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Abstract— Autonomous explorative robots frequently en-
counter scenarios where multiple future trajectories can be
pursued. Often these are cases with multiple paths around
an obstacle or trajectory options towards various frontiers.
Humans in such situations can inherently perceive and rea-
son about the surrounding environment to identify several
possibilities of either manoeuvring around the obstacles or
moving towards various frontiers. In this work, we propose a 2
stage Convolutional Neural Network architecture which mimics
such an ability to map the perceived surroundings to multiple
trajectories that a robot can choose to traverse. The first stage is
a Trajectory Proposal Network which suggests diverse regions
in the environment which can be occupied in the future. The
second stage is a Trajectory Sampling network which provides a
finegrained trajectory over the regions proposed by Trajectory
Proposal Network. We evaluate our framework in diverse and
complicated real life settings. For the outdoor case, we use
the KITTI dataset and our own outdoor driving dataset. In
the indoor setting, we use an autonomous drone to navigate
various scenarios and also a ground robot which can explore the
environment using the trajectories proposed by our framework.
Our experiments suggest that the framework is able to develop
a semantic understanding of the obstacles, open regions and
identify diverse trajectories that a robot can traverse. Our
comparisons portray the performance gain of the proposed
architecture over a diverse set of methods against which it
is compared.

I. INTRODUCTION

Autonomous navigation requires the explorative ability to
navigate by identifying diverse paths to multiple goal points
by perceiving its environment. A simple instance is a case
where an autonomous drone using SLAM [1] or using any
other sensor based reconstruction [2], [3] can manoeuvre
between obstacles by going around towards their right or
left side. Similarly, in an indoor corridor intersection, it can
proceed straight, right or left. The autonomous robot has to
identify various possible paths and goal points that it can
pursue in any given setup. Such a task is easy for humans
where they can map the scene configuration to identify
multiple traversable areas, goal points and also a fine grained
path. One such use case in autonomous vehicle setting is
where you know the rough direction of travel but not the
actual goal point. A diverse path prediction is required in
this case to determine the best plan of action. Some of the
key applications can include but not limited to:
• In case of rerouting alternate trajectories might be

required due to sudden unexpected changes in the
environment.
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Fig. 1. Trajectory Proposal:(a) Bird’s-eye-view of the pointcloud data
generated at a road bifurcation. This pointcloud data is converted into a 2D
occupancy grid and passed as an input to TPNet (b) Proposed trajectories
in the form of probability values for each pixel which is passed to TSNet
(c) Sampled trajectory output. (d) Third-person-view of the driving scenario
illustrating proposed trajectories with respect to the car.

• It also opens up the possibility of reaching the destina-
tion in multiple possible ways.

• It can be useful in overcoming GPS errors. The net-
works output can help in guiding the vehicle precisely
to take turns thus overcoming the state estimation errors
that results in early or late turns near an intersection as
shown in figure 2.

In this work, we present a Convolutional Neural Network
framework which precludes the need for explicit determi-
nation of candidate waypoints as it learns a direct mapping
from intermediate semantic representation to candidate tra-
jectories as shown in fig. I. Our framework which consists
of two stages. The first is a Trajectory Proposal Network
(TPNet), an encoder-decoder style network, which uses the
occupancy map and robot’s past trajectory as input and
produces multiple traversable areas by inherently discovering
the waypoints possible in the scene. This is achieved through
our novel supervision based on multiple choice learning
which encourages the TPNet to identify various waypoints
and propose diverse traversable areas for a given scenario.
The second stage of our framework, the Trajectory Sampler
Network (TSNet) is a Long Short-Term Memory (LSTM)
based network which uses the proposals by TPNet and sam-
ples precise trajectories values through those proposals which
can lead the robot to various goal points. This alleviates the
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Fig. 2. Planning failures due to localization based on GPS. Green dot
represents the true location of the ego vehicle while the blue dot represents
the erroneous location given by GPS. Hence, planning a trajectory based
on the GPS location (yellow line) and executing the trajectory on the true
location might not be feasible (blue line). Our proposed method gives a
trajectory based on the scene structure (red line) which further can help in
correcting these errors.

need to explicitly sample various goal points and compute
trajectories towards them. Further, our framework generalizes
well when trained on outdoor data and evaluated on indoor
data and vice-versa. This is because we use input data which
is occupancy based instead of appearance based.

To evaluate the efficacy of our network, we perform
extensive experimentation in outdoor scenes using the KITTI
[4] scenes and our own outdoor driving scenes. Additionally,
we demonstrate results in an indoor setting in a laboratory
environment with varied complexity in scene structure. To
quantitatively evaluate our network, we compare our results
to traditional path planners like RRT-star [5], BIT-star [6]
etc in terms of similarity between our paths and theirs for a
particular goal point and the time taken to estimate the paths.
To this end, our contributions are the following :

• We present a novel CNN framework which is able to
map the perceived surroundings to a diverse set of tra-
jectories towards inherently inferred goal points. Such
abilities are very relevant in autonomous navigation
settings where alternate feasible trajectories are needed
due sudden changes in the motions of surrounding
vehicles.

• Our proposed supervision strategy to train the TPNet
based on Multiple Choice Learning enables the network
to identify diverse traversable areas which are further
used to predict trajectories towards various goal points.

• Our framework easily generalizes to new scenarios due
to the versatility of the intermediate representation using
occupancy maps. For instance, a network trained on
LIDAR data for outdoors works for a monocular or
indoor depth maps obtained from drones.

• We demonstrate results on the KITTI dataset which uses
Velodyne 64 , our campus dataset with Velodyne 16 and
also scenarios like indoor drone which uses an RGBD
camera.

We demonstrate that our network performs better than
classical trajectory prediction methods in terms of time taken
as our network predicts trajectories in constant time despite
increasing the number of possible choices. To the best of our
knowledge, there has not been prior literature that addresses
the problem in such an end to end fashion.

II. RELATED WORK

The problem of identifying multiple driving/navigation
options for a given perceptual input has not been widely
studied in literature. While not exactly a trajectory planning
problem, classical planners such as [7], [5] would pose
this problem as one of hypothesizing/sampling multiple
goal locations followed by computation of trajectories to
such candidate goal locations. Evidently as the diversity
of navigation options increase the computational time for
generating all possible candidate trajectories increases. In
contrast in this paper the end to end learning algorithm
provides for constant time outputs despite increasing number
of navigation options or driver intents as the case may be.
The task of trajectory estimation and planning has been
attempted before using neural networks. Glasius et al. [8]
presented an approach based on Hopfield Neural Networks
for generating paths in dynamic environments. Yang et al. [9]
presented a computationally efficient neural architecture for
real time navigation of robots in dynamic environments. The
closest formulations in the literature are those that predict
driver intents around an intersection [10], [11], [12], however
such methods are restrictive in that they rely on explicit
knowledge of the intersection and do not scale to situations
beyond intersections. There are a number of methods that
map perceptual inputs to continuous space control actions
[13] , [14] in an end to end framework. However extensions
of such formulations to predict multiple trajectory proposals
have not appeared in literature thereby placing the current
algorithm as distinct in the context of existing works. On
the other hand, robots would some times want to explore the
possibilities of where they could traverse in a given scene.
The current method works on intermediate representations
obtained by a variety of robotic agents from diverse sen-
sors such as stereo cameras, RGBD sensors and LIDAR
to generate candidate navigating options (trajectories). We
present an approach which generalizes to various scenarios
like autonomous drones navigating in indoor and outdoor
environments, ground robots exploring indoor scenes and
also autonomous cars in outdoor scenes.

III. METHOD

In this section, we describe the details of our architecture
and formally define the problem and our approach below.
The overall pipeline of the proposed method is illustrated in
the figure 3.

A. Inputs

We use 2 types of inputs to the Trajectory Proposal
Network. The first input is O which represents the occupied
space (O1), free space (O2) and the unknown/unexplored
space (O3) in the perceivable area of the robot. These are
computed using the lidar based point cloud and identifying
all the potential obstacles within a certain range, the free
space and the unexplored area. O is obtained by projecting
the registered point cloud data to 2D grid in birds-eye
view and is the stack of mutually exclusive binary masks
O1,O2,O3 each of dimensions h × w. Hence, (Oi

xy=1)⇒



(Oj 6=i
xy = 0) ∀(x, y) ∈ (h × w). The second input type

Qh×w×1 specifies the track history of the ego vehicle in the
from of grid with Qxy representing whether the xyth grid
cell was occupied by the ego vehicle in the past. Effectively,
the input to the network is Ih×w×4 = {O,Q}. I has ego-
centric vehicle information. The vehicles track histories are
appropriately transformed to the ego vehicles coordinate
frame and then discretized to form a grid.

B. Training Data

To obtain training ground truth for our framework, we use
an RRTstar [5] based planner from Open Motion Planning
Library OMPL [15]. For each of the training scenario in
Itrain, multiple goal points are chosen in a manner that it
ensures all dominant choices of motion. Further, we obtain
trajectories to each of these goal points using RRTstar and
discretise them over the grid. Such an approach enables us
to create large amounts of training data by using lidar data
and RRT based planner without any need for annotation. To
this end, for a scene It ∈ Itrain, Pt = {Pi} represents
the diverse trajectories possible where i varies from 1 to N
corresponding to each scene.

C. Trajectory Proposal Network

The Trajectory Proposal Network is the first module in
our framework which proposes diverse multi-modal areas
from which trajectories can further be sampled by the
Trajectory Sampling Network. These are regions in the open
space which could be traversed by the robot.

1) Architecture: We use a CNN with an Encoder-Decoder
style architecture with skip connections. All the convolutions
in the network are Dilated. The output of the network is R
= {Rk} where k is the number of diverse regions we want
the network to predict. Rk has 2 channels which indicate
the probability of each pixel in the channel belonging to
traversable region or not. Effectively, the network has k× 2
channels and through various experiments we chose k = 4
in our setup as it was able to capture all possible trajectories
in most of the situations.

2) Training: We train the TPNet in a supervised fashion
using < It, Pt > pairs. For each training iteration, we
randomly pick It and one of the groundtruth trajectories Pi

from the pool Pt. Our first loss which we call as Trajectory
Diversity Loss, Ltd defined in eq. 1 encourages the network
to predict diverse proposals through its outputR. To compute
this, we evaluate the weighted cross entropy loss between
each of the trajectory outputs Rk in R with the ground truth
trajectory Pi and choose the minimum of these losses, which
is the best possible proposal generated. This is inspired from
the Multiple Choice Learning framework presented in [16].
Such a loss encourages the network to spread its bets on
various proposals in its multiple output layers.

Ltd = min
k

(
− αP 0

i logR0
k − (1− α)P 1

i logR1
k

)
(1)

where α is weight parameter used to compute the loss and
the superscripts 0 and 1 indicates channels corresponding to
traversable and non-traversable regions of TPNet outputs. We
train the network through deep supervision by computing the
Trajectory Diversity Loss at two different levels. The first
level as described above is at the last layer of the TPNet and
the second level is immediately after the last decoder layer of
the network. To achieve this, we use the output from the last
decoder layer and apply deconvolutions on those features
to produce k × 2 outputs similar to the final layer of our
network. The loss at this intermediate supervision is same as
Ltd but is applied on these intermediate outputs.

Additionally, we use an Obstacle Avoidance Loss Lobs

which penalizes the network when it predicts proposals
which intersect with the obstacles in the scene. To achieve
this, we minimize the negative log likelihood ofR at obstacle
locations. The loss is defined as,

Lobs = −O1 logR1
k (2)

The effective loss to train TPNet is given by

LTPN = Ltd + λLobs (3)

where, λ is the weight of Obstacle Avoidance loss.
During the test phase, TPNet provides us with diverse

trajectory regions throughR. Each of the predicted trajectory
regions Rk contains the probabilities associated with the
pixels in trajectory regions which we further use in our next
module.

D. Trajectory Sampler Network

The second module of our pipeline is the Trajectory
Sampler Network which is used to predict a set of future
waypoints using a particular proposal Rk from TPNet.

1) Architecture: The input to the TSNet is one of the pro-
posal, Rk from the TPNet. The probability map is encoded
into a feature space using a convolutional layer with kernel
size of 7 followed by 3 convolutional layers of stride 2. This
is fed into a series of 3 LSTM [17] layers along with the
previous predicted coordinates from the last LSTM layer.
The output from the network is Ŵ = {ŵ1, ŵ2, ŵt} where
ŵt is a predicted trajectory coordinate. The coordinates are
predicted in the discretized 2-D grid representing the scene.

2) Training: The ground truth coordinates are generated
using an RRTstar with B-spline on top for each Rk from
the current location of the robot to a point with highest
probability greater than a threshold and farthest from the
robot location as the goal point. It is ensured that the eventual
RRTstar trajectory lies within the trajectory proposal region
output by TPNet. We use W = {w1, w2, ..., wt} as the
ground truth coordinates over which it is supervised. We
train the network in a supervised fashion using Ŵ,W >
pairs. The loss function is defined as the L2 distance between
the predicted and ground truth waypoint at each LSTM
prediction.

LTSN = ‖W − Ŵ‖ (4)



Fig. 3. Pipeline(Forward Pass): Given the stacked binary masks corresponding to free, occluded, unknown regions and past trajectory points respectively
as inputs, the TPNet predicts four Trajectory Proposals as a set of probability values corresponding to each grid pixels. Each of these Trajectory Proposals
are then fed as inputs to TSNet which produces Trajectory Samples as a set of waypoints.

During test phase, each proposal Rk from the TPNet is
used by Trajectory Sampling network to generate diverse
future trajectories for the robot.

IV. EXPERIMENTAL SETUP

We extensively evaluated the proposed approach on stan-
dard datasets as well as on our own University dataset.
Efficacy and robustness of our approach are demonstrated by
the fact that it is agnostic to the type of sensors, environments
or the hardware platform chosen for experiments. This is
possible as long as the sensing hardware and the input
processing of point cloud is capable of providing us with
sufficiently accurate measurements which can be converted
to the 2D occupancy maps. We also conducted experiments
to demonstrate navigation in different scenarios based on the
trajectories predicted by our framework.

A. Evaluation Scenarios

1) Standard dataset: We demonstrate the performance of
our pipeline on KITTI dataset [4]. Sequences 5,6,7,8,9,10
were used for generating the training data and the evaluation
was performed on sequences 0,1,2,3,4.

2) Our University dataset: We use dataset collected from
our own University as an additional dataset for evaluation.
In order to collect the data we use a Mahindra e2o vehicle
with mounted sensors such as Velodyne-16, GPS and IMU.

B. Tests on our own setups

Test were conducted on our platforms in two completely
different scenarios. For real world outdoor experiment, we
show the deployment of our pipeline on a ground robot while
an aerial vehicle is used for testing in constrained practical
indoor conditions.

1) Outdoor Tests: The outdoor tests were carried out in
constrained alleys as well as on roads inside our campus. The
runs in alleys were performed on a ClearPath Husky robot
with Velodyne-16 mounted on top. On the University roads,
a Mahindra e2o mounted with Velodyne-16 and UBlox RTK

GPS with Xsens MTi-30 IMU was used as the hardware
platform. In both cases a ROG GL552VX laptop with Core
i7 CPU, Nvidia GTX 960M GPU and 16GB RAM was
used for running the network as well as generating the
control commands for trajectory tracking and navigation.
The controls of steering, throttle and brakes on the car can
be switched between manual mode and fully autonomous
mode, where in autonomous mode we have network of
sensors to implement closed loop feedback control to track
the predicted trajectory.

2) Indoor Tests: The indoor tests were conducted on a
custom made drone(quad rotor) platform as can be seen in
the figure 4. The drone is mounted with a very low powered
and light weight Intel RealSense depth sensor connected to
an Intel NUC i5 processor for processing the obtained depth
data. As RealSense has approx.69◦ horizontal field of view,
the occupancy map is registered to get a static local map
around the current drone position which is then passed to the
ground station laptop for trajectory prediction. A monocular
visual inertial odometry is running onboard for accurate state
estimation. The TPNet as well as the TSNet are running on
a commodity laptop mentioned above. The 2D occupancy
map and the predicted trajectory is communicated between
the onboard processor of the drone and the laptop over Wi-Fi.
As our proposed network works with 2D occupancy maps,
the trajectory is generated for a fixed height at which drone
is flying.

Implementation details: The TPNet was trained using SGD
optimizer with an initial learning rate of 0.005 and a batch
size of 32. The learning rate was decreased every 10K steps
by a factor of 0.8 and was trained for 400 epochs using 6
KITTI sequences. TSNet is also trained using SGD optimizer
with an initial learning rate of 0.01 and learning rate decay
of 0.7 for every 10K steps and was trained for 300 epochs.
Batch size of 32 was used during the training. Both the
networks were implemented in Tensorflow [18].



Fig. 4. Left: KITTI results for situations with a varying number of dominant choices possible. The coloumns are represented in the order of Occupancy(O)
input, prediction from TPNet, waypoints from TSNet and projected path in the pointcloud. Right: Shows the adaptability of the network to various sensor
modalities at varying situtaions such as indoors and outdoors.

Datasets TPNet+TSNet TPNet+RRTstar RRTstar Informed-RRTstar BITstar
T-PL T-PL T-PL

KITTI 0.079 0.238 0.297 0.306 0.294
IIIT-H 0.082 0.112 0.192 0.202 0.190
Drone 0.079 0.090 0.147 0.141 0.139

TABLE I
COMPUTE TIME (IN SECS) FOR SOME STATE-OF-THE-ART PLANNING ALGORITHMS FOR CALCULATING 4 TRAJECTORIES OVER VARIOUS DATASETS

Datasets TPNet+TSNet RRTstar Informed-RRTstar BITstar
T-PL PL(2sec) PL(5sec) T-PL PL(2sec) PL(5sec) T-PL PL(2sec) PL(5sec)

KITTI 26.079 26.760 26.121 26.095 26.727 26.102 26.075 26.520 26.177 26.160
IIIT-H 24.756 27.427 24.896 24.757 27.375 24.803 24.727 26.239 24.941 24.813
Drone 2.549 2.540 2.539 2.539 2.542 2.539 2.536 2.539 2.539 2.539

TABLE II
PATH LENGTH COMPARISON(in meters) BETWEEN VARIOUS PLANNING ALGORITHMS FOR THE SAME SCENE AND GOAL POINTS

Fig. 5. Shows the ablative results for our architecture. The images shown
represent the following in order (from left to right): without multiple outputs,
without skip connections, without dilation, without deep supervision and
with the final architecture. Points which have probabilities greater than 0.5
as a trajectory point is shown in the figure.

V. RESULTS

We evaluated the proposed approach on a wide variety
of standard datasets as well as in real world scenarios. The
qualitative results as well as quantitative comparisons with
other works are discussed below.

A. Qualitative Results

In figure 4 we show scenarios where multiple choices
of trajectories are possible. The network has an implicit
understanding of the scene and predicts diverse trajectories
towards various implicitly identified goal points. These are
particularly the scenarios when there are different dominant
choices of motion possible (fig. 4 left 2nd, 3rd row). On the

other hand, when there is only one dominant choice the pro-
posals are aligned in the same direction (fig. 4 left 1st row). It
can be seen that the network predicts trajectories in different
directions at complex situations such as a bifurcation or an
intersection. Although the network has been trained only on
KITTI outdoor datasets, the pipeline very well generalizes
for different outdoor scenes including our University driving
dataset as well as to constrained indoor environments. The
network was evaluated on ground robot mounted with laser
scanner as well as on drone mounted with depth sensor and
is found to perform equally well in all the cases (fig. 4 right).
The tests are primarily focused on demonstrating short term
navigation based on trajectory tracking in different types of
critical scenarios.

Ablative study: In this study, we show the importance
of various components of the framework by analyzing the
performance when each component is discarded. Firstly, we
discard the diverse output R of TPNet and use only a single
output layer. Networks with single prediction output cannot
reason for multimodal possibilities of traversable areas and
they tend to average out multiple of them into a single
output. This can be seen in figure 5, first column, where
the network averages out all possibilities into a single one.
In figure 5 second column, we show the output of the



TPNet without the use of skip connections where it can
be seen that the trajectories are spread across a larger area
with many discontinuities. This indicates the need for skip
connections the encoder-decoder architecture of TPNet to
constrain its output to precise areas. In figure 5 third column,
we show the output of TPNet without dilated convolutions.
The proposals predicted contain significant discontinuities.
This is because dilated convolutions capture spatial context
of the scene much better and give out smooth transition of
probabilities over the predicted proposal. In figure 5 fourth
column we show the output of TPNet when it is trained
without deep supervision where the proposals are not as
precise and compact as compared to our final pipeline. The
computational cost increases as we supervise over many
intermediate layers. Hence, we use deep supervision in our
network just after the encoder-decoder. The results show that
the predicted trajectories from our framework are precise and
diverse as compared to previous cases.

B. Quantitative Results

We compare the proposed approach with various other
state-of-the-art planning algorithms such as RRTstar [5],
Informed-RRTstar [19] and BITstar [6] based on total time
taken to predict same number of paths and path length given
the same goal points and closest distance of the predicted
path to any obstacles in the map. Moreover, we consider
different optimization objectives for these planners such
as Threshold-Path Length(T-PL) and Path-Length(PL), and
exhibit the trade-off between time to predict a path and the
path length. These results are presented in Table I and Table
II.

Table I shows the comparison of computation time for var-
ious algorithms such as RRTstar, Informed-RRTstar, BITstar
and TPNet+RRTstar. In order to have a fair comparison we
compare the time taken by the above-mentioned planners to
compute four different trajectories on same scene as input.
The time for detecting goal points is also included in the total
time for comparison. By default, the PL optimization runs
for the max time limit specified looking for the shortest path
while the T-PL is satisfied if it finds a path within a given
threshold. Hence, we set the threshold path to be much higher
than the maximum path length so that the planner exits as
soon as it finds its first path to the goal. The values shown in
the tables are the average of outputs on 1000 samples from
each dataset. It is evident that proposed method consumes
less time comparatively and is almost constant for various
scenes.

Table II shows the trade-off between computing the opti-
mal trajectory and the time taken to compute it. It represents
the average path length to the goal in each of the evaluated
datasets. It can be seen that the average path length reduces
with increase in the max time limit for classical frameworks.
While our framework takes 79 milli seconds to compute an
optimal path length, Informed-RRTstar takes about 5 seconds
to compute a similar optimal path length. Also, it can be
noticed that our path length is very close to that of Informed-
RRTstar for all the datasets. This depicts the efficiency of our

framework in terms of time consumed for optimal trajectory
proposal, irrespective of number of outputs.

VI. CONCLUSION

We proposed an end to end framework that maps inter-
mediate representation in the form of an occupancy grid
to multiple candidate trajectory options. These options were
generated through a cascade of a Trajectory Proposal Net-
work and a Trajectory Sampler Network. The efficacy of
the network was established through its ability to discern
dominant choices of motion and output trajectories that are
non colliding with trajectory lengths similar to state of the
art planners. But the network’s ability to scale up to multiple
candidate options and output multiple candidate trajectories
at near constant time makes it unique and distinctive from
other methods. To the best of our knowledge this is the first
such architecture proposed in the literature.
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