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Attention Monitoring and Hazard Assessment with Bio-Sensing and
Vision: Empirical Analysis Utilizing CNNs on the KITTI Dataset
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Abstract— Assessing the driver’s attention and detecting
various hazardous and non-hazardous events during a drive
are critical for driver’s safety. Attention monitoring in driving
scenarios has mostly been carried out using vision (camera-
based) modality by tracking the driver’s gaze and facial ex-
pressions. It is only recently that bio-sensing modalities such as
Electroencephalogram (EEG) are being explored. But, there is
another open problem which has not been explored sufficiently
yet in this paradigm. This is the detection of specific events,
hazardous and non-hazardous, during driving that affects the
driver’s mental and physiological states. The other challenge in
evaluating multi-modal sensory applications is the absence of
very large scale EEG data because of the various limitations
of using EEG in the real world. In this paper, we use both
of the above sensor modalities and compare them against the
two tasks of assessing the driver’s attention and detecting
hazardous vs. non-hazardous driving events. We collect user
data on twelve subjects and show how in the absence of very
large-scale datasets, we can still use pre-trained deep learning
convolution networks to extract meaningful features from both
of the above modalities. We used the publicly available KITTI
dataset for evaluating our platform and to compare it with
previous studies. Finally, we show that the results presented in
this paper surpass the previous benchmark set up in the above
driver awareness-related applications.

I. INTRODUCTION

With the development of increasingly intelligent and
autonomous vehicles it has been possible to assess the
criticality of a situation much before the event actually
happens. It has also become possible to monitor the driver’s
responses to various events during the drive. While computer
vision continues to be the preferred sensing modality for
achieving the goal of assessing driver awareness, the use
of bio-sensing systems in this context has received wide
attention in recent times [1], [2]. Most of these studies
have used electroencephalogram (EEG) as the preferred
bio-sensing modality. While these studies have shown that
EEG can prove to be very useful for assessing fatigue and
attention in the driving context, it generally suffers from low
spatial resolution. Furthermore, the use of high-density EEG
systems is impractical in a real-world driving context.

Driver awareness depends highly on the driver’s phys-
iology since different people react differently to fatigue
and to their surroundings. This means that a single fit-for-
all type of approach using computer vision based on eye
blinks/closure etc. might not scale very well across drivers.
It is here that the use of EEG may play a useful role in
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assessing driver awareness by continuously monitoring the
human physiology. Furthermore, EEG may prove to be very
useful for detecting hazardous vs. non-hazardous situations
on short time scales (such as 1-2 seconds) if such situations
do not register in the driver’s facial expressions in such short
time periods.

The advent of deep learning has translated very well
towards vision-based systems for many applications, among
them, driver behavior and attention monitoring [3], [4]. But,
these advances have not translated towards the data from bio-
sensing modalities such as EEG. This is primarily due to the
difficulty in collecting very scale bio-sensing data. Collecting
bio-sensing data on a large scale is costly, laborious, and
time-consuming, whereas for collecting image/videos even a
smartphone’s camera may suffice. Hence, we explore the use
of pre-trained image-based deep learning networks to extract
meaningful features for both sensor modalities.

This study focuses on driver awareness and his/her percep-
tion of hazardous/non-hazardous situations from bio-sensing
as well as vision-based perspectives. We utilize the KITTI
dataset [5] for evaluation and individually use features from
EEG and image data to compare the performance of these
modalities. We also use the fusion of features and show
how in certain cases, the use of multiple modalities may be
advantageous. We also show how pre-trained deep neural
networks can be utilized to extract features from these
modalities for boosting the performance even in the absence
of very large scale data. To the best of our knowledge, this
study is the most comprehensive view of using EEG and
vision modalities towards assessing driver awareness and
hazard assessment. Finally, we would like to emphasize that
the data collection set up used in this study is very practical
to use in “real-world” i.e. it is compact in design, wireless,
and comfortable to use for prolonged time intervals.

II. RELATED STUDIES

Driver monitoring for assessing attention, awareness, be-
havior prediction, etc. has usually been done using vision
as the preferred modality [6], [7], [8]. This is carried out
by monitoring the subject’s facial expressions and eye-gaze
[9], [10] which are used to train machine learning models.
But, almost all such studies utilizing “real-world” driving
scenarios have been conducted during daylight when ample
ambient light is present. Even if infra-red cameras are used
to conduct such experiments at night, vision modality suffers
from occlusion and widely varying changes in illumination
[6], both of which are not uncommon in driving scenarios.



Hazard assessment is a problem that has been tackled with
vision as the primary modality [11] and evaluated on the
KITTI dataset [5]. Additionally, it has also been shown that
the use of EEG can classify hazardous vs. non-hazardous
situations over short time periods which is not possible
with images/videos [12]. We take this recent study on the
KITTI dataset as the benchmark for our evaluation. The
KITTI dataset contains vision data (along with other sensors)
collected in rural areas and on highways in Karlsruhe city of
Germany. The dataset contains many driving scenarios with
up to 15 cars and 30 pedestrians visible per image. This
makes it ideal for our study since the scene complexity in
the dataset varies a lot more than many other such datasets.

The study [12] suffers from three major limitations. First,
the study superimposes non-existent stimulus over the real-
world driving images which introduce an uncanny aspect
since such stimuli are not what one expects during a real-
world drive. Second, the study does not use the most com-
mon sensor modality to assess the driver’s awareness i.e.
vision. Hence, no baseline comparison can be done between
the two kinds of sensor modalities. Third, the EEG features
used in the research are the most commonly used ones and
are in no way tuned to the specific application at hand. No
attempt has been made to extract higher-level EEG features
that are more relevant to human cognition. Finally, the study
contains a pool of only five subjects which is quite small
since the usual norm is to use at least ten subjects for bio-
sensing based applications.

III. RESEARCH METHODS

In this section, we discuss the various research methods
that we employed to pre-process the data and extract features
from each sensor modality used in this study.

A. EEG-based Feature Extraction

The cognitive processes pertaining to attention and mental
load such as while driving are not associated with only one
part of the brain. Hence, our goal was to map the interaction
between various regions of the brain to extract relevant
features related to attention. The EEG was initially recorded
from 14-channel Emotiv EEG headset at 128 Hz sampling
rate. The locations of the EEG channels according to the
International 10-20 system were: AF3, AF4, F3, F4, F7, F8,
FC5, FCo, P7, P8, T7, T8, O1, and O2. This EEG headset
was chosen because it is compact, wireless, and easy to use
in real-world settings. We first pre-processed the data using
EEGLAB [13] toolbox. We used the artifact subspace recon-
struction (ASR) pipeline in the toolbox to remove artifacts
related to eye blinks, movements, line noise, etc. [14]. Then,
the cleaned EEG data was band-pass filtered between 4-45
Hz to preserve the data from the most-commonly used EEG
frequency bands. We then employed two distinct and novel
methods to extract EEG features that captured the interplay
between various brain regions to map human cognition.

1) Features based on Mutual Information: To construct
the feature space that can map the interaction of EEG infor-
mation between various regions of the brain, we calculated

the mutual information between signals from different parts
of the brain [15], [16]. Such features were opted for since
they measure the changes in EEG across the various regions
of the brain which might be more expressive of human
cognition rather than spatially local features. The mutual
information [(X;Y") of discrete random variables X and
Y is defined as

I(X;v) =Y Zp(x’y)lo“C’(zW) .
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The desired feature of conditional entropy H(Y'|X) is
related to the mutual information I(X;Y") by

I(X;Y) = H(Y) - H(Y|X) @)

We calculated the conditional entropy using mutual infor-
mation between all possible pairs of EEG electrodes for a
given trial. Hence, for 14 EEG electrodes, we calculated 91
EEG features based on this measure.

2) Features based on Deep Learning: The most com-
monly used EEG features are the power-spectrum density
(PSD) of different EEG bands. But, these features in them-
selves do not take into account the EEG-topography i.e. the
location of EEG electrodes. Hence, we try to exploit EEG-
topography to extract information regarding the interplay
between different brain regions. We also wanted to utilize
pre-trained convolution networks since training a deep neural
network from scratch needs a very large amount of data
which is difficult to acquire. Thus, we sought to convert
time-domain EEG data to image domain for utilizing such
pre-trained convolution networks.

We calculated the PSD of three EEG bands namely theta
(4-7 Hz), alpha (7-13 Hz) and beta (13-30 Hz) for all the
EEG channels. The choice of these three specific EEG bands
was made since they are the most-commonly used EEG
bands and have been shown in multiple studies to contribute
significantly towards human cognition. We averaged the
PSD for each band thus calculated over the complete trial.
These features from different EEG channels were then used
to construct 2-D EEG-PSD heatmap for each of the three
EEG bands using bicubic interpolation. These heat-maps
now contain the information related to EEG topography in
addition to spectrum density at every location [17].
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Fig. 1. PSD heat-maps of the three EEG bands i.e. theta (red), alpha
( ), and beta (blue) EEG bands are added according to respective color-
bar range to get combined RGB heat-map image.(Circular outline, nose,
ears, and color-bars have been added for visualization only.)

Combined PSD

Alpha band PSD

Fig. [T] shows an example of these 2-D heatmaps for each
of the three EEG bands. As can be seen from the figure, we
plot each of the three EEG bands using a single color channel
i.e. red, green and blue. We then add these three color band



images to get a color RGB image containing information
from the three EEG bands. The three color band images are
added in proportion to the amount of EEG power in the three
bands using alpha blending [18] by normalizing each band’s
power using the highest value in the image. Hence, following
this procedure we are able to represent the information in
the three EEG bands along with topography through a single
color image. The interaction between these three colors (thus
forming new colors by adding the three primary colors) in
various quantities is representative of the information about
the distribution of spectral power across the brain.

This combined colored image representing EEG-PSD with
topography information is then fed to a pre-trained deep-
learning based VGG-16 convolution neural network [19] to
extract features from this image. This network consists of
16 weight layers and has been trained with more than a
million images for 1,000 object categories using the Imagenet
Database [20]. Previous research studies [21], [22] have
shown that using features from such “off-the-shelf” neural
network can be used for various classification problems with
good accuracy. The EEG-PSD colored image is resized to
224x224x 3 for input to the network. The last layer of the
network classifies the image into one of the 1000 classes but
since we are only interested in “off-the-shelf” features, we
extract 4,096 most significant features from the last but one
layer of the network. The EEG features from this method
are then combined with those from the mutual information
method for further analysis.

B. Facial expression-based feature extraction

The analysis of facial expressions has been the preferred
modality for driver attention analysis. Most of the research
work in this area has been done by tracking fixed localized
points on the face based on face action units (AUs).

First, we extracted the face region from the frontal body
image of the person captured by each camera frame. This
was done by fixing a threshold on the image size to reduce
its extreme ends and placing a threshold of minimum face
size to be 50x50 pixels. This was done to remove any
false positives and decrease the computational space for
face detection. We then used the Viola-Jones object detector
with Haar-like features [23] to detect the most likely face
candidate. In extremely uncommon cases when the face
detector failed due to major occlusion by the subject’s hands
in front of their face, the frames were discarded.

Fig. 2.
in ) for two participants (left and center) in the study, and some of
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1) Facial points localization based features: Face action
units (AUs) has been used for a variety of applications rang-
ing from affective computing to face recognition [24]. Our
goal was to use face localized points similar to AUs without
identifying facial expressions such as anger, happiness, etc.
since they are not highly relevant in driving domain and
short time intervals. We applied the state-of-the-art Chehra
algorithm [25] to the extracted face candidate region from
above. This algorithm outputs the coordinates of 49 localized
points representing various features of the face as in Fig. 2}
The choice of this algorithm was done because of its ability
to detect these localized points through its pre-trained models
and hence not needing training for any new set of images.
These face localized points are then used to calculate 30
different features based on the distances such as between
center of the eyebrow to the midpoint of the eye, between
the midpoint of nose and corners of the lower lip, between
the midpoints of two eyebrows, etc. and angles between
such line segments. To remove variations by factors such as
distance from the camera and face tilt, we normalized these
features using the dimensions of the face region. To map
the variation in these features across a trial, we calculated
the mean, 95" percentile (more robust than maximum), and
standard deviation of these 30 features across the frames in
the trial. In this manner, we computed 90 features based on
face-localized points from a particular trial.

2) Deep Learning-based features: For the extraction of
deep learning-based features, we used the VGG-Faces net-
works instead of VGG-16 [26]. This was done to extract
features more relevant to faces since the VGG-Faces network
has been trained on more than 2.6 million face images
from more than 2,600 people rather than on various object
categories in the VGG-16 network. Similar to the feature
extraction methods above, we sent each face region part to
the network and extract the most significant 4,096 features.
To represent the changes in these features across the trial i.e.
across the frames, we calculated the mean, 95" percentile,
and standard deviation of the features across the frames in
a trial. The features from the above two methods were then
combined for further analysis.

C. Assessing trends of sensor features using Deep Learning

The features discussed in sections III.A and III.B above
were computed over the whole trial such as by generating
a single EEG-PSD image for a particular trial. This is a
special case when the data from the whole trial is being
averaged. Here, we propose a novel method to compute the
trend of these features i.e. their variation in a trial based
on deep learning. To compute features with more resolution
we generated multiple EEG-PSD images for successive time
durations in a trial. Fig. [3] shows the network architecture
for this method. The EEG-PSD images are generated for
multiple successive time durations in a trial each of which
is then sent to the VGG-16 network to obtain 4,096 most
significant features. Similarly, this process was done for
conditional entropy features by calculating this over multiple
time periods in a trial rather than once on the whole trial.
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Fig. 3.

We then use principal components analysis (PCA) [27] to
reduce the feature size to 60 to save computational time in
the next step. These 60x N (/N = number of successive time
intervals) features were then sent as input to a Long Short
Term Memory (LSTM) network [29]. The same process was
performed for face-based features.

The LSTM treats each of these features as a time-series
and is trained so as to capture the trend in each of them for
further analysis. This method could only be applied when the
time duration of the trials is fixed since the length of each
time series should be the same. Since the duration of KITTI
videos varied widely, we applied this method only in the
trials used for detecting hazardous/non-hazardous situations.

Fig. 4. Experiment setup for multi-modal data collection. (A) EEG Headset,
(B) External camera, and (C) Driving videos displayed on the screen. The
subject sits with her/his arms and feet on a driving simulator with which
s/he interacts while watching the driving videos.

IV. DATASET DESCRIPTION

In Fig. ] we show the experimental setup for data collec-
tion with driving videos used as the stimulus in our dataset.
The participants are comfortably seated equipped with an
EEG headset (Emotiv EPOC). Facial expressions of each
subject are recorded using a camera in front of him/her. The
participants are asked to use a driving simulator which they
are instructed to control as per the situation in the driving
stimulus. For example, if there is a “red light” or “stop sign”
at any point in a driving stimulus video, the participants
should press and hold the brake. Twelve participants (most
of them in their 20s with two older than 30 years) based in
San Diego participated in our study. All the modalities were
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Network architecture for EEG-PSD trend based Deep Learning method.

synchronized together using Lab Streaming Layer (LSL)
software framework [28].

For consistency between our work and other previous
studies [12], [11], we used 15 video sequences from the
KITTI dataset [5]. These video sequences range from 14
to 105 seconds. These videos in the dataset were recorded
at 1242375 resolution at 10 frames-per-second (fps). We
resized the videos to 1920x 580 to fit the display screen in a
more naturalistic manner. Two external annotators marked
the above 15 video sequences as requiring low-driver at-
tention or high-driver attention based on the context in the
video. For example, the video instances where the car is not
moving at all were characterized as low attention instances
whereas driving through narrow streets with pedestrians
on the road were labeled as instances with high driver
attention required. These sequences contained videos from
widely varying illumination and driving conditions (in street,
highway, city, etc.) as shown in Fig. 5]

Fig. 5. Various image instances with varying illumination conditions and
type of road (street, single-lane, highway, etc.) from the KITTI Dataset.

Second, 41 instances, each two second long were char-
acterized as hazardous/non-hazardous. Fig. [6] presents some
examples of instances from both categories. As an example,
a pedestrian suddenly crossing the road “unlawfully” or
a vehicle overtaking suddenly represents hazardous events
whereas “red” traffic sign at a distance and a pedestrian at
a crossing with ego vehicle not in motion are examples of
non-hazardous events. Among these instances, 20 instances
were labeled as hazardous whereas rest as non-hazardous.
Hence, the goal is to classify such instances in a short time
period of two seconds using the above sensor modalities.



V. QUANTITATIVE ANALYSIS OF EEG AND VISION
SENSOR MODALITIES

In this section, we present the single modality and multi-
modal evaluation results for driver attention analysis and
hazardous/non-hazardous instances classification. For each
modality, we first used PCA [27] to reduce the number of
features from the above algorithms to 30. We then used
extreme learning machines (ELM) [30] for classification.
These features were normalized between -1 and 1 across the
subjects before training. A single hidden layer ELM was used
with triangular basis function for activation. For the method
with trend based temporal EEG and face features data, we
used two layer LSTM with 200 and 100 neurons in respective
layers. The network training was done using stochastic
gradient descent with a momentum (SGDM) optimizer.

Fig. 6.
Examples include pedestrians crossing the street without a crosswalk while
the ego vehicle is being driven and another vehicle overtaking suddenly.
(B) Examples of 2-seconds incidents classified as non-hazardous. Examples
include stop signs and railway crossing signs.

(A) Examples of 2-seconds incidents classified as hazardous.

We performed leave-one-subject-out cross-validation for
each case. This meant that the data from 11 subjects was
used for training at a time and the classification was done on
the remaining 12*" subject. This choice of cross-validation
was driven by two factors. First, this method of cross-
validation is much more robust and less prone to bias than
models such as leave-one-sample-out cross-validation that
constitutes training data from all the subjects at any given
time. Second, since the data contained 180 trials only, as
opposed to thousands of trials for any decent image-based
deep-learning dataset, it did not make sense to randomly
divide such a small number of trials to training, validation,
and test sets since it might introduce bias by uneven division
across trials from individual subjects.

A. Evaluating attention analysis performance

In this section, we evaluate single and multi-modal perfor-
mance for assessing the driver’s attention across the video
trials. For all the four modalities, the features as defined
above were calculated for data from each video trial. The
ELM-based classifier was then trained based on each video
trial divided into one of the two classes representing low-
attention and high-attention required by the driver.

Fig. [7] shows the result for each modality for attention
classification. The mean performance across the subjects
for EEG, faces, and EEG + faces combined are 93.33 %,
81.67%, and 92.78% respectively. Clearly, EEG performs
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Fig. 7. Single modality classification performance for driver attention
analysis.

better than vision modality, so much so that adding the
features from the two together doesn’t lead to an increase
in the performance. We also see that across most of the
subjects, EEG performs better than vision modality. This is
perhaps because the slowly-varying facial expressions during
a driving task are not so expressive as to map the driver’s
attention very well. It is also to be noted that for all the cases,
the accuracy of our system is significantly higher than chance
(50% accuracy). We also note that the accuracy between
subjects varies between EEG and faces modality. This may
be due to some subjects being facially more expressive than
others in the driving scenario.

B. Evaluating hazardous/non-hazardous incidents classifica-
tion

In this section, we present the results of the evaluation
of the modalities over very short time intervals (2 seconds)
pertaining to hazardous/non-hazardous driving incidents as
shown in Fig. [6} Since it is not possible for the subjects to
tag the incidents while they are participating in the driving
simulator experiment and hence these incidents were marked
by the external annotators as mentioned above in Section IV.
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Fig. 8.  Multi-modality classification performance for driver attention

analysis.

The mean accuracies across the subjects for EEG, faces,
EEG + faces were 88.41%, 82.93%, and 90.24%. This shows
that again EEG performs better than vision modality but
more importantly, the combined performance of these modal-
ities is better than individual ones. This means that on very
short time periods (such as 2 seconds here), face features
contain information independent and additive to what EEG
features have. It is also to be noted that the performance
of EEG in our feature extraction and processing pipeline is



significantly better than the previous hazard analysis study
(AUC 0.79) [12]. Also, again we see that the accuracies for
all cases are significantly higher than chance level.

We also note that on performing analysis with finer
temporal resolution using LSTMs, the performance further
increases to an average of 96.34%. This shows how the type
of traditional and deep learning features we extracted above
can be used for such a task with a good performance by
utilizing multiple sensor modalities.

VI. CONCLUDING REMARKS

The use of bio-sensing modalities combined with audio-
visual ones is rapidly expanding. With the advent of compact
bio-sensing systems capable of data collection during real-
world tasks such as driving, it is natural that this research
area will gather more interest in the coming years. In this
work, we showed how a commercially available compact
EEG system with the capability of easily collecting data in
the driving scenario can be used to monitor driver’s attention
in both short and long periods of time. We also presented
a pipeline to process data from individual modalities for
the applications of classifying hazardous vs. non-hazardous
incidents while driving. Furthermore, we presented a method
to be able to use pre-trained convolution neural networks to
extract deep-learning based features from these modalities in
addition to traditionally used ones. In future, we would ex-
plore the addition of eye-tracking as another sensor modality
to study gaze dynamics and automatic stimuli tagging.
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