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Abstract— The objective of this paper is to propose a sys-
tematic analysis of the sensor coverage of automated vehicles.
Due to an unlimited number of possible traffic situations, a
selection of scenarios to be tested must be applied in the
safety assessment of automated vehicles. This paper describes
how phenomenological sensor models can be used to identify
system-specific relevant scenarios. In automated driving, the
following sensors are predominantly used: camera, ultrasonic,
Radar and Lidar. Based on the literature, phenomenological
models have been developed for the four sensor types, which
take into account phenomena such as environmental influences,
sensor properties and the type of object to be detected. These
phenomenological models have a significantly higher reliability
than simple ideal sensor models and require lower computing
costs than realistic physical sensor models, which represents an
optimal compromise for systematic investigations of sensor cov-
erage. The simulations showed significant differences between
different system configurations and thus support the system-
specific selection of relevant scenarios for the safety assessment
of automated vehicles.

I. INTRODUCTION
In addition to the development of automated driving

functions, proving that they are safe is one of the most
relevant tasks facing the entire automotive industry. Proof of
safety is of particular importance for systems of automation
level 3 and higher according to SAE [1] and remains an
unsolved problem. The difference between lower levels of
automation and level 3 (or higher) is that the responsibility
for the driving task transfers from the human driver to the
system. In contrast to level 2, this means that the driver no
longer has to permanently monitor the system. At level 2,
the driver is required to intervene immediately if the driving
function responds incorrectly and the driver has to establish
a safe driving condition. For level 3 and higher, this means
that the activated system must be able to handle all traffic
situations independently and safely because the driver can
no longer be used as a fall-back option. Due to the open-
parameter space that occurs in reality, an infinite number of
scenarios can theoretically be defined. An economic proof
of the safety of automated vehicles is therefore not possible.

In order to achieve an economic safety assessment of au-
tomated driving functions, a method for determining relevant
scenarios must be developed. One approach for this is so-
called scenario-based testing, which is also being developed
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in the German funding project PEGASUS [2]. Based on
the assumption that the majority of situations occurring in
real traffic are uncritical, scenario-based testing focuses on
relevant, critical scenarios, thus reducing the test scope.
A reduction of costs is achieved by increasing the use of
simulation. The previously unsolved task of identifying all
relevant scenarios remains, despite this approach.

When selecting the relevant scenarios to be tested, many
publications focus on testing the driving function using
ground-truth data [3]–[5]. The perception of the environment
by sensors is neglected, but this has a significant influence on
the performance of the overall system. A scenario based on
ground-truth data can be uncritical for the driving function,
but can lead to risks or accidents if sensor uncertainties
are taken into account (e.g. Uber accident [6]). Since each
manufacturer uses an individual sensor setup, it follows that
the selection of the relevant scenarios must also be adapted
to the respective system under test.

This contribution therefore presents a novel approach for
a systematic analysis of the sensor coverage of automated
vehicles, which can be used to derive relevant test cases for
the system to be tested. The results show that different system
configurations have clearly different weaknesses, which have
to be considered during the tests.

The article is structured as follows: Section II-A introduces
different types of sensor models. Based on this, Section II-
B explains the basics of phenomenological sensor models.
Section III describes in detail the procedure for modeling
the sensor coverage. In the results (Section IV), two system
configurations are compared and system-specific relevant test
scenarios are derived. The results are then critically discussed
in Section V. A summary (Section VI) including an outlook
for future work concludes the article.

II. RELATED WORK

The following section gives an overview of sensor models
used in literature and explains the basics of the sensors used
in the automotive industry.

A. Sensor Models

Sensor models can be used for simulation-based testing
of automated vehicles and for sensor coverage analysis.
In literature, there are different types of sensor models,
which differ in their level of detail. The choice of the
optimal level of detail depends on the intended use and must
therefore be adjusted accordingly. In the following, three
sensor models, sorted according to the increasing level of
detail, are explained: ideal, phenomenological and physical
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sensor models. The classification and the explanations are
based on [7]–[10].

1) Ideal Sensor Model: Ideal sensor models map the
geometric space of the sensor coverage without measurement
errors, i.e. objects are detected any time when they are within
the sensor’s field of view. Physical effects are not taken into
account. Idealized sensor models represent so-called ground-
truth models that provide the true, undisturbed values of the
simulated quantities (e.g. position of an object).

2) Phenomenological Sensor Model: Phenomenological
sensor models simulate the properties of the sensors and real
effects. Physical effects are modeled phenomenologically,
i.e. the result of the effects is reproduced. The relationship
between inputs and outputs of the sensors as well as the
exact internal processes and effects are unknown.

3) Physical Sensor Model: Physical sensor models map
the characteristics of the sensors, the physical principle and
physical effects correctly. One physical modeling approach
is the so-called ray-tracing model that uses the ray-tracing
approach. It is assumed that the transmitted and received
signals propagate along rays which are reflected and refracted
on objects based on the laws of reflection and refraction.

The characteristics of the different sensor models are
summarized in Table I. Phenomenological sensor models
represent the optimal trade-off between level of detail and
computing costs for analyzing the sensor coverage of auto-
mated vehicles.

B. Sensor Fundamentals

The most important sensor types for automated driving
are ultrasonic, Radar, Lidar and camera [11]. By combining
these different types of sensors, sensor-specific weaknesses
of individual types can be compensated (Fig. 1).

In the following, the basics for the description of phe-
nomenological models of these four sensor types are ex-
plained. Based on their functional principles, the sensor types
can be divided into active and passive sensors. While active
sensors emit a signal and receive the signal reflected by the
object, passive sensors do not emit a signal and only measure
signals emitted by the object. Ultrasonic, Radar and Lidar
can be classified as active sensors, and cameras as passive
sensors. The symbols used in the following Equations and
their descriptions can be seen in Table II.

1) Active Sensors: The active sensors - ultrasonic, Radar
and Lidar - operate according to a similar principle: high-
frequency radiation (sound, radio waves or laser-beams) is
emitted by the transmitter and reflected by objects. The
reflected radiation is absorbed by the receiver and processed

TABLE I: Characteristics of different sensor models.

Level of detail Computing costs

Ideal low low
Phenomenological mid mid

Physical high high

fog

rain

night direct glare

velocity
resolution

angular
resolution

range
resolution

range

field of
viewobject

classification

contrast
information

Radar

Lidar

Ultrasonic

Camera

increasing
capabilities

Fig. 1: Strength and weaknesses of the most important
sensors for automated driving (adapted from [11] and [12]).

further. Signal processing can be used to obtain information
about the detected object (e.g. the distance).

In general, the performance of sensors can be expressed
by the signal-to-noise ratio SNR that describes the ratio
between the power of the received signal Pr and the power
of the noise Pn. It can be calculated according to Equation 1.

SNR =
Pr

Pn
(1)

TABLE II: List of symbols, their unit and description.

Symbol Unit Description

Ar,i m2 receiver area of sensor i
Bn,i 1/s noise bandwidth of sensor i
Dr m receiver diameter
Esun W/m2 radiation density of sunlight
Ge,i - emitter antenna gain factor sensor i
Gr,i - receiver antenna gain factor sensor i
h J s Planck constant
i - type of sensor: ultrasonic, Radar, Lidar
k J/K Boltzmann constant

Loa,i - overall damping coefficient of sensor i
Ne - number of generated electrons
Ne,sun - number of generated electrons by direct glare

Npix,camera - number of pixel of the camera
Npix,o - object size in the image measured in pixel
Pe,i W sensor i emitting power
Pn,i W sensor i noise power
Pr,i W sensor i receiving power
R m distance
QE - quantum efficiency at photon conversion
SNRi - signal-to-noise ratio of sensor i
tint s integration time of camera sensor
Tsys,i K system noise temperature of sensor i
Θlidar rad laser-beam expanding angle of Lidar sensor
λi m wavelength of emitted signal of sensor i
ν 1/s radiation frequency
σi m2 object cross-section regarding sensor i
φ rad azimuth angle
ψ rad elevation angle



The received power Pr for ultrasonic and Radar sensors
can be calculated identically (Equation 2). A detailed deriva-
tion of this formula can be found in [13] for ultrasonic and
in [14]–[16] for Radar sensors.

Pr,i(R,φ, ψ) =
Pe,iGe,i(φ, ψ)Gr,i(φ, ψ)σiλ

2
i

(4π)3R4Loa,i(R)

with i = {ultrasonic; Radar} (2)

The noise power Pn,i can also be expressed identically for
ultrasonic and Radar sensors and depends on the Boltzmann
constant k, the noise bandwidth Bn,i of sensor i and the
system noise temperature Tsys,i of sensor i. According to
[15, p. 42], the noise bandwidth Bn,i can be approximated
by τ−1

i , where τi corresponds to the pulse width of the
transmitted signal of sensor i. The system noise temperature
Tsys,i represents all internal system losses of sensor i [15,
p. 17]. In combination with Equation 1 and Equation 2 the
signal-to-noise ratio of ultrasonic and Radar sensor can be
calculated according to Equation 3.

SNRi(R,φ, ψ) =
Pr,i(R,φ, ψ)

kBn,iTsys,i
(3)

For Lidar sensors, Equation 1 can again be used as a
starting point. The calculation of the received power Pr,lidar
as well as the noise power Pn,lidar differs from the calculation
of ultrasonic and Radar sensors. The following equations are
based on [17]–[20], which use an adapted Radar equation
for determining the received power Pr,lidar. Using small-
angle approximation for laser-beam expanding angle Θlidar,
the received power Pr,lidar can be calculated according to
Equation 4.

Pr,lidar(R) =
Pe,lidarσlidarAr,lidar

π2R4Θ2
lidarLoa,lidar(R)

(4)

The noise power Pn,lidar for Lidar sensors in the automotive
sector is primarily dominated by shot noise [18, p. 3], [19, p.
2]. Thermal noise and background noise recorded in the form
of temperature radiation can be represented by the system
noise temperature Tsys,lidar and takes internal system losses
into account. The first summand in Equation 5 corresponds
to shot and the second one to thermal and background noise,
respectively.

Pn,lidar = 2hνBn,lidar + kBn,lidarTsys,lidar (5)

2) Passive Sensors: Cameras as passive sensors work
according to a different functional principle: instead of ac-
tively emitting radiation, a receiver absorbs secondary high-
frequency radiation in the visible range (light). Then, as with
active sensors, information about the environment can be
obtained with the aid of signal processing [21, p. 6]. If the
sun or light in general is regarded as the transmitter of camera
sensors, the operating principle can be approximated to that
of active sensors.

Due to the different working principle of the camera, the
signal-to-noise ratio cannot be expressed by the ratio of the

received radiation to the noise signal. To get a comparable
approach for the camera, its signal-to-noise ratio is expressed
by the ratio of electrons generated by the object in the
vehicle’s environment to the electrons generated by the
illumination of the remaining environment. The following
equations are based on [22, chap. 3f.]. First, the power
received by the camera Pr,camera is calculated (Equation 6).

Pr,camera(R) =
EsunσcameraD

2
r Npix,o(R)

16R2Loa,camera(R)Npix,camera
(6)

The number of electrons Ne in the camera sensor gener-
ated by the object can be calculated according to Equation 7.

Ne(R) =
Pr,camera(R)tintQE

hν
(7)

Equation 8 denotes the calculation of the number of noise
electrons Ne,n.

Ne,n =
√
Ne +

kBn,cameraTsys,cameratintQE

hν
(8)

To characterize the sensor performance of the camera, the
signal-to-noise ratio is used as well, which is determined
by the ratio of the generated Ne to the noise electrons Ne,n
(Equation 9).

SNRcamera(R) =
Ne(R)

Ne,n
(9)

If the camera is directly exposed to the sun, additional
electrons Ne,sun are generated by the incident sunlight, which
must be taken into account when calculating the signal-to-
noise ratio (Equation 10 and 11).

SNRcamera(R) =
Ne(R)

Ne,n +Ne,sun
(10)

Ne,sun =
EsunAr,cameratintQE

hν
(11)

III. METHODOLOGY

For modeling the sensor coverage of automated vehicles,
phenomenological models based on Equations 1 to 11 are
used in this paper. In order to reproduce physical effects
phenomenologically, assumptions have to be made for the
parameters used in the equations. For sensors currently used
in the automotive industry, the necessary information is
taken from data sheets. This information as well as weather
conditions and properties of the object to be detected serve
as input for the applied approach, which is summarized in
Fig. 2. The main part of the method consists of the calcu-
lation of the sensor coverage, the signal-to-noise ratio, the
detection probability and the sensor fusion. These four steps
are explained in detail below and they are only calculated
within the range of the sensors specified by the manufacturer.
Outside this range, the detection probability time is set to
zero. As a result, a systematic far and near field analysis can
be conducted.



Sensor properties

Object properties

Weather conditions

Near-field
analysis

Far-field
analysis

Sensor coverage

Signal-to-noise ratio

Detection probability

Sensor fusion

Calculate:

Fig. 2: Overview of the applied method.

1) Sensor Coverage: Geometric information of the sen-
sors in use is taken for the calculation of the sensor coverage.
The theoretical detection range of the sensors is determined
on the basis of the field of view and the maximum range.
The performance of the sensors is not taken into account.
Blind spots in the near field of the vehicle can be analyzed
by using the sensor coverage.

2) Signal-to-Noise Ratio: The next step is to calculate the
signal-to-noise ratio SNRi for the used sensors according
to Equations 1 to 11 from Section II. Therefore, the specific
attenuation due to the atmosphere and weather influences
is modeled by constant attenuation factors, which depend
on the frequency of the emitted signals. The values of the
attenuation factors are based on studies of [23] (Fig. 3).
Based on investigations of [13] an attenuation factor of
1000 dB/km is assumed for ultrasonic waves. This factor is
considered to be weather-independent because of the short
range of ultrasonic sensors.
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Fig. 3: Specific attenuation due to atmospheric gases and
weather influences based on [23]. The frequencies of 24 GHz
and 77 GHz Radar as well as of Lidar sensors are depicted as
vertical solid lines and the dashed lines represent the visible
light spectrum.

-10 0 10 20 30 40 50
0

0.25

0.5

0.75

1.0

D
et

ec
tio

n
pr

ob
ab

ili
ty

Signal-to-noise-ratio in dB

Rain
Snow

Normal

Fig. 4: Exemplary detection probabilities adapted from [27].
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In Section II, the equations for the individual active sen-
sors are approximated on the basis of an identical functional
principle. Therefore, it is simplified to assume that the cross-
section σ of the object to be detected is independent of
the type of active sensor. In addition, the cross-section σ
is assumed to be a constant value for simplification, i.e. the
orientation of the object has no influence. Based on KAMEL’s
[24], MATSUNAMI’s [25] and SCHIPPER’s [26] investiga-
tions for Radar sensors, the cross-sections of the objects
are defined as follows: pedestrian

(
1 m2

)
, bike

(
10 m2

)
, car(

100 m2
)

and truck
(
200 m2

)
. For the passive camera sensor,

the geometric cross section is used: pedestrian
(
0.9 m2

)
, bike(

1.35 m2
)
, car

(
2.7 m2

)
and truck

(
6.75 m2

)
.

3) Detection Probability: Based on the calculated signal-
to-noise ratio values, the detection probability pd,i can be
determined. For this purpose, approximations such as the
Albersheim equation can be used, which additionally takes
into account a false alarm rate, for example. In this paper
we use a simplified exemplary conversion of the signal-to-
noise ratio into a detection probability according to [27] via
Receiver Operating Characteristics (ROC) curves (Fig. 4).

In real applications, the ROC curves are adapted to differ-
ent environment conditions. In sunny conditions a required
signal-to-noise ratio value of 10 dB is considered for a
probability of detection of 50 % [28].

4) Sensor Fusion: Several areas in the vicinity of the ve-
hicle fall within the detection range of more than one sensor.
Therefore, it is necessary to fuse the detection probabilities
pd,i of the relevant sensors i in these areas. According to [29,
p. 1465], this can be achieved by evaluating Equation 12.

pd,fusion = 1−
nsensors∏
i=1

(1− pd,i) (12)

In Equation 12, pd,fusion denominates the fused detection
probability, nsensors the number of overlapping sensors and
pd,i the detection probability of sensor i.

As an output of the presented methodology a systematic
analysis of the near and far field can be conducted, which is
part of the following section.



IV. RESULTS

This section applies the method explained in Section III
to two different system configurations and compares the re-
sults. Both system configurations are based on commercially
available vehicles. System A represents a premium vehicle
with a balanced sensor setup. System B, on the other hand,
increasingly relies on cameras and represents a more cost-
effective sensor setup. More information on both system
configurations can be found in Table III.

Both configurations have a maximum sensor range of
250 m to the front. In System A, this is the Radar sensor
in the front bumper, while in System B it is one of the three
cameras in the windshield. To the rear, both systems have a
maximum sensor range of approximately 100 m. Once again,
System A relies more on Radar sensors in the rear bumper
and System B on rear-facing side cameras. The number of
ultrasonic sensors for the detection of near objects is identical
in both configurations. Only System A uses a Lidar sensor.

In the following, an analysis of the sensor coverage of
the near field around the ego-vehicle is first performed and
subsequently one of the far field. When analyzing the far
field, different weather conditions are taken into account.

A. Near-Field Analysis

For the analysis of the near field, the theoretical detection
areas of the individual sensors are superimposed and blind
spots are identified. Blind spots are areas that cannot be
seen by any sensor at any height. The result for both sensor
configurations is depicted in Fig. 5. In addition, the areas that
do not fall into any detection area at a height of 0.1 m are

TABLE III: Summarized information of system configura-
tions A and B. More information can be found in [30]. The
horizontal field of view of the sensors is denoted as HFOV.

Type Position HFOV Range

Sy
st

em
A

C
am

er
a front windshield 50° 120 m

front bumper 137° 60 m
side mirror left & right 137° 60 m

rear 137° 60 m

R
ad

ar front bumper center 30° 250 m
front bumper left & right 150° 100 m
rear bumper left & right 150° 100 m

U
ltr

as
. six in front bumper 70° 5.5 m

six in rear bumper 70° 5.5 m

L
id

ar front bumper 145° 150 m

Sy
st

em
B C

am
er

a

front windshield 35° 250 m
front windshield 45° 150 m
front windshield 120° 60 m

forward-facing side cameras 90° 80 m
rear-facing side cameras 75° 100 m

rear 135° 50 m

R
ad

ar front bumper 35° 160 m

U
ltr

as
. six in front bumper 90° 8 m

six in rear bumper 90° 8 m

shown in green. A height of 0.1 m represents the minimal
object height to be detected.

It can be seen that System B has significantly smaller
blind spots than System A. This is due to the advantageous
distribution of System’s B side cameras. By combining front-
and rear-facing side cameras, blind spots can be minimized.
However, the availability of System’s B rear-facing side
cameras must be investigated in practice. These are located
in the front fender at a height of only 0.9 m. This makes
them particularly susceptible to dust and moisture that can
be stirred up while driving. System A, on the other hand,
can be more vulnerable to accidents, similar to the accident
of an autonomous prototype with a motorcycle [31], due to
larger blind spots.

B. Far-Field Analysis

When analyzing the far field, the path of a passenger
car through the detection field of the automated vehicle is
considered. A four-lane motorway with a curve of radius
r = 500 m is used as an example. For normal ambient
conditions, this is shown for both configurations in Fig. 6.
As benchmarks, cumulated distances of the passenger car in
different detection probability levels in front of the automated
vehicle are used (Table IV). Here and for all subsequent
results, the detection probabilities of a plane at a height
of 0.75 m are considered. For comparison, Fig. 7 shows
the same scenario with direct sunlight from the front right.
The field of view of all forward- and right-facing camera
sensors is therefore severely restricted. Again, the results are
summarized in Table IV. The results show that System B
performs better than System A under normal environmental
conditions. The advantage of using different sensor technolo-
gies by System A becomes evident in the direct-sunlight
scenario. In this scenario, the performance of System A is
considerably better than that of System B. Consequently,
the safety assessment of System B must focus more on the
consideration of different environmental conditions.

V. DISCUSSION

In the presented paper, the phenomenological sensor mod-
els taken from the literature are assumed to be validated. This
is reasonable, but has to be investigated in detail in future
work. Furthermore, detailed information about the sensors
used is required (Table II). As far as possible, these have been

TABLE IV: Summary of the results for both system con-
figurations under normal weather conditions and with direct
glare from the front right. Shown are the cumulated distances
in which the passenger car is within different detection
probability pd levels.

Normal Direct glare
Detection prob. System A System B System A System B

pd = 1.0 73 m 50 m 73 m 0 m
pd ≥ 0.8 148 m 159 m 148 m 89 m
pd ≥ 0.5 169 m 237 m 169 m 119 m
pd > 0.0 210 m 249 m 210 m 121 m
pd = 0.0 93 m 54 m 93 m 181 m
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Fig. 5: Blind spots (blue) of both sensor configurations, calculated using data from Table III as well as the vertical opening
angles of the sensors from [30]. Blind spots are areas that do not fall within the detection range of a sensor at any height.
The sum of all blind spots equals an area of 4.17 m2 for System A and 0.77 m2 for System B. In addition, the area that
does not fall into any detection area at a height of 0.1 m is shown in green.
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Fig. 6: Detection probability of the ego-vehicle under normal weather conditions, calculated from Equation 1 to 9 and
Equation 12. The ego-vehicle drives in the left lane of a four-lane highway approaching a curve of radius r = 500 m.
Depicted in purple is the path of a passenger car driving in the right-hand lane. The path of the passenger car is considered
only in the area in front of the automated vehicle.
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Fig. 7: Detection probability of the ego-vehicle with direct glare from the front right, calculated from Equation 1 to 8 and
Equation 10 to 12. The ego-vehicle drives in the left lane of a four-lane highway approaching a curve of radius r = 500 m.
Depicted in purple is the path of a passenger car driving in the right-hand lane. The path of the passenger car is considered
only in the area in front of the automated vehicle.



taken from officially accessible data sheets. To improve the
achieved results, however, close cooperation with the sensor
manufacturers and the OEM is necessary in order to precisely
determine all the decisive parameters.

Further processing of the sensor data to create an environ-
mental map has a considerable influence on the performance
of the overall system. This step is not considered in this
paper and must be examined in detail in future work.

In addition, only one object is considered in the model
used. Therefore, the effects of multiple objects such as
shading have not been investigated. An enhancement to
represent these effects must be the subject of further work.

VI. CONCLUSION

This contribution addresses a novel method for the se-
lection of system-specific relevant scenarios for the safety
assessment of automated vehicles. This is achieved by using
phenomenological sensor models and a subsequent analysis
of the position-dependent detection probability of objects.
The comparison of two system configurations based on
commercially available vehicles shows that a system-specific
adaptation of the test scenarios is reasonable. In future work,
additional effects such as shading by other objects and further
processing of the sensor data must be considered.
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