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Semantic Segmentation of Video Sequences with Convolutional LSTMs
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Abstract—Most of the semantic segmentation approaches
have been developed for single image segmentation, and hence,
video sequences are currently segmented by processing each
frame of the video sequence separately. The disadvantage of
this is that temporal image information is not considered, which
improves the performance of the segmentation approach. One
possibility to include temporal information is to use recurrent
neural networks. However, there are only a few approaches
using recurrent networks for video segmentation so far. These
approaches extend the encoder-decoder network architecture of
well-known segmentation approaches and place convolutional
LSTM layers between encoder and decoder. However, in this
paper it is shown that this position is not optimal, and that other
positions in the network exhibit better performance. Nowadays,
state-of-the-art segmentation approaches rarely use the classical
encoder-decoder structure, but use multi-branch architectures.
These architectures are more complex, and hence, it is more
difficult to place the recurrent units at a proper position.
In this work, the multi-branch architectures are extended by
convolutional LSTM layers at different positions and evaluated
on two different datasets in order to find the best one. It turned
out that the proposed approach outperforms the pure CNN-
based approach for up to 1.6 percent.

I. INTRODUCTION

A challenge of autonomous driving is to understand the
environment as good as possible. Hence, multiple sensors are
used in self-driving cars, such as the classical RGB camera.
In order to reduce the flood of information of the camera,
the images are segmented. Image segmentation denotes the
task to assign each image pixel a predefined class, e.g. car,
pedestrian, or road. State-of-the-art approaches, such as PSP-
Net [26] or DeepLab [4], are based on convolutional neural
networks (CNNs) and achieve very good results on several
datasets. However, these approaches are not applicable in the
case of autonomous driving, since the inference time for one
image amounts to about one second and more, for instance,
the PSPNet [26] takes about 1.2 seconds and the DeepLab
v3+ [5] about 5 seconds on a Nvidia Titan X. In contrast, the
performance of current real-time capable approaches, such as
SegNet [2], ENet [15], and ICNet [25], is much worse, and
more errors occur. Typical segmentation errors are blurred
and flickering object edges, partly segmented objects, and
flickering (ghost) objects. Many of these errors often only
occur in a single frame of a video sequence, and are classified
correctly in the next frame, as shown in Fig[T} where a short
video sequence was segmented by the ICNet. For instance,
the pedestrian was classified correctly in the first to third and
in the last frame of the video, while parts of the leg were
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Fig. 1. Segmentation map of a video sequence yielded by the ICNet. The
black boxes show typical errors such as partly segmented objects, flickering
edges, and flickering (ghost) objects

not detected in the fourth frame. Furthermore, the border
between road and sidewalk is flickering during the video,
and a ghost object occurs at time step two. The described
errors can be avoided by additionally considering image
information of the previous frames instead of processing
each image independently. One possibility to take account
of the last frames is to use recurrent neural networks. They
are able to store information of the past time steps and
to reuse them in the current time step. Frequently used
recurrent networks are Long-Short-Term Memory networks
(LSTM) [10], which can be easily trained and integrated in
comparison to other recurrent neural networks. An extension
of LSTMs are convolutional LSTMs (convLSTMs [19]),
which are more suitable for image processing tasks.
Convolutional LSTM layers can be added at different
positions in the network. For instance, they can be integrated
directly in front of the softmax layer, which corresponds to
a temporal filtering of the result. Another possible location
is between the encoder and decoder in the case of a encoder-
decoder network architecture, and is motivated by the fact
that the encoder extracts global features of the image. These
global features should not change very much between two
neighboring frames so that the usage of the previous global
image features may improve the segmentation. In this work,
several positions of convLSTM layers in different, real-time
capable, state-of-the-art semantic segmentation approaches
are compared in terms of accuracy, mloU and inference time
on the Cityscapes dataset. It is also investigated if the LSTM
based semantic segmentation approaches outperform the pure

may no longer be accessible.

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version




CNN based approaches, and which LSTM position in the
network architecture delivers the best results in the case of
semantic video segmentation.

II. RELATED WORK

Nowadays, there are many approaches which deal with
semantic segmentation. Todays approaches rely on neural
networks and exhibit high accuracy. An overview of the
best approaches with the highest accuracies can be found
on the web pages of the well-known benchmarks such
as the Cityscapes dataset [6]. However, only a few of
these approaches are real-time capable, and hence, most
of them are not applicable in safety-critical applications,
such as self-driving cars. Moreover, most approaches are
originally only developed for image segmentation and not
for video segmentation, that means that each frame of a
video sequence is processed independently, and temporal
information of the video is not considered. Though, the usage
of temporal information might improve the accuracy, since
errors occurring only at one frame, such as flickering (ghost)
objects and flickering edges, might be avoided by means of
these additional information. Hence, temporal information
are used in this paper to improve the segmentation results.
Generally, there are different possibilities to include temporal
information into neural networks. A naive way to do this is
to concatenate the current frame with the previous N frames
to a common input tensor and to process these N+ 1 frames
together with one common CNN. Previous works, such as
[11], show that the prediction improves only slightly by this
procedure. A more successful approach is to use recurrent
neural networks (RNNs) and combine them with classical
image segmentation approaches. In this section, an overview
over these approaches and RNNs in general is given.

Recurrent neural networks are neural networks containing
loop connections. By means of these loops, RNNs can
learn complex dynamics, so that sequential data can be
processed. A great problem of RNNs is that their training is
very difficult due to the vanishing and exploding gradients
problem, and hence, they have not been widely used. In
1997, Hochreiter and Schmidhuber introduced the Long-
Short Term Memory networks (LSTMs [10]), which over-
comes the problem of vanishing/exploding gradients of the
classical RNNs. The key innovation of the LSTMs compared
to the RNNs is its memory cell, which is able to store
state information. The LSTM cells can learn when to access,
clear, and write to the memory during training and is able
to memorize information over a long period. The LSTMs
are now successfully applied in several applications, such as
speech-recognition [14, 8], hand-writing recognition [9] and
machine translation [21]. However, they are not so suitable
for image processing applications analogously to Multi Layer
Perceptrons (MLPs), since they are translational variant and
memory intensive due to large weight matrix sizes. Shi et al.
refined the LSTMs and introduced the convLSTMs [19] in
2015, which correspond to the CNNs in feedforward neural
networks. Due to these advantages, ConvLSTMs become

increasingly popular, and are used in more and more image
processing applications.

In the case of semantic segmentation, there are two fields
of application for RNNs. On one side, they are used to
capture temporal information of a video sequence. On the
other side, RNNs are used to learn the global context of
one image. The image is divided into small regions or
superpixels. Each of these image segments are fed one after
another into the LSTM so that the network can learn the
spatial relationship of the image regions. Examples are the
so called multi-dimensional LSTM networks [3, 12, 13],
and the work of Ren et al. [16], whose approach delivers
a single instance at each iteration of the RNN. The second
field of application are networks using temporal information
of video sequences. Until now, only very few approaches
combining semantic segmentation approaches with recurrent
structures have been proposed. One of the first approaches
was the Recurrent Fully Convolutional Network (RFCN,
[22]), which was introduced by Valipour et al. in 2017.
They extended the FCN approach [18] by placing a recurrent
unit between the encoder and the decoder, and exhibit better
performance on the SegTrack, Davis, and Moving MNIST
dataset. In [24], Yurdakul et al. evaluated different recurrent
structures, such as convRNN, convGRU, and convLSTM,
on the virtual Kitti dataset [7], where the encoder and
decoder consist of modified VGG19 architectures [20]. They
found out that the convLSTM performs best. However, the
difference between the convLSTM-based approach and the
pure CNN-based approach is not large - in some cases
the LSTM-based approaches even performs worse. In [17],
the encoder-LSTM-decoder architecture was extended by
skip-connections between encoder and decoder. Each of the
skip-connections contains a convLSTM cell, too, and the
encoder and decoder are based on the ResNet architecture
[23]. However, the network was designed to predict the
segmentation map of the future frame given the last N
segmentation maps.

A commonality of present recurrent segmentation ap-
proaches is their encoder-decoder architecture, where con-
vLSTM layers are placed between the encoder and the
decoder part. However, this position is not optimal, as results
of this work show. Better results can be yielded if the
convLSTM layer is located directly before the softmax layer.
Furthermore, state-of-the-art approaches (e.g. [25, 26]) do
not often use the classical encoder-decoder structure any
more, but use several branches, for example for different
resolutions, and combine these branches at the end of the
network. In this work, it is analyzed where to place the
LSTM cells in these modern architectures to yield the best
performance in the case of semantic video segmentation.

IIT. RECURRENT NETWORK ARCHITECTURES
FOR VIDEO SEGMENTATION

In this section, different recurrent network architectures
for the video segmentation task are presented. We take
state-of-the-art segmentation approaches and extend them by
convLSTM layers at different positions. Concretely, SegNet
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Fig. 3. LSTM-ICNet network architecture: the gray boxes illustrate the original ICNet architecture, while the different positions of the ConvLSTM layers

are illustrated in color.

and the ICNet are chosen as basic architectures, since
they are real-time capable, which is an important issue
for autonomous driving applications, and represent different
network structures - the SegNet is an example of the classical
encoder-decoder structure, and the ICNet is an example of
a multi-branch approach. The extended SegNet is called
hereinafter LSTM-SegNet and the extended ICNet LSTM-
ICNet. In the following, the original network architectures
and their extended versions of the considered approaches are
described.

A. LSTM-SegNet

The SegNet [2] is one of the first real-time capable
segmentation approaches, and is a typical representative of
the classical encoder-decoder structure. The encoder consists
of convolutional and pooling layers of the VGG16 network
[20], and the decoder is a mirrored version of the encoder.
Then, a softmax operation is applied to the output of the
decoder to determine the class affiliation of each pixel. The
advantage of the SegNet is that it is memory efficient, since
it does not store the feature maps for the upsampling process
in contrast to FCN [18] but only its pooling indices.

The SegNet architecture is extended to the so called
LSTM-SegNet by placing convLSTM layers at different
positions in the network to find out which position is most
suitable. In previous works [17, 22, 24], convLSTM layers
are always located between the encoder and the decoder,
hence, a convLSTM layer is also placed between the encoder
and the decoder (version 1). The motivation for this position
is that the encoder determines global image information.

These information should not vary much between neigh-
boring image frames so that storing and modifying these
image features might avoid the flickering of features, and
hence, might improve the segmentation result. Additionally,
two different cases are considered. One possibility is to place
a convLSTM layer at the end of the network directly in
front of the softmax layer (version 2). This seems reasonable,
because each frame can be processed independently without
the influence of the previous ones so that the error can not be
propagated through the sequence. At the end, the results of
the current frame and the previous N frames are combined
by means of the recurrent structure. This corresponds to
a temporal filtering of the segmentation result. The last
considered case (version 3) is a combination of the previous
two versions. A convLSTM layer is placed between encoder
and decoder, and another one is placed directly in front of
the softmax layer. An overview of the different positions in
the basic SegNet architecture is given in Fig. 2] where the
gray boxes illustrate the (de)convolution blocks consisting
of two to three convolutional layers, and the colored boxes
represent different positions of the ConvLSTM layers in the
network.

B. LSTM-ICNet

Nowadays, the classical encoder-decoder architecture is
not very popular any more for semantic segmentation tasks,
since other network architectures containing several branches
improve the segmentation performance. A typical representa-
tive of these new approaches is the ICNet [25], which is very
fast compared to other state-of-the-art approaches [4, 26],



and still delivers high accuracy. The speed-up is based on
the usage of a highly downsampled version of the high-
resolution input image. However, small image details get
lost due to the downsampling. Hence, two further branches
with greater resolution are used, which refine the prediction
map of the lowest resolution. Generally, the input image is
downsampled twice, and input images of scale 1, 1/2 and
1/4 are yielded. The image of the lowest resolution is fed
into the top branch, which consists of a PSPNet based net-
work architecture. The medium and high resolution images
are processed in two further branches by several convolution
layers. The feature map size of the higher resolutions is
much smaller than the one of the lowest resolution to save
computation time, since it is assumed that lower resolution
layers contain the lost information. The output of the low
and the medium resolution branches are fused by means of
the Cascade Feature Fusion (CFF) layer [26]. After a further
convolution layer, the fused feature maps are concatenated
with the output of the high resolution branch by means of
a second CFF. The output of the CFF, which size is 1/4
of the input image, is upsampled by means of interpolation
and applying some convolution layers in two steps. Finally, a
softmax operation is applied to predict the class of the image
pixels.

Analogously to the LSTM-SegNet, convLSTM layers are
placed at different positions in order to find the best one.
The ICNet does not consist of the classical encoder-decoder
structure, and hence, convLSTM layers cannot be integrated
between encoder and decoder. In contrast, convLSTM layers
are placed at the end of each branch, before they are fused in
the CFF layer (version 5). In version 2, a convLSTM layer is
added before the softmax layer, which corresponds to a tem-
poral filtering of the result similar to version 2 of the LSTM-
SegNet. Additionally, a combination of version 2 and version
5 is considered, where the convLSTM layers are placed at the
end of each branch and in front of the softmax layer (version
6). Furthermore, it is analyzed if the performance increases
by combining actual image information with temporal image
information. For this, a convLSTM layer is placed only in
one or two branches. In version 1, the convLSTM layers
are added at the end of the high resolution branch to keep
the local image information, and in version 3, the convLSTM
layer is added at the end of the low resolution branch to keep
global image information. Version 3 is further extended by
additionally placing a convLSTM layer within the medium
resolution branch (version 4). Fig. [3] shows an overview
of the examined positions. The gray boxes illustrate the
original ICNet structure, while the colored boxes correspond
to possible positions of convLSTM layers. All in all, there
are six possible positions where to add convLSTM layers in
the ICNet. In the evaluation part, all of these possibilities are
compared by means of state-of-the-art evaluation metrics.

IV. EVALUATION

In the previous sections, different possibilities were dis-
cussed where to best integrate convLSTM layers in existing
networks. Now, these different possibilities are compared

qualitatively and quantitatively in terms of pixelwise accu-
racy, mloU, and inference time on the Cityscapes dataset
[6]. The Cityscapes dataset consists of 5000 fine-annotated
RGB images of size 1024 x 2048 recorded in 50 German
cities. The dataset is split into 2975 images for training, 500
images for validation and 1525 images for testing. Since the
ground-truth of the test images is not publicly available, the
proposed approaches are evaluated on the validation set. The
dataset contains 30 different classes, but similar to other
works [25, 26], only 19 classes are used for training. For
each image, the 19 previous and the 10 following images
are also available. The time difference between two frames
contains 60ms. We use sequences of four frames for training,
i.e. the semantic segmentation map of frame ¢ is determined
by means of the information of the last three frames ¢ — 3,
t—2,and t—1.

In this work, the focus is set on identical training con-
ditions so that only the position of the convLSTM layers
influences the result. Generally, the training parameters are
chosen similar to [25]. The initial learning rate is set to 0.001,
and decreased according to the poly learning rate policy.
Furthermore, a momentum of 0.9 and a weight decay of
0.0001 is used, and the amount of iterations is set to 30k. For
the LSTM-SegNet and LSTM-ICNet, the same loss functions
as in their original implementation are used. Note, that the
loss is only determined for frame ¢, the errors of the previous
frames t — 1,...,¢ — 3 are ignored. To avoid overfitting, the
training data are randomly mirrored and scaled with a ratio
between 0.5 and 2. The network parameters of the original
approach and the extended versions are both initialized with
the same pretrained networks. Moreover, all states of the
added LSTM-cells are initialized with zero, i.e. the past
is ignored completely. The kernel size of the convLSTM
layers is set to 3 x 3, and the number of output channels
is equal to the one of the previous layer. Each approach
is implemented in Tensorflow [1] and trained on a single
Nvidia Titan X. Due to memory reasons, the batch size was
set to one, knowing that the usage of greater batch sizes
increases the performance further. For instance, the mIoU of
the basic ICNet can be increased from 60.7% (batch size
1) to 65.2% (bath size 4) in our case. Note, that the origin
ICNet approach proposed in [25] achieves a mloU of 67.7%
(bath size 16). This difference might be a consequence of
different batch sizes and due to implementation reasons. The
results of LSTM-SegNet and LSTM-ICNet are discussed in
the following sections.

A. LSTM-SegNet

The three described LSTM-SegNet approaches of the
previous section are now evaluated, and compared with the
original SegNet approach. The resolution of the input images
is reduced to 256 x 512 due to memory and time reasons. The
results of the considered approaches can be found in Table
[ It turns out that the LSTM-based versions outperform the
original SegNet by up to 1.3% in terms of mloU, while all
approaches perform similarly in terms of pixelwise accuracy.
LSTM-SegNet version 2 yields the best results compared to



TABLE I
EVALUATION ON CITYSCAPES

approach H accuracy(%) [ mloU(%) [ inference time ‘
SegNet 84.53 38.21 34.80ms
ICNet 92.66 60.63 60.91ms
LSTM-SegNet version 1 84.21 38.79 74.44ms
LSTM-SegNet version 2 84.41 39.54 79.35ms
LSTM-SegNet version 3 83.03 38.70 81.42ms
LSTM-ICNet version 1 93.03 61.55 74.46ms
LSTM-ICNet version 2 92.99 61.96 74.80ms
LSTM-ICNet version 3 92.92 61.47 69.52ms
LSTM-ICNet version 4 92.81 60.95 71.59ms
LSTM-ICNet version 5 92.92 62.28 79.17ms
LSTM-ICNet version 6 93.04 61.52 83.16ms

all LSTM-based approaches, and is by about 0.7% better
than version 1 in terms of mloU, which corresponds to the
approaches of previous works [17, 22, 24]. Version 3, which
is a combination of version 1 and version 2, performs worst
of the LSTM-based versions. It seems that training multiple
convLSTM layers is more challenging than training only one.
The LSTM-based approaches also perform visually better,
e.g. in Fig. 4] the LSTM-based approaches partly detect the
sidewalk on the left side and the wall on the right in contrast
to the original SegNet approach. Furthermore, the proposed
approaches are also evaluated based on the inference time.
According to the results listed in Table the original
SegNet architecture is at least twice as fast as the LSTM-
based approaches. The reason is that convLSTM layers are
more time intensive than convolutional layers, since several
convolutions have to be applied in the convLSTM layer for
determining its internal states. LSTM-SegNet version 2 takes
longer than version 1, because the input size of the processed
feature map is much larger. Version 3 is a combination of
version 1 and version 2, and hence, its inference time is the
greatest one.

B. LSTM-ICNet

In this section, the LSTM-ICNet is evaluated on the
Cityscapes dataset. Similar to the original implementation,
the full resolution images of size 1024 x 2048 are used
for training and evaluation. Visually, the LSTM-based ap-
proaches reduce the amount of flickering objects, and detect
image areas more coherently. For example, in Fig [ the
sidewalk is recognized more continuously. Moreover, fine
structures, such as poles, are detected better, although they
are not always classified correctly. The results of the LSTM-
based approaches do not distinguish much. Nevertheless,
small differences can be recognized. For instance, version 1
recognizes fine structures better, and the edges are usually
smoother. In contrast, version 3 has more problems with
fine structures. However, it classifies large image areas
better, since the network stores global information. Version 2
corresponds to a temporal filtering of the segmentation map.
If the error occurs only in a few frames, the error can
be often remedied, otherwise, the error still appears. The
other considered versions are combinations of the first three
versions, and share their advantages and disadvantages, as

the results show.

The proposed approaches are also evaluated quantitatively
in terms of pixelwise accuracy and mloU. The results can
be found in Table [ The results show that the LSTM-
based approaches outperform the ICNet by at least 0.3%
in terms of pixelwise accuracy and from about 1% up to
1.6% in terms of mloU, which shows that adding temporal
information to the system does improve the performance
of the segmentation approach. The LSTM-based approaches
have similar accuracies, while version 6 delivers the highest
accuracy. A more meaningful evaluation metric is mean
IoU (mloU), since the class frequency is also considered.
The best mIoU value is yielded by version 5. Version 2,
which corresponds to a temporal filtering of the results, also
performs well analogously to the SegNet-based approaches,
and achieves the best results of all approaches using only one
convLSTM layer. Combining the different LSTM positions
should expectedly improve the performance. However, this
does not always hold true according to the results, since the
advantages and disadvantages of the different positions might
cancel each other out. Furthermore, training several LSTM
layers is more challenging from experience, and hence, the
optimization problem convergence worsens.

Similar to the SegNet-based architectures, the inference
time of the pure CNN-based ICNet is lower than of the
LSTM-based approaches, since applying a convLSTM layer
is more time-intensive than applying a convolutional layer.
The fastest LSTM-ICNet version is version 3 and only takes
about 10ms longer. The reason is that the convLSTM layers
have got the same kernel and channel size, but the size of
their feature maps varies. Hence, applying the convLSTM
layer of the medium and the low resolution branch takes
only a quarter and a sixteenth of the computation time of the
high resolution branch, respectively. The computation time
of version 1 and version 2 is similar since their convLSTM
layers have identical dimensions. The slowest inference time
shows in version 6, because it is a combination of the other
versions. Each of the proposed approaches takes less than
100ms, which corresponds to a frame rate of more than 10
frames per second, so that the LSTM-based approaches can
be still used in real-time capable applications. In this work,
we only use a kernel size of 3 x 3 for the convLSTM layers.
A greater kernel size increases the spatiotemporal area, and
improves the performance of the proposed algorithms further,
as experiments show. However, the inference time increases
enormously, so that the real-time capability condition cannot
be fulfilled. Hence, this case is not considered in this paper.

Finally, the origin ICNet and the proposed LSTM-ICNet
versions are compared with other state-of-the-art methods.
There only exist a few current video segmentation ap-
proaches as described in Section hence, the considered ap-
proaches are only compared with the work of Yurdakul et al.
[24] on the virtual Kitti dataset [7]. The virtual Kitti dataset
consists of 50 photo-realistic synthetic video sequences and
the corresponding semantic labels for each frame, which are
21260 images in total. Analogously to [24], the resolution of
the input images is reduced to 224 x 224 without preserving
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TABLE I
EVALUATION ON VIRTUAL KITTI

approach H accuracy(%) [ mloU(%) ‘
Conv-RGB* [24] 80.01 -
LSTM-RGB* [24] 79.95 -
ICNet 85.32 42.77
LSTM-ICNet version 1 86.36 44.48
LSTM-ICNet version 2 86.32 44.60
LSTM-ICNet version 3 86.15 44.40
LSTM-ICNet version 4 86.72 44.84
LSTM-ICNet version 5 86.40 44.58
LSTM-ICNet version 6 86.96 45.59
ICNet** 92.60 58.44
LSTM-ICNet version 1** 92.74 59.04
LSTM-ICNet version 2** 93.01 59.71
LSTM-ICNet version 3** 92.58 58.94
LSTM-ICNet version 4** 92.77 59.57
LSTM-ICNet version 5** 92.96 60.19
LSTM-ICNet version 6** 93.07 60.50

* results according to original paper ( [24])

** trained on images with full resolution (375 x 1242)

their aspect ratios. The training set consists of the first halves
of all variations and the test set of the second halves, which
corresponds to setup 2 in [24]. The training conditions are
identical to the ones of the previous sections, only that a
batch size of two is used. The results (see Table show
that the proposed approaches outperform the LSTM-RGB
net [24] by at least 5% in terms of accuracy. Additionally,
the LSTM-RGB net performs similarly to its pure CNN-
based variant (Conv-RGB). In contrast, our LSTM-based
approaches achieve better results by at least 1% percent
compared to the origin ICNet. For the sake of completeness,
the origin ICNet and the different LSTM-ICNet are also
trained and evaluated with the original image size (375 x
1242) using a batch size of one again. The results are also
shown in Table

V. CONCLUSION

In this paper, state-of-the-art semantic segmentation ap-
proaches have been extended by convLSTMs to also consider
image information of previous frames. Different positions
of the LSTM cells were investigated with different net-
work architectures such as the encoder-decoder structure and
the multi-branch systems and evaluated on the Cityscapes
dataset. It turned out that the convLSTM-based approaches
outperform the original approaches by up to 1.6%, while its
real-time capability can be still guaranteed, i.e. the inference
time of the LSTM-based approaches is less than 100ms. The
experiments show that the best position of the convLSTM
layers is directly in front of the softmax layer in case of
the encoder-decoder architecture, and at the end of the high-
resolution branch in case of the multi-branch architecture. We
further found out that combining different positions does not
necessarily improve the performance.
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