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Abstract—The eco-approach and departure (EAD) 

application for signalized intersections has been proved to be 

environmentally efficient in a Connected and Automated 

Vehicles (CAVs) system. The traffic and signal phase and timing 

(SPaT) information transmitted from the roadside equipment 

unit, vehicle equipped sensors (e.g. radars) and other connected 

vehicles are the main inputs to the existing algorithms. However, 

due to the limitation of the communication and sensing range, it 

is too late to start eco-driving until preceding traffic is fully 

detected. Instead, the historical data, such as queue length 

distribution may be applied to developing a robust speed profile 

that enables eco-driving to start in an early stage. In this paper, a 

two-phase iterative approach is developed with the use of 

historical queue distribution. A graph-based model is created 

with nodes representing states of the host vehicle and traffic 

condition, and directed edges with weight representing expected 

energy consumption between two connected states. The shortest 

path is calculated that minimizes the total energy consumption 

for vehicles approaching a pre-timed signalized intersection. 

Numerical simulations have shown that the proposed method is 

robust and adaptive to varying traffic and queue conditions, and 

could achieve around 9% energy savings compared to other 

baseline methods. 

I. INTRODUCTION 

HE rapid development of transportation activities has 

been not only substantially increasing people’s mobility, 

but also producing more greenhouse gas (GHG) emissions 

and consuming a large amount of energy. In 2016, it is 

estimated that transportation sector has accounted for the 

largest portion (28%) of total U.S. GHG emissions, with 83% 

of the gas emitted by light-duty vehicles and medium- and 

heavy-duty trucks [1]. According to the statistics from U.S. 

Department of Energy, the energy consumption of 

transportation has kept increasing since 2012, reaching 28.2 

quadrillion Btu (British thermal unit) and a share of 28.8% of 

U.S. total energy consumption by end-use sector in 2017 [2]. 

The increasing energy consumption and GHG emissions have 

drawn tremendous attention of government and researchers, 

and a series of eco-driving projects and applications has come 

up throughout the years to improve the efficiency of the 

transportation system. In Europe, starting from 2010, the 

project eCoMove has developed a transport energy efficiency 

system based on vehicle-to-vehicle (V2V) and 
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vehicle-to-infrastructure (V2I/I2V) communication, where 

real-time data can be shared among the vehicles and traffic 

controllers supporting a more fuel-saving traffic system [3]. In 

the U.S., Application for the Environment: Real-Time 

Information Synthesis (AERIS) research program established 

by the Intelligent Transportation Systems (ITS) Joint Program 

Office (JPO) in 2014 has developed 18 Connected Vehicle 

(CV) applications in 5 Operational Scenarios, among which 

Eco-Approach and Departure (EAD) at Signalized 

Intersections has been proven to be an effective application in 

decreasing fuel consumption and emissions [4].  

 
Figure 1. Dynamic information in connected eco-driving. 

The EAD application in the host CV can calculate the most 

energy efficient speed profile and guide the vehicle to pass the 

target traffic signal in an eco-friendly manner after collecting 

the Basic Safety Message (BSM) from other CVs and Signal 

Phase and Timing (SPaT) information transmitted from the 

roadside equipment unit [5]. Besides the SPaT messages and 

traffic condition (number of queued vehicles or queue length) 

that serve as a main requirement for the application, other 

types of information such as geographic data (road map and 

grade) and vehicle dynamics also contribute to the calculation 

of an ideal speed profile. In real-world traffic, as shown in Fig. 

1, signal timing and traffic conditions usually appear to be 

dynamic and uncertain. For example, when a CV is 

approaching an actuated signalized intersection, the 

remaining time of the current signal phase indicated by the 

SPaT message will be updated dynamically. And the 

traffic-related information received from other CVs and radar 

is also highly uncertain due to the limited sensing range and 

varying driving behaviors of other vehicles. Therefore, the 

future signal timing and traffic condition of the downstream 

intersection is hard to predict, which brings challenges to 

develop applicable EAD models. 

The EAD application was initially developed under 

fixed-timing signal control, which 12% reduction on fuel 
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consumption and CO2 emissions have been validated in 

microscopic simulation models [6]. Later studies also made 

no-preceding traffic or fixed-timing signal assumptions to 

avoid the uncertainty in the traffic condition [5, 7]. He et al. 

obtained the speed profile by solving a multi-stage optimal 

function and put the queue information into constraints [8], Ye 

et al. estimated the end of queue based on the predicted 

preceding vehicle trajectories, with an assumption under 

congested urban traffic scenario such that a preceding vehicle 

could always be detected after SPaT messages are received 

[9]. All the above studies were conducted under the 

assumption that either queue does not exist or is fully 

predictable before trajectory planning. If the radar does not 

have enough sensing range to detect the preceding vehicle 

after signal information is received, those studies will not be 

able or will be less effective to design an optimal speed profile 

for drivers or longitudinal controller to follow.  

In this paper, we propose a two-phase iterative approach to 

adapt the uncertain queue information so that the vehicle 

could start eco-driving once entering the DSRC range even 

without knowing the current queue information. The first 

phase creates the speed profile after detecting the end of queue 

based on the information acquired from I2V/V2V 

communication (DSRC or messages from NPV if it is also a 

CV) and onboard sensors (radar). The second phase derives 

the speed profile starting from the receiving of the SPaT 

messages to the detection of the end of queue, through 

analyzing the signal information and potential traffic 

condition based on historical data (queue distribution). The 

most energy-efficient solution can be then derived from 

minimizing the expectation of the energy consumption of all 

possible actions after combining the two phases. The paper is 

organized as follows: Section II presents a detailed 

description of the proposed method. Section III shows the 

numerical simulation results with comparisons of other 

methods and the last section concludes the paper with further 

discussion. 

II. METHODOLOGY 

A. Problem statement 

When a CV approaches within the range of Dedicated Short 

Range Communications (DSRC) roadside equipment unit of a 

signalized intersection, it could receive SPaT information and 

know the status of current traffic signal with the starting and 

remaining time for the current phase. If the preceding vehicles 

are within the detection range of the CV equipped radar, the 

speed and the location of that vehicle could be measured, and 

the stop location of the queue could be determined if the 

measured speed reaches zero. We not only want the designed 

speed profile to be energy efficient, but also causing no delay 

to the following traffic, since the delay might force the 

following vehicles to slow down and result in both safety and 

energy waste problem. Therefore, the host vehicle should pass 

the traffic signal right after the nearest preceding vehicle 

(defined as NPV) in the same lane with an energy efficient 

manner.  

There are several scenarios that the vehicle might enter if 

trying to pass the signalized intersection after receiving the 

SPaT information. If the current signal is green and NPV is 

detected to be moving, the host vehicle could follow the NPV 

with an eco-adaptive cruise control strategy. If the current 

signal is green and NPV is detected to stop, then the estimated 

time that vehicle should arrive at the intersection could be 

calculated from the starting time of the current signal phase 

with extra reaching time depending on the location of the stop 

caused by the shockwave theory. If the current signal is red 

then NPV is most likely to be detected to a stop at some time 

during the trajectory, and the radar sensing range together 

with the distance between NPV and host vehicle restricts the 

distance of eco-driving. For all the cases discussed above, the 

NPV’s stop location is crucial to determine the optimal speed 

profile for the host vehicle as it affects the location and time 

when eco-driving could start and finish. However, due to the 

radar’s limited sensing range (most likely smaller then DSRC 

range), the host vehicle is usually very close to the queue when 

the NPV is detected to a stop and it is too late to start 

eco-driving at that moment. To start the trajectory planning at 

an earlier stage when SPaT messages are first received, we 

must deal with the partially observed traffic condition, or the 

uncertain queue position. 

The proposed method divides the process into two parts 

which are separated by the time that the stop of NPV is 

detected. The first part involves the uncertainty of the traffic 

condition and the second part is deterministic with trajectory 

always reaching an absolute optimal. Therefore, we first 

construct the graph of the second part of the process and name 

it as Phase I, and then the graph of the first part of the process 

can be derived based on the original graph, which is named as 

Phase II. In the graph, the nodes represent different states of 

the vehicle and traffic condition, and directed edges with 

weight representing expected energy consumption between 

two connected states. A state points to four properties, which 

are distance to traffic signal (dTL), passing time after SPaT is 

first received (t), speed (v) and number of cars queuing by the 

traffic signal (Q). Two nodes can be connected if the vehicle 

can reach from one state to another in the minimum time 

interval (Δt). And for a certain state, as long as the predefined 

final state is reachable, the next state the vehicle visits in the 

best solution path is always stable. For example, for a state 

with parameter [dTL = d1, t = t1, v = v1, Q = Q1], the next state 

it could visit has parameter [dTL = d1 - v1×Δt, t = t1+Δt, v = v2, 

Q = Q1] and v2 should be deterministic if the state is in the best 

solution path. And the iteration over all possible states is to 

guarantee the minimum energy path chosen correctly.  

As aforementioned, the proposed iterative method can be 

divided into two phases. In the first phase, we want to derive 

an optimal speed profile for the trajectory under the condition 

of known queue. This includes the position of host vehicle 

from the point that queue can be first detected by the radar 
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until the vehicle reaches the traffic light (0 ≤ dTL ≤ dRad + 

max(LQueue), where dRad is the sensing range of radar and LQueue 

is the queue length by the traffic signal depending on the 

length per vehicle and number of vehicles). And in the second 

phase, we want to derive the trajectory speed profile under the 

condition of unknown queue. This includes the position from 

the point that SPaT information is first received until the latest 

point that queue can be first detected (min(LQueue) + dRad ≤ dTL 

≤ dDSRC, where dDSRC is the communication range of DSRC). 

Fig. 2 shows a sample trajectory of the two phases for a 

vehicle approaching the traffic signal where there is a queue 

waiting by. Implementation details of the two phases are given 

in subsections B and C. 

 
Figure 2. Sample trajectory of a host CAV (red) approaching the traffic 

signal in two phases, trajectory in Phase I (top row) and Phase II (bottom row) 

can be combined into a complete trajectory. 

B. Phase I 

First, we define all possible states in the vehicle trajectory 

and initialize a state-energy matrix M of size N by 2, where N 

is the total number of states. For a given state in the matrix, the 

first entry represents the minimum energy the vehicle will 

consume leaving that state for a predefined final state, and the 

second entry represents the state of next time step that host 

vehicle should reach to minimize the total energy. All the state 

parameters are discrete, and N is defined as such: 

size(0: :max(d )) size(0: t:max(t))

size(0: v:max(v)) (size(0: Q:max(Q))+1)

TL TLN d=   

   
          (1) 

which ΔdTL, Δt, Δv and ΔQ are the minimum interval in the 

four state parameters respectively. The extra count in Q states 

points to the circumstance that queue hasn’t been detected by 

radar (QUnknown) and corresponds to the state of queue in the 

second phase. 

Then we initialize the final state in M, which is the state the 

vehicle will end up with in the trajectory under each different 

known queue condition, corresponds to the state: 

dTL = 0, t = tSPaT + tshock wave, v = vt, Q = 0:ΔQ:max(Q)     (2) 

where tSPaT is the remaining time traffic signal going to turn 

green indicated by the SPaT information received at the 

beginning of the trajectory. tshock wave is the extra reaching time 

caused by the shockwave theory and is a function of Q.  

After the initialization is done, iterative approaches are 

conducted to modify M. We first find the states that are 

directly connected to the final state and calculate their energy 

consumptions, then states connected to the previous states are 

found out and minimum energy consumptions are calculated 

through comparison of possible connections. Through such 

iteration, a trajectory for the vehicle reaching the final state 

under the condition of known queue from any initial condition 

can be decoded from M. The pseudocode for Phase I is shown 

as below: 

function Phase I:  

flag = 1 

while flag = 1: 

       flag = 0 

       for each state in M that Q is known, denote as State1: 

              for each possible state that could reach State1 in the 

next time step, with the same Q, denote as State2: 

                     calculate energy(E) vehicle required reaching 

State1from State2 

                     update M if E+ M(State1,1) < M(State2,1) with:  

                            M(State2, 1) = E+ M(State1,1) 

      M(State2, 2) = State1 

      flag = 1 

end 

       end 

end  

The energy (E) is the tractive power the vehicle spends 

reaching State1 from State2, which relates to the speed of the 

two states. The use of flag is for indicating whether there is 

any update after iterating over all the states in the trajectory. If 

there is at least one update in the previous loop, the Phase I 

function will iterate through all the states once again to ensure 

all the state points finding a minimum energy trajectory to the 

final state. 

C. Phase II 

In Phase II, we continue modifying M for the states whose 

queue hasn’t been detected. For the current state (State1) that 

queue is unknown, at next time step with a given speed, all the 

state parameters (State2) that vehicle will enter are stable 

except the queue state is either known (queue detected by 

radar) or still unknown. For each location in the trajectory that 

queue is unknown, there is a pool of possible queue depending 

on dTL, and the pool of a state with smaller dTL is always a 

subset of the pool whose state has a larger dTL. Therefore, we 

can define the queue pool for State1 as [0, 1, 2, … Qk], and 

queue pool for State2 as [0, 1, 2, … Qn], k>= n, and obtain the 

following probability equation:  

2 1 2

2 1

[ ( ) ( )] ... [ ( ) ( )]

[ ( [0,1,..., ]) ( )] [ ( [0,1,..., ]) ( )]

k n

n k

P state Q Q state S P state Q Q state S

P state Q Q state S P state Q Q state S

+= + + = +

 = 

(3) 

where S1 is the state parameter [dTL = d1, t = t1, v = v1], S2 is 

the state parameter [dTL = d1 - v1×Δt, t = t1+Δt, v = v2] and 

State(S) represents the state with labeled parameters S. The 

probabilities can be calculated from the historical queue 

distribution of the road. 

According to (3) and M, the energy expectation for 

reaching the final state from State1 is calculated and used as 

part of the update criterion in Phase II, shown as below: 
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2 2

1 2 1 2

2 2

[ ( ) ( )]*( [ ( , ),1])

... [ ( ) ( )]*( [ ( , ),1])

[ ( ) ( )]*( [ ( , ),1])

k k

n n

unknown unknown

P state Q Q state S E M state Q Q S

P state Q Q state S E M state Q Q S

P state Q Q state S E M state Q Q S

+ +

= + =

+ = + =

+ = + =

(4) 

A similar iterative approach is conducted, and a trajectory for 

the vehicle entering the DSRC range till the vehicle detects the 

queue can therefore be decoded from M. 

III. RESULTS 

Simulations are conducted in MATLAB to test the 

proposed method and compare with the baseline. Table 1 

below shows the assumptions for all the simulations. 

TABLE 1. Simulation Assumptions and Parameters. 

dDSRC Communication range 300 m 

tshock wave Additional time from 

shockwave 

0 s if Q = 0, else 

2(Q+1) s 

v0, vt Initial and final speed 

of the host vehicle 

13 m/s 

vmax Maximum speed 18 m/s 

vmin Minimum speed 0 m/s 

amax, - amin Maximum and 

minimum acceleration 

2 m/s2 

Q Number of Queueing 

vehicles 

Ζ[0, 20] 

ΔdTL, Δt, Δv, 

ΔQ 

minimum interval in 

the state parameters 

1 

Vehicle length length per vehicle 5 m/vehicle 

 

The ideal trajectory for absolute minimum energy 

consumption can be derived from M when the real queue 

length is known (i.e. perfect information) at the same time as 

first SPaT message being received, for example: dRad = dDSRC. 

Besides the ideal method, couple of baseline methods 

(Baselinek) are setup for comparison: Assuming the queue 

length to be Qk, the vehicle first follows the ideal trajectory of 

assumed Qk, length, then change to the corresponding strategy 

after detecting the real queue length. These baselines are the 

methods given the same information as the proposed method 

except the historical queue distribution is missing. Note that if 

k is 0, Baseline0 corresponds to the scenario when the vehicle 

follows the existing EAD strategy with no-queue assumption 

until the radar detects preceding traffic. 

Note that for some baseline methods, there might not exist a 

solution, for example: the vehicle is first driven at an 

assumption of a large queue length, but the real queue length is 

small, therefore the vehicle will first drive at a relatively lower 

speed due to the assumed long tshock wave and couldn’t reach the 

traffic signal at required time after real queue is detected. In 

these cases, a delayed time (t') can be calculated as the 

minimum extra time that vehicle is given to finish the 

trajectory with predefined final speed vt. This delayed time 

will also force the following vehicles to slow down and result 

in extra energy and fuel consumption to the system. To 

quantify the delayed time as the amount of energy (Epenalty), the 

following method is applied:  

E1 = energy consumption for vehicle running t1 sec at vt m/s. 

E2 = minimum energy consumption for vehicle running the 

same distance (t1×vt) in time (t1 - t') with same initial and final 

speed vt m/s under a certain maximum speed and restricted 

acceleration. 

Epenalty = E2-E1 

Therefore, all the methods including ideal, proposed and 

baseline can be evaluated with energy consumption and the 

result is shown in the following subsections.  

A. Sample trajectory among different methods 

 

 
Figure 3. Speed profile of proposed against baseline and ideal method with 

Q = 10 (top) and 20 (bottom). Note that Baseline0 (and proposed) method 

result in the same trajectory in the two plots before preceding vehicle getting 

detected (point labeled with green). Compared to the baseline method, the 

proposed method spends shorter time driving at higher constant speed, which 

saves 2.28% (top) and 2.17% (bottom) total energy respectively. 

First, two sample trajectories of the vehicle approaching 

traffic signal with different queue lengths derived from each 

method are shown in Fig. 3. For the baseline method, zero 

vehicle is assumed to be waiting by the traffic signal and 

Baseline0 is used. The other assumptions include: dradar = 

50m, tSPaT = 40s and Q ~ unif {0, 20}. 
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B. Performance comparison of energy consumption 

We first compare the energy consumption among different 

methods for varying exact queue length. All the parameters 

except real queue length are set as constant values, including: 

dradar = 100m, tSPaT = 40s and Q ~ unif {0, 20}                      (5) 

As shown in Fig. 4, the proposed method has a lower energy 

consumption than the baseline methods for most Q and only 

has a slightly larger energy consumption compared to the ideal 

method. To compare with all the possible baseline methods, 

since the Q distribution is uniform, the expected energy 

consumption (EExp) is calculated as the average consumption 

value of all Q, and is shown in Table 2. We can see that the 

proposed method reduces energy consumption by 3.35% 

(Baseline0) and 8.88% (average 21 baselines) and is 2.24% 

higher than the ideal energy consumption. 

 
Figure 4. Energy comparison (y axis) of proposed against baseline and ideal 

method in terms of different queue length (x axis) 

TABLE 2. Expected Energy Consumption (EExp) Comparison among 
Proposed, Baseline and Ideal Method. 

Method Energy(106) Method Energy(106) 

Ideal 1.5011 Baseline10 1.6682 

Proposed 1.5354 Baseline11 1.6998 

Baseline0 1.5869 Baseline12 1.6235 

Baseline1 1.5500 Baseline13 1.6506 

Baseline2 1.5444 Baseline14 1.6727 

Baseline3 1.5417 Baseline15 1.7176 

Baseline4 1.5424 Baseline16 1.7365 

Baseline5 1.5646 Baseline17 1.7949 

Baseline6 1.5932 Baseline18 1.8532 

Baseline7 1.6156 Baseline19 1.9315 

Baseline8 1.6066 Baseline20 1.9908 

Baseline9 1.6216   

 

We then compare the energy consumption among different 

methods for varying tSPaT, meaning diverse time the vehicle 

enters the DSRC range and approaches the traffic signal. The 

same parameters are used except tSPaT (20~60s). 

For the ideal method, as shown in Fig. 5, EExp is 

monotonically increasing due to the more frequent 

acceleration and deceleration during longer travel time.  The 

proposed method shows a better performance than baseline 

methods when tSPaT ≥ 22s. The worse performance for small 

tSPaT is caused by the high acceleration and speed of the 

vehicle that tries to arrive at the traffic signal at the required 

time. The energy consumption tends to reach the same value 

as tSPaT increases among all methods. 

 
Figure 5. EExp comparison (y axis) of proposed against baseline and ideal 

method in terms of different tSPaT (x axis) 

C. Comparison of methods for varying dRad 

In this subsection, we want to compare the energy 

consumption among different methods for varying dRad. This 

simulates the various sensing range of all kinds of radars or 

when there is a preceding vehicle stopping in front of the host 

vehicle. The same parameters are used as (5) except dRad 

(50~200m). 

 
Figure 6. EExp comparison (y axis) of proposed against baseline and ideal 

method in terms of different radar range (x axis). We can observe more 

energy saving when radar range is shorter. 

As we can see from Fig. 6, the proposed method always 

outperforms the baseline method. EExp of ideal method stays 

the same for all radar range since the queue length is set to be 

known from the beginning. For both baseline methods and 

proposed method, EExp gradually decreases as dRad increases, 

since the distance that queue is known gets longer and a larger 
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portion of the trajectory can result in absolute minimum 

energy consumption. A detailed EExp table is shown in Table 3. 

We can see that the proposed method consumes less energy 

for every dRad compared to the baselines. 

TABLE 3. EExp (106) Comparison between Proposed, Baseline and Ideal 
Method for Different dRad. 

       Method           

dRad                                   
Ideal Proposed Baseline0 Baseline10 Baseline20 

50 1.5011 1.5973 1.6360 1.7419 2.2949 

60 1.5011 1.5735 1.6249 1.7403 2.2186 

70 1.5011 1.5610 1.6085 1.7115 2.1418 

80 1.5011 1.5549 1.5998 1.7043 2.0755 

90 1.5011 1.5461 1.5933 1.6593 2.0540 

100 1.5011 1.5354 1.5869 1.6682 1.9908 

110 1.5011 1.5297 1.5797 1.6770 1.9489 

120 1.5011 1.5250 1.5744 1.6438 1.9214 

130 1.5011 1.5228 1.5655 1.6184 1.8585 

140 1.5011 1.5209 1.5612 1.5846 1.8018 

150 1.5011 1.5183 1.5547 1.5930 1.7407 

160 1.5011 1.5170 1.5460 1.5614 1.7313 

170 1.5011 1.5161 1.5411 1.5502 1.6715 

180 1.5011 1.5154 1.5402 1.5482 1.6071 

190 1.5011 1.5133 1.5340 1.5466 1.5554 

200 1.5011 1.5103 1.5265 1.5458 1.5446 

D. Comparison of methods for varying queue distribution  

In this subsection, we want to verify the capability of the 

proposed method for a different queue distribution. We set Q 

~ N(10, 4) with other parameters the same as (5). Table 4 

shows the comparison of expected energy consumption 

among different methods. We can see from the table that the 

proposed method reduces energy consumption by 4.14% 

(Baseline0) and 3.56% (average 21 baselines) and is 1.88% 

higher than the ideal consumption. 

TABLE 4. EExp Comparison among Proposed, Baseline and Ideal Method for 
Gaussian Queue Distribution. 

Method Energy(106) Method Energy(106) 

Ideal 1.5141 Baseline10 1.5693 

Proposed 1.5431 Baseline11 1.5887 

Baseline0 1.6070 Baseline12 1.5491 

Baseline1 1.5695 Baseline13 1.5617 

Baseline2 1.5624 Baseline14 1.5765 

Baseline3 1.5552 Baseline15 1.5931 

Baseline4 1.5433 Baseline16 1.6028 

Baseline5 1.5604 Baseline17 1.6476 

Baseline6 1.5619 Baseline18 1.6893 

Baseline7 1.5487 Baseline19 1.7634 

Baseline8 1.5444 Baseline20 1.8183 

Baseline9 1.5479   

IV. CONCLUSION AND FUTURE WORK 

This research proposes an adaptive strategy for connected 

eco-driving towards a pre-timed signalized intersection under 

uncertain traffic condition. The validation results indicate that 

the proposed 2-phase iterative approach can achieve an 

energy-efficient trajectory, given the information of SPaT and 

historical queue distribution. Numerical simulation results 

show that the proposed method can save an average of 8.88% 

energy consumption for uniform queue distribution and 

3.56% for Gaussian queue distribution compared to baseline 

methods. The proposed method also works for varying radar 

range and different time the vehicle initially enters the DSRC 

range. In the future, more research will be conducted as listed 

below: 

• Extend the adaptive eco-driving strategy to the 

intersections with actuated signals considering the 

dynamic uncertainty of SPaT information 

• Develop an application programming interface (API) 

in VISSIM and implement the proposed model in 

microsimulation 

• Conduct field test along the innovative corridor 
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