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Abstract— Many tasks performed by autonomous vehicles
such as road marking detection, object tracking, and path plan-
ning are simpler in bird’s-eye view. Hence, Inverse Perspective
Mapping (IPM) is often applied to remove the perspective effect
from a vehicle’s front-facing camera and to remap its images
into a 2D domain, resulting in a top-down view. Unfortunately,
however, this leads to unnatural blurring and stretching of
objects at further distance, due to the resolution of the camera,
limiting applicability. In this paper, we present an adversarial
learning approach for generating a significantly improved IPM
from a single camera image in real time. The generated bird’s-
eye-view images contain sharper features (e.g. road markings)
and a more homogeneous illumination, while (dynamic) objects
are automatically removed from the scene, thus revealing the
underlying road layout in an improved fashion. We demonstrate
our framework using real-world data from the Oxford Robot-
Car Dataset and show that scene understanding tasks directly
benefit from our boosted IPM approach.

I. INTRODUCTION

Autonomous vehicles need to perceive and fully un-
derstand their environment to accomplish their navigation
tasks. Hence, scene understanding is a critical component
within their perception pipeline, not only for navigation and
planning, but also for safety purposes. While vehicles use
different types of sensors to interpret scenes, cameras are
one of the most popular sensing modalities in the field, due
to their low cost as well as the availability of well-established
image processing techniques.

In recent years, deep learning approaches based on images
have been very successful and significantly improved the per-
formance of autonomous vehicles in the context of semantic
scene understanding [1], [2]. Many of these approaches take
images from a front-facing camera as their input. However,
images as well as their interpretations (i.e. segmented pix-
els) in this perspective are often transformed into a local
and/or global coordinate system (or view) to be utilized
effectively within tasks such as lane detection [3], [4], road
marking detection [5], road topology detection [6], [7],
object detection/tracking [8]–[10], as well as path planning
and intersection prediction [11], [12]. This transformation
is commonly referred to as Inverse Perspective Mapping
(IPM) [13]. IPM takes the frontal view as input, applies a
homography, and produces a top-down view of the scene by
mapping the pixels to a different 2D-coordinate frame, which
is also known as bird’s-eye view.
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Fig. 1. Boosted Inverse Perspective Mapping (IPM) to improve the
understanding of road scenes. Left: Top-down view created by applying a
homography-based IPM to the front-facing image (top), leading to unnatural
blurring and stretching of objects at further distance. Right: Improved
top-down view generated by our Incremental Spatial Transformer GAN,
containing sharper features and a homogeneous illumination, while dynamic
objects (i.e. the two cyclists) are automatically removed from the scene.

In practice, IPM works well in the immediate proximity
of the vehicle (assuming the road surface is planar). How-
ever, the geometric properties of objects in the distance are
affected unnaturally by this non-homogeneous mapping, as
shown in Fig. 1. This limits the performance of applications
in terms of their accuracy and the distance at which they can
be applied reliably. More crucial, however, is the effect of
inaccurate mappings on the semantic interpretation of scenes,
where small inaccuracies can lead to significant qualitative
differences. As we demonstrate in Section V-B (Table I),
these qualitative differences can manifest themselves in many
ways, including missing lanes and/or late detection of stop
lines (or other critical road markings).
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To overcome these challenges, we present an adversarial
learning approach which produces a significantly improved
IPM in real time from a single front-facing camera image.
This is a difficult problem which is not solved by existing
methods, due to the large difference in appearance between
the frontal view and IPM. State-of-the-art approaches for
cross-domain image translation tasks train (conditional) Gen-
erative Adversarial Networks (GANs) to transform images
to a new domain [14], [15]. However, these methods are
designed to perform aligned appearance transformations and
struggle when views change drastically [16]. The latter work,
in which a synthetic dataset with perfect ground-truth labels
is used to learn IPM, is closest to ours.

We demonstrate in this paper that we are able to generate
reliable, improved IPM for larger scenes than in [16], which
are therefore able to directly aid scene understanding tasks.
We achieve this in real time using real-world data collected
under different conditions with a single front-facing camera.
Consequently, we must deal with imperfect training labels
(see Section IV) created from a sequence of images and
ego-motion. An Incremental Spatial Transformer GAN is
introduced to address the significant appearance change
between the frontal view and IPM. Compared to analytic
IPM approaches our learned model is (1) more realistic with
sharper contours at long distance, (2) invariant to extreme
illumination under different conditions, and (3) removes
dynamic objects from the scene to recover the underlying
road layout. We make the following contributions in this
paper:

• we introduce an Incremental Spatial Transformer GAN
for generating boosted IPM in real time;

• we explain how to create a dataset for training IPM
methods on real-world images under different condi-
tions; and

• we demonstrate that our boosted IPM approach im-
proves the detection of road markings as well as the
semantic interpretation of road scenes in the presence
of occlusions and/or extreme illumination.

II. RELATED WORK

Improved IPM As indicated in Section I, many applica-
tions can be found in the literature that apply IPM. They rely
on three assumptions: (1) the camera is in a fixed position
with respect to the road, (2) the road surface is planar, and (3)
the road surface is free of obstacles. Remarkably, relatively
few approaches exist that aim to improve inaccurate IPM, in
case one or more of these assumptions are not satisfied.

Several works have tried to adjust for inaccuracies caused
by invalidity of the first two assumptions. The authors of
[17], [18] used vanishing point detection, [19] estimated the
slope of the road according to the lane markings, and [20]
employed motion estimation obtained from SLAM. Invalidity
of the third assumption is tackled in [21] by using a laser
scanner to exclude obstacles from being transformed to IPM.
Another approach [22]–[24] creates a look up table for
all pixels, by taking into account the distance of objects
on the road surface, in order to reduce artefacts at further

distance. However, these methods generally assume simple
environments (i.e. highway). Contrarily, we learn a non-
linear mapping more suited for urban scenes.

Very recently, [16] proposed the first learning approach
for IPM using a synthetic dataset. The authors introduced
BridgeGAN which employs the homography IPM to bridge
the significant appearance gap between the frontal view and
bird’s-eye view. In contrast, we use real-world data and
consequently imperfect labels to generate boosted IPM for
larger scenes. Therefore, our learned mapping is directly
beneficial for scene understanding tasks (see Section V-B).

Semantic IPM Several methods use the semantic relations
between the two views for different tasks. In [25], [26]
conditional random fields in the frontal view and IPM are
optimized to retrieve a coarse semantic bird’s-eye-view map
from a sequence of camera images. A joint optimization net
is trained in [27], [28] to align the semantic cues of the two
views. The authors then train a GAN to synthesize a ground-
level panorama from the coarse semantic segmentation. How-
ever, because aerial images differ significantly in appearance
from the ground view, there is a lack of texture and detail in
the synthesized images. We generate a more detailed IPM by
learning a direct mapping of the pixels from the frontal view
which is more useful for autonomous driving applications.

GANs for Novel View Synthesis The rise of GANs has
made it possible to generate new, realistic images from a
learned distribution. In order to guide the generation process
towards a desired output, GANs can be conditioned on
an input image [14], [29]. Until now, these methods were
restricted to perform aligned appearance transformations.

In [30], the spatial transformer module was introduced to
learn transformations of the input to improve classification
tasks. The authors of [31], [32] used similar ideas to syn-
thesize new views of 3D objects or scenes. More recently,
these two fields were combined in [33], [34]. In the latter
work, realistic compositions of objects are generated for a
new viewpoint. However, these techniques are limited to toy
datasets or distort real-world scenes with dynamic objects.

III. BOOSTED IPM USING AN INCREMENTAL SPATIAL
TRANSFORMER GAN

A. Network Overview

As a starting point, we use a state-of-the-art architecture
similar to the global enhancer of [29], without employing
boundary or instance maps. Additionally, as we expect a
slight change in scale from the homography-based IPM
image to the stitched training labels (see Section IV), we
refrain from using any pixel-wise losses and instead use
multi-scale discriminator losses [29] combined with a per-
ceptual loss [35], [36] based on VGG16 [37]. While VGG16
is trained on the ImageNet [38] dataset, thus being more
suitable for frontal rather than bird’s-eye-view images of road
scenes, we still leverage the stability of its encoded features
in this study. Retraining VGG16 on bird’s-eye-view images
of road scenes or swapping it out for a more suitable model,
may improve the quality of the generated images, but this is
beyond the scope of this study.
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Fig. 2. The architecture of the generator of the network. The bottleneck of
the model contains a series of N sequential blocks. Each block performs an
incremental perspective transformation of n degrees, so that the bottleneck
as a whole transforms the features from frontal to bird’s-eye view. After
every transformation, the features are sharpened by a ResNet block before
the next transformation is applied. This process is depicted in more detail
in Fig. 3.

Our model follows a largely traditional downsample-
bottleneck-upsample architecture, where we reformulate the
bottleneck portion of the model as a series of NSTRes blocks
that perform incremental perspective transformations fol-
lowed by feature enhancement. Each block contains a Spatial
Transformer (ST) [30] followed by a ResNet layer [39]. The
structure of the generator is presented in Fig. 2. For an in-
depth description of the remaining architecture, the reader is
directed towards the paper and supplemental material of [29].

B. Spatial ResNet Transformer

Since far-away real-world features are represented by a
smaller pixel area as compared to identical close-by fea-
tures, a direct consequence of applying a full perspective
transformation to the input is increased unnatural blurring
and stretching of the features at further distance. To coun-
teract this effect, our model divides the full perspective
transformation into a series of NSTRes smaller incremental
perspective transformations, each followed by a refinement
of the transformed feature space using a ResNet block [39].
The intuition behind this is that the slight blurring that occurs
as a result of each perspective transformation is restored by
the ResNet block that follows it, as conceptually visualized
in Fig. 3. To maintain the ability to train our model end-
to-end, we apply these incremental transforms using Spatial
Transformers [30].

Intuitively, a Spatial Transformer is a mechanism, which
can be integrated in a deep-learning pipeline, that warps an
image using a parametrization (e.g. an affine or homography
transformation matrix) conditioned on a specific input signal.
Formally, each incremental spatial transformer is an end-to-
end differentiable sampler, represented in our case by two
major components:

• a convolutional network which receives an input I of
size HI ∗ WI ∗ C, where HI , WI and C represent
the height, width, and number of channels of the input
respectively, and outputs a parametrization Mloc of a
perspective transformation of size 3 ∗ 3, and;

• a Grid Sampler which takes I and Mloc as inputs, cre-
ates a mapping matrix Mmap of size HO∗WO∗2, where
HO and WO represent the height and width of the out-
put O. Mmap maps homogeneous coordinates [x, y, 1]T

Fig. 3. Conceptual visualization of the sequential incremental transforma-
tions (i.e. N = 3, from 0◦ to 90◦ degrees down the rows) occurring in the
bottleneck of the generator. The left column shows the features immediately
after the transformation is applied, consequently they are stretched and
blurred (e.g. BUS STOP letters). The right column shows how the ResNet
blocks learns to sharpen these features to create the improved IPM before
the next transformation is applied. Note that in reality the bottleneck has 512
feature maps instead of the 3 RGB channels depicted here for demonstration
purposes.

to their new warped position given by Mloc ∗ [x, y, 1]T .
Finally, Mmap is used to construct O in the following
way: O(x, y) = I(Mmap(x, y, 1),Mmap(x, y, 2)).

In practice, it is non-trivial to train a spatial transformer
(and even less trivial; a sequence of spatial transformers)
on inputs with a large degree of self-similarity, such as
road scenes. To stabilize the training procedure, for each
incremental spatial transformer, we decompose Mloc =
Mlocref ∗Mlocpert, where Mlocref is initialized with an ap-
proximate parametrization of the desired incremental homog-
raphy, and Mlocpert is the actual output of the convolutional
network and represents a learned perturbation or refinement
of Mlocref .

C. Losses

Our architecture stems from [29], but does not make use
of any instance maps. Due to the potential misalignment
between the output of the network and the labels (see
Section IV), we rely on a multi-scale discriminator loss and
a perceptual loss based on VGG16. With a generator G,



kth scale discriminator Dk, and LGAN(G,Dk) being the
traditional GAN loss defined over k = 3 scales as in [29],
the final objective thus becomes:

Ltot = min
G

(( max
D1,D2,D3

∑
k=1,2,3

LGAN(G,Dk))+

λFM
∑

k=1,2,3

LFM(G,Dk) + λVGGLVGG(G)),

(1)

where LFM(G,Dk) is the multi-scale discriminator loss:

LFM(G,Dk) =

lD∑
i=1

1

wi
‖Dk(Ilabel)i −Dk(G(Iinput))i‖1,

(2)
and LVGG(G) is the perceptual loss:

LVGG(G) =

lP∑
i=1

1

wi
‖VGG(Ilabel)i −VGG(G(Iinput))i‖1,

(3)
with lD denoting the number of discriminator layers used in
the discriminator loss, lP denoting the number of layers from
VGG16 that are utilized in the perceptual loss, and Iinput
and Ilabel being the input and label images, respectively. The
weights wi = 2l−i are used to scale the importance of each
layer used in the loss.

D. Implementation details

We choose NSTRes = 6, Ndownsample = 4, Nupsample = 4
and lD = lP = 4. Furthermore, for training, we employ the
Adam solver using a base learning rate set at 0.0002, and a
batch size of 1, training for 200 epochs. For the loss trade-
off, we empirically set λFM = 5 and λVGG = 2. We train
our network using 8416 overcast and 4894 nighttime labels.
At run time, the network performs inference in real time
(≈ 20Hz) using an NVIDIA TITAN X.

IV. CREATING TRAINING DATA FOR BOOSTED IPM

To evaluate our approach, we use the Oxford RobotCar
Dataset [40], which features a 10-km route through urban en-
vironments under different weather and lighting conditions.

In order to create training labels which are a better repre-
sentation of the real world than the standard, homography-
based IPM, we use a sequence of images from the front-
facing camera and corresponding visual odometry [41], and
merge them into a single bird’s-eye-view image.

From the sensor calibrations and the camera’s intrinsic
parameters, we compute the transformation which defines
the one-to-one mapping between the pixels of the front-
facing camera and the bird’s-eye view. Then, using the
relative transform obtained by visual odometry between the
current image frame of the sequence and the initial frame,
we stitch the respective pixels of the current frame into the
IPM image at the correct pixel positions. This operation is
performed iteratively, overwriting previous IPM pixels with
more accurate pixels of subsequent frames, until the vehicle
has reached the end of its field of view of the initial image.

Fig. 4. Examples of created training pairs (which show the difficulties of
using real-world data) by stitching IPM images generated from future front-
facing camera images using the ego-motion obtained from visual odometry.
The left example illustrates (1) movement of dynamic objects by the time the
images are stitched and (2) stretching of objects because they are assumed
to be on the road surface. The right example shows a significant change of
illumination conditions. Both show inaccuracies at further lateral distance
(e.g. wavy curb) because of sloping road surface and possibly imprecise
motion estimation.

As the training labels are created from real-world data (in
contrast to the synthetic data of [16]), their quality is limited
by several aspects (see examples in Fig. 4):

• Minor inaccuracies in the estimation of the rotation
of the vehicle and sloping road surface can lead to
imprecise stitching at further lateral distance.

• Consecutive image frames may vary significantly in
terms of lighting (e.g. due to overexposure), leading
to illumination differences in the label which do not
naturally occur in the real-world.

• Dynamic objects in the front-facing view will appear in
a different position in future frames. Consequently, they
will appear in unexpected places in the label.

• Objects above the road plane (e.g. vehicles, bicyclists,
intersection islands, etc.) undergo a large deformation
due to the view transformation. We cannot obtain accu-
rate labels for these in real-world scenarios.

Due to the aforementioned drawbacks, no direct relation
exists between the output (boosted IPM) of our network and
the stitched labels. Therefore, it is impossible to incorporate
a direct pixel-wise loss function, or employ super-resolution
generating networks such as [42]. On the other hand, since
we use a sequence of future images, regions that were
previously occluded by (dynamic) objects in the initial view
are potentially revealed later. This gives the network the



Fig. 5. Boosted IPM generated by the network (bottom) under different conditions compared to traditional IPM generated by applying a homography
(middle) to the front-facing camera image (top). The boosted birds-eye-view images contain sharper features (e.g. road markings), more homogeneous
illumination, and automatically remove (dynamic) objects from the scene. Consequently, we infer the underlying road layout, which is directly beneficial
for various tasks performed by autonomous vehicles.

ability to learn the underlying road layout irrespective of
occlusions or extreme illumination.

V. EXPERIMENTAL RESULTS

In this section we present qualitative results generated
under different conditions. Due to the nature of the problem,
it is extremely hard to capture ground-truth labels in the
real world (see Section IV), and thus to present quantitative
results for our approach. Furthermore, the synthetic dataset
used in [16] is not publicly available. However, we demon-
strate that our boosted IPM has a significant qualitative effect
on the semantic interpretation of real-world scenes. Lastly,
we show some limitations of the presented framework.

A. Qualitative Evaluation

Fig. 5 shows qualitative results on a RobotCar test dataset.
The results demonstrate that the network has learned the
underlying road layout of various urban traffic scenarios.
Semantic road features such as parking boxes (i.e. small
separators) and stop lines are inferred correctly. Furthermore,
dynamic objects, which occlude parts of the scene, are
removed and replaced by the correct road/lane boundaries,
making the representation more suitable for scene under-
standing and planning. The boosted IPM contains sharper

road markings, which improves the performance of tasks
such as lane detection. Lastly, the new view offers a more
homogeneous illumination of the road surface, which is
beneficial for all tasks that require image processing.

Additionally, we show that our framework is not limited
to datasets recorded under overcast conditions. Although
artificial lighting during nighttime introduces artefacts in
the output, we are still able to significantly improve the
representation of the underlying layout of the scene.

B. Employing Boosted IPM for Scene Interpretation

We demonstrate the effectiveness of our improved IPM
approach for the application of road marking detection [43]
and scene interpretation [44] (cf. Table I). Table I shows
the original front-facing camera image, the bird’s-eye views
(homography-based as well as our boosted IPM) and their
corresponding road marking detections, and the generated
graph-based scene description.

The input to the scene interpretation process is the binary
image mask of the detected road markings. Within these
experiments this input is either provided by the homography-
based IPM or by our boosted IPM. We then cluster the road
marking pixels into groups and compute a set of spatial



TABLE I
QUALITATIVE EFFECTS OF IPM METHODS ON ROADMARKING DETECTION AND SCENE INTERPRETATION

Original Road marking Detection [43] Scene Interpretation [44]
Homography Boosted IPM (generated from detected road markings)

(A)

(B)

(C)

properties and relations. Based on the spatial information
and a learned probabilistic grammar, which captures the
road layout of scenes, a hierarchical, graph-based scene
description is generated including information about roads,
lanes and road markings (which are grounded in image
space). The reader is directed towards [44] for more details.

As the overall scene interpretation is based on the seg-
mentation of road markings, the quality of the road marking
detection has a major impact on the generated scene graph,
as demonstrated later. Experimentally, we have verified that
boosted IPM allows us to more robustly detect road markings
(1) at greater distance and (2) in more detail, and (3)
infer road markings occluded by dynamic objects such as
cars and cyclists. These improvements are possible because
boosted IPM contains sharper features with more consistent
geometric properties (at further distance) and learns the
underlying road layout.

We have trained a road marking detection network for each
view separately (because we expect a difference in learned
features) with an equivalent setup according to [43]. Labels
(in the front-facing image) were generated automatically by
using the techniques of [43] and mapped down into IPM to
match the input images. In addition, the boosted IPM road
marking labels were stitched similarly to the camera images.
Although the labels are not equivalent to the ground-truth,
they have proven to be sufficient for training purposes if
regularization techniques are applied. The increase in per-
formance for road marking detection in the boosted IPM has
immediate consequences for the interpretation of scenes. In
general, all interpretations (scene graphs) benefit from more

accurate road marking detection. Table I depicts qualitative
differences in the scene graphs1. In the following we discuss
the individual scenes.

Scene (A) The vehicle approaches a pedestrian crossing
which is signaled by the upcoming zig-zag lines (visible
at the top of the image). While these road markings are
visible to the human eye in the homography-based IPM,
the trained road marking detection network was not able to
detect them because of the stretching and blurring at further
distance. However, our boosted IPM produced a bird’s-eye-
view image with sharper contours for the zig-zag lines
and correct reconstruction of the road markings occluded
by the vehicle. This resulted in an improved scene graph
which not only captured the right boundary of the ego lane,
but also a previously undetected second lane on the right.
Such qualitative differences have substantial impact on the
planning and decision making of the vehicle.

Scene (B) The vehicle drives on a road with four lanes
— two inner lanes for vehicles and two outer lanes for
cyclists — and experiences a sudden change in illumina-
tion (from a darker foreground to a brighter background).
This is clearly visible in the homography-based IPM and
consequently leads to a poor detection of road markings. In
contrast, our boosted approach produces a top-down view
which inpaints learned semantic cues (i.e. road markings)
directly over the overexposed area and also excludes the
two cyclists. Hence, the resulting scene graph captures more

1In the scene graphs, the qualitative differences resulting from our boosted
IPM method are indicated by filled nodes grouped in blue boxes.



detail as well as an extra lane which was missed in the
segmentation resulting from the standard approach.

Scene (C) The vehicle approaches a pedestrian crossing
which is indicated by both zig-zag and stop lines. Again, the
distorted and blurry image resulting from the homography-
based IPM leads to a poor detection of road markings. Our
boosted approach has generated a more detailed view which
led to better road marking detection including the successful
identification of the stop lines. The resulting scene graph
based on the homography-based IPM not only misses a lane,
but crucially also both stop lines.

Such qualitative differences clearly demonstrate the advan-
tage of our proposed method as they have a direct impact
on planning and decision making of autonomous vehicles.
While the detection and interpretation of road markings at a
greater distance will enable an autonomous vehicle to adapt
its behaviour earlier, the detection of road markings behind
moving objects will lead to performance that is more robust
and safer even when the scene is partly occluded.

C. Failure Cases

Under certain conditions, the boosted IPM does not accu-
rately depict all details of the bird’s-eye view of the scene.

As we cannot enforce a pixel-wise loss during training
(Section IV), the shape of certain road markings is not
accurately reflected (illustrated in Fig. 6). Improvement of
the representation of these structural elements will be inves-
tigated in future work.

Furthermore, the spatial transformer blocks assume that
the road surface is more or less planar (and perpendicular
to the z-axis of the vehicle). When this assumption is not
satisfied, the network is unable to accurately reflect the
top-down scene at further distance. This might be solved
by providing/learning the rotation of the road surface with
respect to the vehicle.

VI. CONCLUSION

We have presented an adversarial learning approach for
generating boosted IPM from a single front-facing camera
image in real time. The generated results show sharper fea-
tures and a more homogeneous illumination, while (dynamic)
objects are automatically removed from the scene. Overall,
we infer the underlying road layout, which is directly ben-
eficial for tasks performed by autonomous vehicles such as
road marking detection, object tracking, and path planning.

In contrast to existing approaches, we used real-world
data collected under different conditions, which introduced
additional issues due to varying illumination and (dynamic)
objects, making it impossible to employ a pixel-wise loss
during training. We have addressed the significant appearance
change between the views by introducing an Incremental
Spatial Transformer GAN.

We have demonstrated reliable, qualitative results in dif-
ferent environments and under varying lighting conditions.
Furthermore, we have shown that the boosted IPM view
allows for improved hierarchical scene understanding.

Fig. 6. Two cases in which the output of the network does not accurately
depict the top-down view of the scene. In the left image, the road marking
arrow is deformed, because we cannot employ a pixel-wise loss. In the
right image, the road surface is not flat (sloping upwards), consequently
the spatial transformer blocks attempt to map parts of the scene above the
horizon, for which the features are not learned.

Consequently, our boosted IPM approach can have a
significant impact on a wide range of applications in the
context of autonomous driving including scene understand-
ing, navigation, and planning.
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