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Abstract— Safe autonomous driving in urban areas requires
robust algorithms to avoid collisions with other traffic par-
ticipants with limited perception ability. Current deployed
approaches relying on Autonomous Emergency Braking (AEB)
systems are often overly conservative. In this work, we for-
mulate the problem as a partially observable Markov decision
process (POMDP), to derive a policy robust to uncertainty in
the pedestrian location. We investigate how to integrate such a
policy with an AEB system that operates only when a collision
is unavoidable. In addition, we propose a rigorous evaluation
methodology on a set of well defined scenarios. We show that
combining the two approaches provides a robust autonomous
braking system that reduces unnecessary braking caused by
using the AEB system on its own.

I. INTRODUCTION

Autonomous vehicles must navigate safely through urban
environments where parked cars and other physical obstacles
occlude other road users. In this work, we focus on avoiding
collisions with pedestrians crossing behind an occluded area
on the side of the road. Some systems rely on autonomous
emergency braking (AEB) systems to prevent collision. They
attempt to predict the trajectory of the pedestrian and compare
a metric such as the time to collision (TTC) to decide when to
brake [1]. Although comparing TTC to a threshold to trigger
braking can be effective [2], it tends to be overly conservative
because of the uncertainty in the sensors and environment.
There is a high risk of starting unnecessary strong braking.

To provide robustness to uncertainty in the sensors and
environment, previous work proposed modeling similar
scenarios with occluded cars and pedestrians as partially
observable Markov decision processes (POMDPs) [1], [3]–[5].
Their experiments showed that POMDPs provide an effective
framework for modeling uncertainty in the sensors and
environment, but they assumed a different acceleration range
than AEB systems. The resulting POMDP policies were
designed for comfortable maneuvers and would not be able
to deliver extreme deceleration when needed. Other techniques
to handle planning in occluded areas rely on set based
approaches [6]–[8]. Such methods are often well suited
to achieve robust prediction and compute a safe driving
velocity. However they do not offer a principle framework
for combining planning and partial observability.

1Markus Schratter and Daniel Watzenig are with the
Virtual Vehicle Research Center, Graz 8010, Austria,
{markus.schratter,daniel.watzenig}@v2c2.at. Daniel
Watzenig is also with Institute of Automation and Control, Graz University
of Technology, Graz 8010, Austria

2Maxime Bouton and Mykel J. Kochenderfer are with the Department
of Aeronautics and Astronautics, Stanford University, Stanford CA 94305,
USA, {boutonm,mykel}@stanford.edu.

CPAF CPAN-25 CPAN-75 CPCN

Fig. 1. Overview of the EuroNCAP scenarios. CPAF: Car-to-Pedestrian
Farside Adult, CPAN-25/75: Car-to-Pedestrian Nearside Adult, CPCN: Car-
to-Pedestrian Nearside Child with occlusion.

This paper demonstrates the benefit of augmenting a
POMDP policy with an AEB system that can use the full
braking power of the vehicle. We present an approach
where the problem is formulated as a POMDP to derive
a policy robust to uncertainty in the pedestrian state and to
handle hidden pedestrian behind an occlusion. The POMDP
planner is designed for comfortable maneuvers in a middle
acceleration range and is responsible for taking into account
uncertainty due to occlusions. The policy adapts the velocity
of the vehicle when the side of the road is occluded. To handle
rare critical situations where a pedestrian appears behind an
occluded area while the vehicle is at high speed, an AEB
system intervenes with a strong brake intervention when
a collision is unavoidable. The AEB system is responsible
for strong interventions when a collision is unavoidable. In
situations with poor visibility, the AEB system is not able
to avoid or mitigate collisions on its own. The POMDP
planner enables the system to anticipate this uncertainty and
to prevent an emergency stop. By combining the two systems,
our algorithm is able to maintain a reasonable driving speed in
occluded areas without increasing the accident rate compared
to relying on the AEB system on its own. Safety is not
compromised because the AEB system can take control at
any time.

Finally, we propose a rigorous evaluation methodology
on a set of well defined scenarios from the EuroNCAP test
protocol (fig. 1). Previous work on evaluating autonomous
braking systems at unsignalized crosswalks relied on data-
driven models of the pedestrian [9]. Chen, Zhao, and Peng
argue that the EuroNCAP scenarios would allow an overly
conservative system to be validated [9]. To avoid such an
issue, we augmented the suite of scenarios with a situation
involving occluded areas at the side of the road with no
pedestrian crossing. It is expected that an efficient system
would drive at a reasonable speed in these situations.
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II. PROBLEM FORMULATION

This section outlines how to model our problem as a
partially observable Markov decision process and solve for
an approximately optimal solution.

A. Background
Sequential decision making problems under uncertainty can

be modeled as partially observable Markov decision processes
(POMDPs). It is a mathematical framework defined by the
tuple (S,A,O, T,O,R, γ) where S is a state space, A an
action space, O an observation space, T a transition model, O
an observation model, R a reward function, and γ a discount
factor. From a state s ∈ S, the agent takes an action a and
the state evolves to a state s′ with probability T (s′, s, a) =
Pr(s′ | s, a). In a POMDP, the agent has uncertain knowledge
about the state of the environment. Therefore, the agent
maintains a belief about its internal knowledge of the state.
The belief b can be updated after taking an action a and
an observation o about the current state using the following
equation, where T (s′ | a, s) is the transition function:

b′(s′) ∝ O(o | s, a)
∑
s

T (s′ | a, s)b(s) (1)

In this work we used a discrete Bayesian updater, which
updates the discretized belief with a measured continuous
observation.

The solution of a POMDP is an optimal policy π∗,
which maximizes the expected discounted sum of immediate
rewards from any given belief. The optimal policy can
be extracted from the optimal utility function U∗(b, a). In
general, computing the exact optimal utility function for
a POMDP is intractable and must rely on approximation
techniques instead. Two approaches are ued to compute the
optimal utility function: offline and online methods [10]. In
this paper, we use an offline QMDP [11] approach to compute
the optimal policy. The QMDP method solves the problem
under the assumption that the state becomes fully observable
after one time step. With this assumption the value iteration
algorithm can solve the optimal state-action utility function
U∗(s, a) assuming full observability.

B. Scenario modeling
The road is represented in the Frenet frame. By applying an

appropriate coordinate transform, our planner can be applied
directly to different road configurations [12]. For simplicity,
we illustrate our approach on a straight road segment.

1) Action space: The POMDP planner is able to control
the acceleration profile in the longitudinal direction and can
position the vehicle inside the driving lane in the lateral
direction along the given path. In the lateral direction, the
planner can modify the vehicle position inside the lane. A
finite set of strategic maneuvers for the lateral control are
defined: no acceleration or an acceleration to the left or right
side: {0m/s2, 1m/s2,−1m/s2}. Strategic maneuvers for the
longitudinal control such as accelerating, maintaining constant
speed and braking with different strengths are represented
by a finite set of acceleration and deceleration actions:
{1m/s2, 0m/s2,−1m/s2,−2m/s2,−4m/s2}.
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Fig. 2. Representation of the state of the pedestrian avoidance POMDP.
The state space represents the area in front of the vehicle of a length of
50 m and a width of 10 m.

2) State space: The state space represents all the variables
taken into account for solving the problem. It encodes
information on the ego vehicle and the pedestrian. To handle
complex street courses the road is represented in the Frenet
frame. The ego vehicle is represented in the state space
with its longitudinal velocity (0 km/h–50 km/h) and its lateral
position inside the lane (±1m). The position of the pedestrian
is represented in the longitudinal direction s (0 m–50 m)
and lateral direction t (±5m). The longitudinal range is
the result of the required distance to stop based on the
defined maximum velocity, the maximum deceleration of the
system and a longitudinal safety gap. In addition, we consider
the velocity (0 km/h–7.2 km/h) and orientation (±90°) of the
pedestrian. Figure 2 illustrates the state representation with
one crossing pedestrian from the left side as an example.
All the variables in the state space are discretized and result
in 29 velocities for the ego vehicle and five positions in
the lane. The representation of the pedestrian needs 27
longitudinal positions, eleven lateral positions, five velocity
levels and seven possible orientations. By multiplying all
possible combinations of ego and pedestrian states, the total
number of states amounts to 1.5× 106.

3) Transition model: The transition model of the ego
vehicle depends on the current action and state of the ego
vehicle and consists of a point mass model. For the transition
of the pedestrian, we use a simple reachability model [13],
which depends on the current pedestrian state and calculates
further positions for the pedestrian based on a set of possible
acceleration values. It is assumes that the pedestrian can
take any of those acceleration with uniform probability. The
velocity of the pedestrian is bounded up to 2 m/s.

4) Observation model: The observation model character-
izes what the ego vehicle can sense about the state space. We
can reasonably assume that the position and velocity of the
ego vehicle are nearly perfectly observable. The observation
space is similar to the state space. The observation model
can be described as follows:

• An object in a non-occluded area will always be detected.
• An occluded object behind an obstacle will not be

detected.
• If an object is detected, the measured quantities like the

position, the velocity and the orientation of the pedestrian
follow a normal distribution around the true state. The
parameters of the distribution depends on the perception



system model.
5) Reward model: The reward model defines the objective

of the POMDP planner. The ego vehicle receives a penalty
for colliding with a pedestrian. We define an additional
reward signal to keep the velocity sufficiently high and stay
in the center of the lane. If the ego vehicle drives with
the desired velocity and stays in the center of the lane, no
reward is received. A penalty term decreases linearly with
the velocity difference and the lateral offset to the lane center.
Longitudinal and lateral actions cause a penalty to avoid too
many interventions. The resulting behavior of the POMDP
planner can be modified by choosing different values for
penalties and rewards. The values for those penalties and
rewards can be tuned through simulation on defined scenarios
to balance avoiding collisions and efficiency, as described in
section IV.

C. Solving the optimal policy for multiple road users

The POMDP model describds in the previous section
handles only one pedestrian. To extend the capabilities of the
resulting policy we use a utility decomposition method [14].
Every pedestrian is considered independently and the global
utility function is approximated as the minimum belief action
utility over each individual pedestrian.

U∗(b, a) = min
i
U∗single(bi, a) (2)

where Usingle is the utility function obtained from solving the
POMDP considering a single pedestrian. Taking the minimum
will result in taking the action a associated to the most critical
pedestrian. Figure 3 shows an example of a policy obtained by
solving the POMDP model. The color shows the longitudinal
action given by the policy for a given longitudinal and lateral
distance in the Frenet frame [s, t]. Because the state space is
multi-dimensional, we fixed the ego velocity, the pedestrian
velocity and orientation to visualize the policy for every s
and t in the state space. The Frenet frame is relative to the
vehicle. A decreasing s means that the pedestrian is closer
to the car and t = −2m means the pedestrian is on the
right side. We can observe that with a higher velocity, earlier
braking is necessary the closer the pedestrian is. Moreover, if
the pedestrian is further left, the braking intervention happens
later.

III. AUTONOMOUS EMERGENCY BRAKING SYSTEM

The Autonomous Emergency Braking (AEB) system works
in combination with the POMDP planner. It uses the generated
driving trajectory from the POMDP planner to calculate the
risk for a collision. If a collision is unavoidable the AEB
system triggers an emergency stop, which has the highest
priority and overrules the POMDP planner.

The AEB system runs at a higher update rate to detect
critical situations as fast as possible, especially when a
pedestrian appears behind an occluded area. The system
uses, like the POMDP planner, the Frenet frame to generalize
the problem to a straight road. The algorithm is described in
pseudo code in algorithm 1. The input for the AEB system
are the pedestrians position and velocity in the Frenet frame
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Fig. 3. Representation of different policies in variation of the ego vehicle
velocity. The lateral position for the ego vehicle is fixed to the center of the
driving lane. The pedestrian walks at 7.2 km/h and has an orientation of
90°. The color shows the action taken by the planner at a given longitudinal
distance [s] and lateral distance [t].

Algorithm 1 Autonomous Emergency Braking System
1: Input: Pedestrians position and velocity, ego vehicle

trajectory.
2: Compute TTB given the current ego state.
3: for each pedestrian
4: Predict trajectory given current pedestrian state
5: Compute the probability of collision Pc

6: if Pc > Pcthreshold

7: Compute time to collision TTC
8: Compute risk: risk = min(TTB

TTC , 1.0)
9: if risk > riskthreshold

10: Emergency brake intervention

as well as the ego vehicle trajectory given by the higher level
planner.

In the first step, the time-to-brake (TTB) is calculated based
on the ego vehicle trajectory. Then a prediction model gives a
distribution over possible future states for the pedestrian [15].
This distribution, as well as information on the future ego
vehicle state, is used to compute a probability of collision
Pc. Pc is the estimated fraction of future pedestrian states
overlapping future ego vehicle states. The red circle in fig. 4
at t = 2.5 s, represents the distribution of possible future
states given by the prediction model. The performance of the
algorithm is directly related to the quality of the prediction.

If Pc is above some threshold, we carry an additional check
using the following risk metric:

risk = min(
TTB
TTC

, 1.0) (3)

where TTC is the time to collision. If the risk is higher
than a defined threshold, an emergency stop is triggered.



TABLE I
SIMULATION PARAMETERS

Parameter Value

Simulation time step 0.05 s
Pedestrian position tracking standard deviation 0.1 m/s
Pedestrian velocity tracking standard deviation 0.2 m/s
Object tracking delay 200 ms
Brake delay 200 ms

POMDP planner
Belief update frequency 0.2 s
Decision frequency 0.2 s
Pedestrian maximum speed 2.0 m/s

Autonomous Emergency Braking System
axmax −10.0 m/s2

Threshold collision probability 0.5
Threshold collision risk 0.99

TABLE II
EURONCAP VRU SCENARIOS

CPAF CPAN-25 CPAN-75 CPCN

Ego velocity [km/h] 10-60 10-60 10-60 10-60
Ped velocity [km/h] 8 5 5 5
Occlusion No No No Yes
Impact point [%] 0–50 0–50 0–50 0–50

The implementation of the Autonomous Emergency Braking
system is available at [16].

IV. EXPERIMENTS

We compare three different approaches to get an overview
of the advantages and disadvantages of the different systems:
• Autonomous Emergency Braking
• POMDP planner
• POMDP planner with AEB system
The parameters used for the evaluations are specified in

table I. To evaluate the performance of different implementa-
tions, we compare them using scenarios from the EuroNCAP
test protocol for vulnerable road users. The aim of the
EuroNCAP test protocol is to cover the most amount of
accidents. The scenarios in the test protocol are all critical and
result in a collision. About 75 % of all pedestrian accidents
are covered with these crossing scenarios [17]. A detailed
description of the scenarios can be found at [18]. In the
existing version of the test protocol, every scenario has only
one defined collision point. To cover a wider variation of
collisions along the front of the vehicle (collision grid), we
increased the amount of collision points for every defined
scenario, see Table II.

The EuroNCAP test protocol defines different velocities for
the ego vehicle. To simplify the analysis, we assume an ego
velocity of 50 km/h. Additionally, we added three scenarios
to analyze the robustness of the different approaches. In these
scenarios, no intervention is required to prevent collision.
If the AEB system causes a full brake, it would be a false
positive. For two of the scenarios, a pedestrian is crossing
the road from the right side; in one scenario the pedestrian
is 0.9 m to the right and in the other 0.9 m to the left at the

Belief state

Pedestrian true state
Pedestrian tracked position
Belief state

Pedestrian prediction from the AEB system

t: 1.0s                             vEGO: 46.8km/h     y: 0.0m          ax: -2.0m/s²

t: 2.5s                             vEGO: 35.6km/h     y: 0.0m          ax: -7.5m/s²

t: 3.5s                             vEGO: 0.0km/h     y: 0.0m          ax: 0.0m/s²

Fig. 4. Visualization of a scenario with an obstacle on the right side of the
road (CPCN) and a crossing pedestrian. In addition two pedestrians stand
still on the left side. The belief state is represented in blue. In this case the
POMDP planner works in combination with the AEB system. In the top
plot, no pedestrian is detected behind the obstacle, but the system maintains
an uniform belief over all the possible occluded states. Using this belief
the POMDP planner reduces the velocity. In the middle plot, the crossing
pedestrian is detected and after performing a belief update, the probability
of presence of a pedestrian increases. The red circle represents the predicted
pedestrian position from the AEB system, at this time step an emergency
braking intervention is triggered to avoid the collision. In the bottom plot,
the ego vehicle has stopped and the pedestrian crosses the road.

passing point. With the third scenario, we evaluate efficiency
in occluded areas. The CPCN scenario (with an obstacle on
the right side) is used where no pedestrian is crossing the
road. With this scenario we can detect an overly conservative
algorithm that would reduce the speed too drastically in the
presence of an occluded area. Figure 4 shows examples of
the EuroNCAP CPCN scenario with an obstacle on the side
where the POMDP planner with the AEB system is active.

A. Evaluation metric

Multiple metrics are available to evaluate performance [9],
[19]. We calculate the mean velocity v, the mean acceleration
a, the mean collision velocity dv, the number of collisions,
and the amount of emergency brake interventions, over all
of the EuroNCAP scenarios.

B. Tuning of the reward function

The behavior of the POMDP planner is influenced by the
reward function. The reward parameters must be tuned to
fulfil the safety and efficiency requirements. Determining
good parameters for the reward function can be challenging.
We ran a parameter search and evaluated the resulting policies
with the defined scenarios. The objective is to compare the
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Fig. 5. The six plots on the left side are the results for the POMDP planner with AEB system and the four diagrams on the right side are the results for
the POMDP planner without AEB system. The different lines in each plot represent different velocity rewards. The first row shows the mean velocity versus
the probability of a pedestrian appearance and penalty for a longitudinal action. The second row shows the amount of collisions over all scenarios and the
third row shows the POMDP planner with AEB system the amount of emergency braking interventions.

collision rate, amount of emergency braking, and the mean
velocity of the ego vehicle. The following parameters are
tuned:
• Penalty for longitudinal action (throttle/brake)
• Velocity reward to keep the velocity close to 50 km/h
• Probability of pedestrian appearance (which is a param-

eter of our transition model)
Figure 5 shows results for different reward functions. We
measured the mean velocity, amount of collisions and amount
of emergency braking interventions for the resulting policies.
The most critical cases are scenarios with an obstacle
on the side because reducing the velocity is required to
avoid collision at 50 km/h. It is important to notice that the
probability of the pedestrian appearance behind an obstacle
has a significant influence on the amount of collisions and
emergency braking interventions and the mean velocity,
which decreases with a higher probability for the pedestrian
appearance.

V. RESULTS

Before comparing the results for the different approaches,
we analyze different reward configurations. Figure 6 shows
different settings of reward parameters for the POMDP
planner with and without the AEB system. In this experiment,
the reward for lane keeping and the penalty for a longitudinal
action are fixed and the probability of a pedestrian appearance
varies. The top plot shows the relation between collisions
and mean velocity. A collision-free configuration is possible
with both approaches. Combining the POMDP planner with

the AEB system results in a higher mean velocity due to
the capability of the AEB system to request a stronger
brake intervention. The bottom plot shows the number of
emergency braking interventions, which decreases when
the probability of pedestrian appearance is higher. As the
number of interventions decreases, the system behaves more
conservatively when passing occluded areas. Based on the
results from Figure 6, we chose the reward parameters that
lead to no collisions and the highest mean velocity.

Figure 7 shows the results for the EuroNCAP scenarios
without occlusions. The velocity profile of the AEB system
is shown on the top, and the velocity profile of the POMDP
planner at the bottom. There is no difference between the
POMDP planner with and without AEB because there are no
occluded areas. The two scenarios, False Positive 200 and
−100, are scenarios where the pedestrian is at the passing
point of the ego vehicle 0.9 m to the left and 0.9 m to the
right, respectively. In both cases, the AEB system does not
trigger. The POMDP planner behaves differently, reducing
the velocity, especially when the pedestrian is directly in front
of the vehicle, as shown in scenario False Positive (200). For
all of the three collision scenarios, the POMDP planner slows
the vehicle and allows the pedestrian to cross. Afterwards,
the ego vehicle accelerates to reach the desired velocity of
50 km/h.

Figure 8 shows the velocity profiles for the scenario with
an occlusion. In the top plot, no pedestrian crosses the road.
The AEB system does not decelerate. The two POMDP
planners reduce the velocity because of the occluded area.
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point.

The POMDP planner needs to drive slower than the POMDP
planner with the AEB system. The reason for this is illustrated
by the bottom figure where a pedestrian crosses the road.
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Fig. 8. Velocity profile for the CPCN scenario with occlusions. Top diagram:
No pedestrian crosses the road, but all POMDP planner configurations slow
down. Bottom diagram: A pedestrian crosses at 5km/h the road, not all
configurations are able to avoid the collision.

The POMDP planner with the AEB system is able to drive
faster, but an emergency braking intervention is needed to
avoid collision. The POMDP planner decelerates in front of
the occluded area. Driving under 50 km/h allows it to avoid
collision with the occluded pedestrian. In this case, the AEB
system is not capable of avoiding collision with a velocity
of 50 km/h. When driving at high speed, the time to react is
not sufficient to stop the vehicle. Figure 8 shows the velocity
profile for a POMDP planner with a deactivated AEB system,
which we refer to as not adapted. In this case, the velocity
before the obstacle is too high and the deceleration is not
sufficient, which illustrates the benefit of the underlying AEB
systems.

Table III summarizes the performance of the three ap-
proaches. The AEB system is not able to avoid all collisions,
but the two POMDP planners avoid all collisions. The
implementation combining the POMDP planner and the AEB
system is able to pass obstacles faster. The mean velocity
v is higher, but four emergency braking interventions are
triggered.

TABLE III
PERFORMANCE ON THE DIFFERENT IMPLEMENTATIONS

AEB POMDP POMDP + AEB

Collisions [#] 3 0 0
Emergency Brakes [#] 24 0 4
dv[km/h] 3.8 0 0
v [km/h] 43.5 30.2 32.7
a [m/s2] −8.6 −3.1 −3.2



VI. CONCLUSION

This paper discussed a POMDP approach for a pedestrian
collision avoidance system that is capable to handle scenarios
with sensor occlusions. The system is able to handle multiple
pedestrians while maintaining computational scalability. In
addition, an Autonomous Emergency Braking system was
implemented to extend the capability in critical situations and
increase the driving velocity in non critical situations even in
occluded areas. We used scenarios from the EuroNCAP test
protocol for vulnerable road users to evaluate our approach.
The experiments showed that different behaviors can be
obtained, ranging from a conservative behavior without any
emergency brake interventions to a behavior where emergency
brakes are always needed to avoid collisions. In the latter
case the vehicle passes obstacles on the side of the road at a
faster speed.

The investigation showed that defining appropriate pa-
rameters for the reward function of the POMDP planner is
challenging. The POMDP planner is designed to control the
lateral behavior of the vehicle, and it would be interesting to
investigate this capability in more depth. The implementation
of the POMDP planner in combination with the Autonomous
Emergency Braking System is publicly available [20].
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