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Abstract—The instance segmentation problem intends to pre-
cisely detect and delineate objects in images. Most of the current
solutions rely on deep convolutional neural networks but despite
this fact proposed solutions are very diverse. Some solutions
approach the problem as a network problem, where they use
several networks or specialize a single network to solve several
tasks. A different approach tries to solve the problem as an
annotation problem, where the instance information is encoded
in a mathematical representation. This work proposes a solution
based in the DCME technique to solve the instance segmentation
with a single segmentation network. Different from others, the
segmentation network decoder is not specialized in a multi-task
network. Instead, the network encoder is repurposed to classify
image objects, reducing the computational cost of the solution.

I. INTRODUCTION

Most instance segmentation solutions are based in a com-
bination of multiple convolutional neural networks. These so-
lutions present high scores on benchmark tests at the price of
a high computational cost. They usually separate the solution
in subtasks and they try to solve them separately. Although
this approach is more clear and easy to explain, it may
be too restrictive to neural networks. Once neural networks
use examples to find the best features to solve a problem,
directly exposing the problem to a network may provide more
efficient solutions. This work investigates this hypothesis and
proposes a solution for the instance segmentation problem.

As proposed by Watanabe and Wolf [1], the DCME rep-
resentation and was able to generate class-agnostic instances
masks. We extend this previous work using a single encoder-
decoder CNN for image segmentation. We repurpose the
network encoder to remove the classification network from
the solution pipeline. Also we modify the network decoder
regression function to become more robust to large input
image resolutions. For the best of our knowledge, this is the
only solution that solves the instance segmentation problem
with a single segmentation network without specializing the
network decoder in multiple branches (multi-task networks).

This approach changes the focus of most researches, where
different network architectures are proposed to solve the
problem. Instance segmentation scores will improve with
better segmentation models. This approach adds overhead to
decode instance masks but its computational cost is smaller
than adding a neural network to solve a subtask.
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Usually, a segmentation network encoder output is never
directly used as part of an instance segmentation solution. In
this work we repurpose the network encoder to classify in-
stance masks. This approach is more computational efficient
when compared to solutions that specialize a decoder branch
in a segmentation model. We also assume that repurposing
the network encoder is more suitable for the instance seg-
mentation problem. The classification task have a strong prior
where the input image has only a single centralized object
and this assumption may hinder the decoder optimization.

During the experiments, it was observed that the DCME
was very susceptible to large input image resolutions. This
behavior was recognized as the high output loss signal
due the long distances vectors in the objects borders. To
improve results two main modifications were made in the loss
function. We consider each pixel from each output channel
as an independent output and we clip the loss error before
updating the backpropagation.

This work uses deep Convolutional Neural Networks
(CNNs) for image segmentation [2] to learn the DCME
technique. Specifically, the segmentation model was based
in the DeepLabv3+ network proposed by Chen er al. [3].
The proposed solution was evaluated in the Cityscapes [4]
dataset, an urban roads scenes dataset.

II. RELATED WORK

Several solutions for the instance segmentation problem
are based in detection networks where they try to extract ob-
ject masks from object detections. Solutions based in object
detections are being denominated proposal-based networks
and they propose different network architectures to improve
results. This is the main approach for instance segmentation
solutions which are able to achieve high benchmark scores.
However these solutions have a high computational cost
associated with the extensive use of convolutional layers.

For instance, the Mask R-CNN [5] extends the Faster R-
CNN [6] network by predicting masks in parallel with object
bounding boxes. Other recent and notable work is the Path
Aggregation Network [7] which shortens the information path
between lower and top layers.

In opposite, solutions that do not rely on object detec-
tions are being denominated proposal-free networks. These
solutions are diverse and present different encoding tech-
niques, clustering techniques, loss functions and multi-task



networks [8], [9], [10], [I1], [12]. For a broader review,
Watanabe and Wolf [1] summarizes recent researches.

As previously stated, this work extends the DCME [1]
removing the classification network and improving the loss
(objective) function. Concurrently with Watanabe and Wolf
[1], Kendall et al. [12] also presented a similar encoding
technique. However, Kendall ef al. [12] proposed a multi-
task network to generate vectors maps, segmentation maps
and depth maps. And, to optimize the multi-task network
they have proposed a loss function to learn coefficients to
ponder each task loss.

III. INSTANCE CLASSIFICATION

Most of the CNNs for image segmentation have an
encoder-decoder architecture. These networks present differ-
ent decoders but usually they reuse the encoder from clas-
sification networks like VGG [13] or ResNet[14]. However,
reusing classification networks might be disadvantageous for
the instance segmentation problem.

In the classification problem there is only a single object
in the image and it is usually centralized. Therefore, these
networks do not need to learn the number of objects and their
positions in the image. For the detection problem there is a
variable number of objects from different classes and they
can be located anywhere.

If the image has several objects it makes more sense to
classify parts of it. Based on this assumption we decided to
repurpose the encoder to perform a segmentation. Although
it is similar to the image segmentation, its main purpose is
to roughly localize and classify the objects in the image.

The input image spatial dimensions are reduced in every
stride operation higher than one. In the most common clas-
sification networks the stride is equal to 2 in horizontal and
vertical directions. We define the grid size, G, as the final
encoder division number, from the input image to the encoder
output. For n (2,2) stride operations the grid size is given
by Equation 1, and it is the same for both horizontal and
vertical dimensions.

Gy =2" (1)

The grid size defines the size of the input image grid as
depicted in Figure 1. Each encoder output infers the class
of one grid block. During the training process, class labels
are defined according to Equation 2, where P(Z,¥)image 18
the image pixel position and P(Z,y)ecncoder 1S the encoder
output position.

P ($, y)image ) (2)
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When generating the annotations, a grid block may have
pixels from more than one class and to solve this problem we
define a priority list. Underrepresented classes with smaller
number of instances have the preference to label the block.

The Equation 3 associates the encoder output position to
each input image block where P (20, Y0) ;44 iS the top left
point from each grid block. The bottom right point from the
block is given by adding the grid size in both dimensions.

P(‘T7y)encoder ﬂ00}"<

All pixels from the top left point to the bottom right point
are labeled with the same class. It is an open interval and the
higher limits are not included.

P ($07 yo)image = GS - P (.’IJ, y)encoder (3)

Since our main purpose is to solve the instance segmenta-
tion there is no need to infer the class of each input block,
like in Figure 1. To find out the class of the instances we only
use Equation 2 to infer the class of the block that contains
the DCME instance center of mass.

Fig. 1: Top: input image with (512,1024) resolution and
grid size equals to 16. Presents 32 vertical blocks and 64
horizontal blocks. Bottom: Input image blocks classification.
Car class in yellow, people class in red.

IV. NETWORK DECODER LOSS FUNCTION

In the image classification problem the exact position and
size of the objects are not important. Therefore, to reduce
computational costs the image resolution is usually reduced
to (227,227) and classification networks are built taking
this in account. For image segmentation and object detection
high resolution images are important to get precise results.
Since larger images highly increase the computational cost,
a resolution/precision trade-off becomes an intrinsic part of
the solution.

When compared to multi-tasks networks, reusing the net-
work encoder for classifying instances reduces the computa-
tional cost of the solution. And, given a fixed resource capa-
bilities, this allow us to increase the input image resolution.

During experiments, it was observed that deep CNNs were
not able to learn and generalize the DCME encoding for large
image resolutions. Once the DCME encoding is based on 2D
displacement vectors, changing the image resolution directly
affect vectors sizes. Small image resolutions will reduce
the presence of small objects. In opposite, large resolutions
present too large objects that not only have more vectors but
also have very long vectors close to their borders, Figure 2.



Errors in bigger objects will generate very high error
values while errors in small objects will be insignificant. This
behavior generate biased models that will preferably detect
large objects. To make the DCME more robust to object sizes,
two main modification were proposed in the decoder loss
function.
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Fig. 2: DCME magnitude map. Large objects present longer
vectors close to their borders. Car borders are brighter than
people borders.

A. Independent outputs

Watanabe and Wolf [1] used the Caffe [15] Euclidean loss
function to compute the DCME regression. This function
calculates the loss according to the Mean Squared Error
(MSE), Equation 4. Where N is the number of samples, Y; is
a label and )77 the model output. Furthermore, the same loss
signal was used to update all backpropagation differences in
the last layer. This approach presented a high loss error signal
which was compensated by a small learning rate.

1 N2
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Since each output is independent of each other and they
present different values, applying a single mean value to
compute the gradients was a major flaw.

To overcome this problem, every single output pixel from
both output channels in the network decoder were considered
as an independent output. Each output loss was directly
updated with its corresponding error and the model general
loss was evaluated considering this, with the number of
samples defined by Equation 5. The number of samples is
given by 2 DCME output channels, the number of images n
and the decoder spatial dimensions (r, ¢).

N=2-n-r-c @)

B. Error amplitude

Even with this previous modification, the segmentation
model was still susceptible to high resolution images (large
objects). To solve this problem the error values were clipped
before the backpropagation. We used a modified version of
the logistic function, defined in Equation 6. The function is
symmetric to the origin and does not only clip the loss but
also presents a linear behavior around the origin. The function
amplitude is A/2.
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In this approach A is a parameter that must be adjusted ac-
cording to the input image resolution. The Figure 3 illustrates
the Equation 6 for different values of A.

It is interesting to note that the error values are clipped
before the backpropagation. The loss function output is

calculated with the full error values and it gives a realistic
estimate of the model learning capabilities.

(6)
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Fig. 3: Translated logistic function used to clip error dif-
ferences. The function is differentiable, is symmetric to the
origin and linear around zero.

V. ABLATION STUDIES

The ground truth masks were exactly implemented accord-
ing to the DCME [1] and the experiments were performed
on the Cityscapes dataset [4]. The solution was tested in
the validation set and, to better evaluate the generalization
error, the validation set was never used for training purposes.
All experiments were performed with the image resolution at
(512,1024), and a clip amplitude of two, A = 4.

The segmentation model was based in the DeepLabv3+
encoder-decoder with atrous convolution network proposed
by Chen et al. [3]. Differently from the authors, we used
a VGG encoder with its corresponding ImageNet weights.
We have also added 5 convolutional layers to the end of the
encoder. In the decoder, the upsample layers were replaced
by deconvolution layers, once they were more stable during
training. The network was implemented in Caffe [15].

The segmentation model is one of the most important parts
of this solution. The maximum mean average precision (AP)
we could obtain with DeepLabv3+ was 11.5 AP. This solution
was tested with SegNet [16] and the highest mean AP it could
provide was 7.5 AP. Therefore, only switching segmentation
models the scores had a mean increase of 53,33%.

The DeepLabv3+ was trained with a batch size of 6 images
in a single 11GB GPU. This model is more efficient than



the SegNet, where the largest batch size that could fit the
GPU was 3 images. Compared to the DCME [1] that uses
2 CNNs, this solution only requires a single segmentation
network which is even more computational efficient than the
their segmentation network.

The best results achieved in the validation set are detailed
in Table I (left) and Figure 4. The table on the right presents
results from the validation set ground truth. Just because the
dataset was resized by half in both directions the mean AP
was reduced to 59.2%. Once the downsampling operation
loses information that is never retrieved, the upsampled
masks are less precise than the original ones.

TABLE I: Left: best results on validation set. Right: ground
truth evaluation for (512,1024) resolution.

Class AP AP50% Class AP AP50%
person 6.8 16.6 person 45.7 96.3
rider 4.0 12.3 rider 52.6 98.8
car 24.0 37.2 car 57.7 97.2
truck 10.9 15.3 truck 66.5 100.0
bus 20.3 27.9 bus 77.8 100.0
train 22.1 37.3 train 75.7 100.0
motorcycle 2.0 6.7 motorcycle  49.5 96.0
bicycle 1.9 6.3 bicycle 47.7 93.9
mean 11.5 20.0 mean 59.2 97.8

We have designed two different experiments to sepa-
rately evaluate the encoder and the decoder performance.
The instance oracle experiment evaluates the encoder and
assumes all instances are perfectly detected. The class oracle
experiment evaluates the decoder and provides the correct
class of all detected instances.

A. Instance oracle

In this experiment the validation set ground truth was used
to correctly detect all instances. A class predicted by the
encoder is associated to the instance CM with the Equation
2. The mean AP presented by the instance oracle, Table II, is
around 42.57% of the ground truth, which is a considerably
high value.

TABLE II: Per class average precision on validation set. De-
tection with instance oracle and classification with network
encoder.

Class AP AP50%
person 29.0 52.2
rider 20.1 29.6
car 48.2 75.6
truck 20.6 22.1
bus 27.8 31.9
train 24.8 27.3
motorcycle  13.7 20.0
bicycle 17.7 28.1
mean 25.2 359

The object detections were also used to evaluate the
encoder classification accuracy. For each detection we com-
pared its ground truth class and its prediction. Its global
accuracy was 64.97% and a per class evaluation is presented
in Table III.

TABLE III: Instance classification with encoder. Number of
instances, correct classification and accuracy.

Class Instances  Correct  Acc.%
person 3394 1974 58.16
rider 543 230 42.36
car 4653 3847 82.68
truck 93 29 31.18
bus 98 44 44.90
train 23 10 43.48
motorcycle 149 41 27.52
bicycle 1165 399 34.25
total 10118 6574 64.97

The classification accuracy was far from ideal. Classes
with small number of samples like truck, bus, train and
motorcycle presented a small accuracy which is due to the
dataset imbalance. The bicycle class should have presented
higher scores but it is a particularly hard object to detect and
classify.

B. Class oracle

This experiment used the provided class labels to evaluate
the masks generated by the decoder. It evaluates if this
solution is able to find the objects and also if it is able to
delineate object contours. The instances were detected and
delineated by the DCME and the classes were obtained from
the validation set ground truth. An evaluation is presented
for each class in Table IV.

TABLE IV: Per class average precision on validation set.
Classification with class oracle and detection with decoder.

Class AP  AP50%
person 7.2 17.8
rider 4.2 12.9
car 24.5 37.9
truck 14.1 23.7
bus 30.1 47.1
train 25.6 427
motorcycle 3.8 12.4
bicycle 2.5 8.5
mean 14.0 254

Table IV mean AP represent 23.65% of the ground truth
mean AP, Table I (right). The mean AP difference with
the complete solution, Table I (left), was only 2.5. When
compared to the instance oracle this low score indicates the
solution bottleneck is the decoder/detection.

Since the DCME does not distinguish objects in classes,
it is more robust against data imbalance. This is noticeable
on scores obtained in the bus and train classes. The train
class have the smallest number of samples but present a score
higher than the car class.

An experiment to evaluate the detection accuracy was
also elaborated. A detection was considered as correct if the
intersection over union (IoU) of the predicted mask and the
ground truth was above 25%, 50% or 75% , Table V.

In Table V, the detection accuracy quickly decreases with
higher IoU thresholds. This means the solution is able to find
several objects but it is not able to precisely delineate them.



Fig. 4: From left to right: input images, class map and instance masks on cityscapes validation set.

TABLE V: Detection accuracy for different overlapping ¢ 7ugr set evaluation

thresholds. Total number of instances 10118. )
The Cityscapes test set was also evaluated and the results

were submitted to the online server. The per class evaluation

threshold(%)  detections  Acc(%)

25 3821 37.76 . .
50 3102 30.66 is presented in Table VI.
75 1886 18.64 .
TABLE VI: Per class evaluation on test set.
Class AP AP50%
. . .. . 6.66 17.05
In Cityscapes, the mean AP metric utilizes multiple ToU zzr:ro " 309 8.82
thresholds, ranging from 0.5 to 0.95 in steps of 0.05, [17], car 24.14 38.10
[1&]. Higher thresholds require precise masks but the average truck 6.02 10.66
over multiple thresholds lessens this requirement. bus 9.76 15.13
. L. . train 6.41 12.68
When compared t(? .the instance (.)ralee, it is notlceal?le motorcycle 3.62 10.66
that the average precision (AP) metric is more severe with bicycle 2.08 6.46
detection errors than with classification errors. If the solution mean 7.72 14.95

is not able to detect an object its classification is not even
considered by the evaluation metric. The results are around half of those from the validation



set, demonstrating a high generalization error. The test set not
only presents more images but they were also acquired from
different German cities. The highest differences were from
classes with small number of samples: truck, bus and train.
Therefore, the lower score in the test set is highly related to
the dataset imbalance.

The test set results were obtained fine tuning all network
layers. When fine tuning only the network last layers the
highest mean AP obtained was 7.5. This difference its likely
caused by the classification prior mentioned in section I.

When compared to DCME [!] these results represent a
considerable improvement, Table VII. Our scores are higher
in all classes, specially classes with small number of samples
(truck, bus, train and motorcycle).

TABLE VII: DCME per class evaluation on Cityscapes.

Class AP AP50%
person 1.77 5.86
rider 0.71 333
car 15.53 25.65
truck 2.00 4.02
bus 4.30 8.30
train 4.57 9.98
motorcycle 0.93 3.39
bicycle 0.33 1.35
mean 3.77 7.73

Compared to other similar solution, ours is one third of
Kendall ef al. [12], Table VIII. However, they specialize the
decoder in three subtasks, and since we repurpose the encoder
our solution is more computational efficient.

TABLE VIII: Multitask Learning, per class evaluation on
Cityscapes.

Class AP AP50%
person 19.22 38.10
rider 21.39 46.26
car 36.57 54.75
truck 18.80 28.44
bus 26.82 40.78
train 15.88 25.02
motorcycle  19.39 42.21
bicycle 14.51 36.53
mean 21.57 39.01

VI. CONCLUSION

The proposed solution was able to solve the instance
segmentation problem with a single CNN for image segmen-
tation. Differently from most of the approaches, this solution
solves the partial occlusion problem. Its computational cost
is directly associated with the segmentation network and the
input image resolution. Compared to multi-task networks it
presents a lower computational cost since the encoder is
repurposed to solve the classification problem
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