Abstract:
This paper presents a probabilistic framework for collision probability estimation. The framework uses information about objects' velocity and acceleration gathered from ...Show MoreMetadata
Abstract:
This paper presents a probabilistic framework for collision probability estimation. The framework uses information about objects' velocity and acceleration gathered from a larger real traffic data set in order to create a discrete Markov Chain model. This model is then used to predict other traffic participants motion in a given scenario and through this calculate the probability of a future collision. The framework is then analyzed with respect to potential errors that are created in the discretization process. Especially the errors related to the discrete velocity regions are investigated in more detail. The analysis is performed on a selection of critical scenarios from a larger data set in order to set scenario-based requirements of the state discretization resolution. In the end, there is a discussion about the implications for the collision probability estimate, as well as, suggested next steps in order to get a complete view of the precision of the estimate.
Published in: 2019 IEEE Intelligent Vehicles Symposium (IV)
Date of Conference: 09-12 June 2019
Date Added to IEEE Xplore: 29 August 2019
ISBN Information: