
repeat the optimization with this trajectory as the initial
trajectory and with a new set of displacement constraints
until the optimization objective cannot be further reduced.

V. NUMERICAL EXAMPLES

We demonstrate our computation of the TTRmax and
TTR≈ in three scenarios, which are included in the
CommonRoad benchmarks1 [21]. Tab. I lists the parame-
ters of the numerical examples. We generate the intended
trajectory uc(·) such that the ego vehicle follows the center
of its current lane with constant velocity. To obtain the set
of occupied points of other traffic participants O(t) within
the planning horizon, we use our prediction tool SPOT [22],
which assumes that other vehicles have limited velocity and
acceleration and abide by the traffic rules.

A. Two-lane road (Scenario I)

The first, deliberately simple scenario is a rural two-lane
road2. Fig. 3(a) illustrates the initial position of the ego
vehicle, its current intended trajectory, and a static obstacle
in the lane of the ego vehicle.

We obtain TTRmax = 0.8 s, since it is the first time along
the intended trajectory at which the reachable set becomes
empty at tf . Fig. 3(b) depicts the reachable set which is
initialized at t∗ = TTRmax − ∆t. Using the optimization-
based trajectory planner, we obtain an evasive trajectory
which branches off at TTR≈ = 0.7 s, as shown in Fig. 3(c).
The maximum acceleration of this trajectory almost requires
the maximum allowed acceleration amax. When decreasing
the time step size to ∆t = 0.01 s, we obtain TTRmax =

1commonroad.in.tum.de
2CommonRoad ID: S=Z Overtake 1a; based on [23, Fig. 3]

TABLE I
PARAMETERS OF THE SCENARIOS (S.) I TO III.

Parameter of ego vehicle Value

Initial speed (S. I) v0 = 20.0 m/s

Initial speed (S. II) v0 = 7.0 m/s

Initial speed (S. III) v0 = 14.0 m/s

Minimum velocity (S. I) vmin,x = 0.0 m/s

Minimum velocity (S. I) vmin,y = −10.0 m/s

Maximum velocity (S. I) vmax,x = 25.0 m/s

Maximum velocity (S. I) vmax,y = 10.0 m/s

Minimum velocity (S. II, III) vmin,x/y = −14.0 m/s

Maximum velocity (S. II, III) vmax,x/y = 14.0 m/s

Absolute maximum acceleration amax = 10.0 m/s2

Radius of vehicle rego = 0.9 m

Parameter of simulation Value

Initial time t0 = 0 s

Time horizon T = 3.0 s

Time step size ∆t = 0.1 s

(a)

host vehicle

intended trajectory obstacle regions

(b)

t∗

intended trajectory

t0 reachable set over time

(c)

t∗t0

intended trajectory evasive trajectory

Fig. 3. Results of Scenario I: TTRmax = 0.8 s and TTR≈ = 0.7 s. (a)
Initial configuration with current trajectory uc(·) from t0 until tf . (b) The
reachable set R⊃(

t;x
(
t∗;x0, u(·)

)
, t∗

)
starting at t∗ = TTRmax−∆t is

plotted for all times t ∈ [t∗, tf ]. (c) The latest possible evasive trajectory
branches off the intended trajectory at t∗ = TTR≈.

0.79 s and TTR≈ = 0.72 s, which shows that TTRmax is a
rather tight upper bound.

B. Intersection (Scenario II)

Scenario II features an urban intersection, where the ego
vehicle intends a left turn3. As shown in Fig. 4(a), an
approaching vehicle is predicted to continue straight and
another vehicle, whose initial position is located outside of
the figure, is predicted to turn right.

Our over-approximation results in TTRmax = 1.1 s and
our estimation in TTR≈ = 1.0 s. The reachable set and the
optimized trajectory starting at state x

(
t∗;x0, uc(·)

)
along

the intended trajectory are depicted in Fig. 4(b)–(d) for
t∗ = TTRmax−∆t and different time intervals t. As shown
in Fig. 4(b), the reachable set is very small in early time
steps, and thus, we do not have much time to react. Once
we have evaded the approaching vehicle on the right, we
have much space on the road, as shown in Fig. 4(d). Note
that we can restrict the reachable set to certain lanes, e.g.,
lanes with same driving direction, by adding further position
constraints.

C. T-Intersection (Scenario III)

Fig. 5(a) illustrates the next urban traffic scenario, where
the current trajectory of the ego vehicle continues straight
with constant velocity, while three other traffic participants
are detected at the T-intersection ahead4. Since we are uncer-
tain about the intended maneuver of the other vehicles, the

3CommonRoad ID: S=GER Ffb 1c; based on [15, Sec. IV.-A]
4CommonRoad ID: S=GER Ffb 2b; based on [2, Sec. VI.-C]

http://commonroad.in.tum.de


(a)

host vehicle

intended
trajectory

traffic
participants

occupancy
prediction

t∗ = 1.0s

t ∈ [0.0s, 2.0s]

(b)

t∗ = 1.0s

t ∈ [2.0s, 2.5s]

(c)

t∗ = 1.0s

t ∈ [2.5s, 3.0s]

(d)

Fig. 4. Results of Scenario II: TTRmax = 1.1 s and TTR≈ = 1.0 s. (a)
Initial configuration with predicted occupancies O(t), t ∈ [t0, tf ]. (b)–(d)
The reachable set and the evasive trajectory both starting at t∗ = TTR≈
are shown for different time intervals t.

occupancy prediction includes full acceleration and braking,
and, for the vehicle approaching the intersection, turning left
and right.

We obtain TTRmax = 0.5 s and TTR≈ = 0.3 s. Fig. 5(b)–
(d) depicts the reachable set and optimized trajectory starting
at different TTR candidates t∗. It can be seen that the
reachable set is very small, and thus, only a few evasive
maneuvers exist. Note that, as shown in Fig. 5(d), the opti-
mized trajectory starting at t∗ = 0.4 s leaves the reachable
set, and its maximum accleration ‖u‖∞ = 10.9 m/s2 is larger
than amax; thus, this trajectory is not dynamically feasible
for our vehicle model, and TTR≈ = 0.3 s.

D. Computation times

Next, we examine the computation times required to
determine the reachable set for all times from the current
candidate t∗ until the final time tf (i.e., line 5 of Alg. 1).
Tab. II compares the computation times of all presented
scenarios for different starting times t∗. We can see that
the computation time of our method drastically decreases
for a smaller solution space of the ego vehicle, which is
beneficial when trying to efficiently determine the TTR. The
computation times have been obtained using a Python/C++

(a)

host vehicle

intended trajectory

traffic participant

occupancy prediction

(b)

t∗ = 0.2s

(c)

t∗ = 0.3s

(d)

t∗ = 0.4s

Fig. 5. Results of Scenario III: TTRmax = 0.5 s and TTR≈ = 0.3 s. (a)
Initial configuration with predicted occupancies O(t), t ∈ [t0, tf ]. (b)–(d)
Starting at different TTR candidates t∗, the reachable set and the optimized
trajectory are plotted for times t ∈ [t∗, 2.2 s].



TABLE II
COMPUTATION TIMES FOR THE REACHABLE SET UNTIL tf .

Scenario Initialization time Computation time

Scenario I t∗ = 0.7 s 57 ms

Scenario I t∗ = 0.8 s 1 ms

Scenario II t∗ = 1.0 s 86 ms

Scenario II t∗ = 1.1 s 0.2 ms

Scenario III t∗ = 0.4 s 28 ms

Scenario III t∗ = 0.5 s 1 ms

implementation on a machine with a 2.6 GHz Intel Core
i7 processor with 20 GB 1600 MHz DDR3 memory. (SPOT
requires around 30 ms to compute the occupancy of one
traffic participant for the whole planning horizon.)

VI. CONCLUSION AND FUTURE WORK

We present a novel approach to tightly over-approximate
the Time-To-React for risk assessment. The proposed method
provides an upper bound of the TTR by iteratively computing
the set of states reachable by the ego vehicle starting at
states along the current trajectory. As soon as the reachable
set becomes empty within the planning horizon, an evasive
maneuver definitely does not exist. The novelty of our
approach is that we obtain a guaranteed over-approximation
of the TTR for arbitrary traffic scenarios. Our deterministic
approach is independent of the prediction of other objects but
can consider uncertainties in their unknown future behavior.
Our experiments show that the computation times of our
proposed over-approximation of the TTR are very short
(below 100 ms) and decrease for more critical situations;
thus, our approach is promising for real-time application.

As future work, we wish to define terminal states which
can be considered safe for an infinite time horizon so that
no finite planning horizon is required.
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