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Abstract— Lidar sensors are often used in mobile robots
and autonomous vehicles to complement camera, radar and
ultrasonic sensors for environment perception. Typically, per-
ception algorithms are trained to only detect moving and static
objects as well as ground estimation, but intentionally ignore
weather effects to reduce false detections. In this work, we
present an in-depth analysis of automotive lidar performance
under harsh weather conditions, i.e. heavy rain and dense
fog. An extensive data set has been recorded for various fog
and rain conditions, which is the basis for the conducted in-
depth analysis of the point cloud under changing environmental
conditions. In addition, we introduce a novel approach to detect
and classify rain or fog with lidar sensors only and achieve
an mean union over intersection of 97.14 % for a data set in
controlled environments. The analysis of weather influences on
the performance of lidar sensors and the weather detection are
important steps towards improving safety levels for autonomous
driving in adverse weather conditions by providing reliable
information to adapt vehicle behavior.

I. INTRODUCTION

Environment perception is a key challenge for autonomous
driving and a major restricting factor for the availability
and performance of the system. In order to increase both,
the degree of automation and the availability of the sys-
tem, various environmental conditions are to be considered,
recognized by the system and reacted properly to. In order
to develop a robust perception and sensor fusion, it is of
utmost importance to know potential degradation of different
sensor types and mitigate their impact. To develop a truly
autonomous vehicle, it needs to recognize system boundaries
without external intervention and react accordingly to master
all environmental impairments. According to the definition
of levels of automation by the ’Society of Automotive
Engineers’ (SAE), level 3 and 4 systems need the detection of
system boundaries in order to hand over to a manual driver
(3) or to bring the system into a safe state (4). For fully
automation (level 5) mastery of all environmental conditions
is required [1]. Therefore, the investigation of environmental
influences on sensor performance is a crucial area of research
for autonomous driving: sensors are facing ever changing
and always unique weather conditions, such as dense fog in
fig. 1. For lidar sensors the most challenging environmental
conditions are bright sun, fog, rain, dirt and spray.
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Fig. 1. Experimental setup in the climate chamber in fog with a visibility
of 20-30m.

In this paper we investigate the influence of rain and dense
fog on state-of-the-art lidar sensors. The paper is structured
as follows: Chapter 2 discusses related works and states the
main contributions of this article, Chapter 3 introduces the
details of the experimental setup, Chapter 4 describes the
method of evaluating the recorded data set and Chapter 5
deals with the experimental results, the influence of rain and
fog on lidar sensors and the detection of rain and fog based
on lidar output data. Finally Chapter 6 draws a conclusion
and gives an outlook to future work.

II. RELATED WORK

Although, state-of-the-art data sets are commonly recorded
at favourable weather conditions (e.g. [2], [3]), there exists
a sizable amount of literature about the impact of harsh
weather conditions such as fog, rain, dust or snow for lidar
sensors [4]–[16]:

A. Lidar Sensors in Adverse Weather Conditions

In 2009 a first data set with radar, visual camera, infrared
camera and lidar sensors was recorded in challenging envi-
ronment situations (dust, rain and smoke) by Peynot et al.
[5]. According to the results there is a significant attenuation
for lidar sensors compared to radar sensors in challenging
environment conditions. For lidar sensors it was also proven
that objects could disappear behind the airborne dust. Based
on the different attenuation of the two sensor concepts, an
algorithm was developed to remove the dust reflections by
filtering the laser data based on radar data.

Hasirlioglu et al. proposed a theoretical model considering
multiple reflections by rain drops or fog to determine the
influence of fog and rain for automotive perception sensors
[9]. The principle of the model is based on a longitudinal
layer representation. Within each layer a reflection, trans-
mission and absorption could occur. This approach considers
multiple reflections and is verified with a developed fog
and rain simulator [7], [8]. The developed system provides
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a maximum length of 4 m and a overall distance between
sensor and target of 10 m. The influence of rain or fog
is evaluated on a standardized Euro NCAP Vehicle Target
(EVT) [17], which is optimized to represent a vehicle for
visual camera sensors and not for lidar sensors. Therefore we
have used real objects to ensure a correct reflection behavior
for the backscattered light. The results of the test setup shows
that in general radar sensors are robust against fog compared
to lidar and camera sensors which are strongly affected by
fog [7]. As there is no quantification of the fog density
(e.g. meteorological visibility), a direct conclusion on real
environmental conditions is not possible. The lidar data set
in dense fog by [16] enables this conclusion, as the data set
was recorded in a dedicated climate chamber [18] with a
closed-loop controlled visibility range, as our data set. The
detailed analysis takes the total number of scan points in a
single frame, the intensity, the maximum detection distance
and as sensor parameter tuning into account. According to
[16] the detection range of state of the art lidar sensors brakes
down below 40m visibility and is limited to 25m, even with
multiple returns.

The influence of rain for lidar sensors was analyzed in
a similar fashion in [6], [12]. Filgueira et al. presented a
work that quantifies the influence of rain for one lidar sensor
and a static scene; in detail the average range, intensity and
number of points for certain objects [6]. The results show
smaller changes in the distance of detected objects, while the
intensity and the number of points decrease dramatically.

In [12] and [15] the influence of dust is analyzed with one
type of 2D laser scanner in detail, similar to our approach of
studying the influence of fog and rain. Smoke and rain are
additionally examined in [12], but since the utilized chamber
couldn’t produce artificial fog, there are no investigations
about the influence of fog. According to [15] the influence
of dust on lidar sensors is systematic and predictable, as the
lidar measures the leading edge of a dust cloud, which occurs
with the lidar used from a transmission of about 70 %.

Wojtanowski et al. [19] presented a very detailed inspec-
tion and discussion for range degradation of hypothetical
lidar sensors with 0.9 µm and 1.5 µm in fog and rain
environmental conditions. Considering only the attenuation
by fog, rain and wet surfaces, lidar sensors with a wavelength
of 905 nm are outperforming sensors with 1550 nm. As
air humidity did not influence the sensor’s performance
significantly, fog is the most suppressing factor [19]. Re-
cently, Kutila et al. [20], [21] analyzed the influence of
harsh weather conditions for lidar sensors at 905nm and
1550nm by evaluating the signal to noise ratio (SNR) of the
back-scattered light and the quantitative comparison of the
number of points per object. According to [21] the 1550nm
lidar sensor is outperforming the 905nm sensor in adverse
weather, due to the lower restrictions on emitted light power
to reach laser class 1.

An approach for removing near field reflections caused by
fog is proposed in [14] for one static scene. The algorithm
is based on the light beam penetration, the intensity and
geometrical features for measurements recorded in a fog-

filled room with 2 and 6 m visibility. Since the data sets used
in [14] only contains a single static scene, the reported results
might be affected by overfitting of the underlying classifier.

Lidar sensor performance significantly depends on the
environmental conditions as demonstrated in [4], [6], [10]–
[14]. Thus, it is fundamental to recognize and quantify the
impact of current weather on the lidar performance in order
to develop robust perception and thus fusion algorithms.
Foremost, for fusion and trajectory planning of autonomous
cars, it is important to reliably classify current sensor perfor-
mance for weighing sensor modalities optimally. As a conse-
quence, the evaluation of the impact of various environmental
conditions for a specific sensor system is essential.

B. Main Contribution

The contributions of this paper are twofold:
• First, we present a detailed analysis of the impact of rain

and fog on different lidar sensors using a novel data set
that excels in terms of realism, controllability, size and
scenarios.

• Second, we present a novel approach of detecting
weather using lidar sensors only that obtains state-of-
the-art performance.

The recorded data set surpasses the spatial limitations of
[7], [8], [12] and additionally offers a closed loop controlled
fog density by the meteorological visibility range from 20-
60 m and a stabilized rainfall rate at 55 mm/h [18]. Fur-
thermore, in contrast to [7], [8], [12] numerous dynamic
scenarios with real traffic situations have been recorded under
controlled weather conditions. Compared to [16] and [21],
we used the same climate chamber, but a different sensor
setup and data analysis strategy. While the analysis of [16] is
focused on the maximum detection range, sensor parameter
tuning and their influence on the point cloud, our approach is
concentrating on the detection of adverse weather conditions
and an analysis of the perception on object level. Moreover,
our data set contains road recordings at sunny, cloudy and
rainy weather conditions at day- and nighttime.

Besides, determining the degradation of sensor perfor-
mance, it is also significant to reliably detect and classify
environmental conditions by the sensor itself. The idea to
detect weather conditions with vehicle on-board sensors is
stated in [22]. In this paper, a novel approach of detecting
weather conditions only by evaluating output data of a lidar
sensor is developed. Thus the sensor determines its current
performance and provides important information for any type
of sensor fusion algorithm, in order to adapt the system
behavior according to the current perception performance
and environmental conditions (e.g. reduction of speed during
precipitation and wet road). In comparison to [14], it is not
the goal to detect at point level whether the detection was
caused by adverse weather or not. Since disturbance points
caused by fog or rain are not the main influencing factor, but
rather the enormous reduction of sensor performance in terms
of range. Even if the interference points are filtered, the per-
formance degradation remains and restricts the operation of
the autonomous vehicle. Therefore, we use this information



Fig. 2. Experimental setup in the fog chamber for dynamic scenes in
reference condition ’clear’ without any rain or fog. Lane marking (1),
reflector post (2), child and woman mannequin (3,4) and man mannequin
with reflective vest (5) are stationary objects. Pedestrian, cyclist (both not
shown) and car (6) are movable objects.

(a) national road, light rain (b) rural road, heavy rain

(c) roundabout in a city, no rain (d) traffic jam on a highway, no rain

Fig. 3. Examples for the road data set under different environmental
conditions, traffic situations and road types. All examples shown have been
recorded during the day, with the exception of 3a recorded at night.

to identify sensor and system boundaries. In this regard it is
important to mention, that the input data of each sensor type
is regarded separately in order to guarantee redundancy and
avoid cross-dependencies. Thus, filtering raw data input of a
specific sensor by another, as shown in [5], is not regarded
in this paper. The information of the weather classification is
therefore rather used to adjust confidence values of a fusion
algorithm for different types of sensors separately. In the
long term, the goal is to enable both filtering of interference
points caused by adverse weather and classification of system
degradation.

III. EXPERIMENTAL SETUP

Defined and reproducible weather conditions are essential
to obtain a meaningful data set of perception sensors in
different weather conditions. In Europe CEREMA’s climate
chamber in Clermont Ferrand (France) is the only publicly
accessible climate chamber with the ability to produce ho-
mogeneous advection and radiational fog with a controlled
and constant visual range [18]. Additionally, the chamber

provides a rain simulator with a stabilized rainfall rate.
Based on the data set in the climate chamber a detailed

evaluation of the sensor output data is conducted in clear,
foggy and rainy conditions. Furthermore, a classification
procedure is developed to obtain information about the
weather condition from the laser scanner’s point cloud.
Three different setups are recorded with static and dynamic
scenarios to reduce the time-correlation of the data set and
prevent an overfitting of trained classifiers. The static setup
(Setup A) includes retro reflective and diffuse reflecting
objects with 5 %, 50 % and 90 % reflectivity. The first
dynamic setup (Setup B) represents typical scenes of real
traffic situations (e.g. crossing pedestrians, cyclists at the
roadside, approaching or leaving car, etc.) with 8 different
variants containing different trajectories, combinations and
occlusions of the moving objects, one of them is shown in
fig. 2. The scenario in fig. 2 shows a leaving car in the
ego lane and several static objects, which typically occur in
real-life traffic situations. The second dynamic setup (Setup
C) contains diffuse reflecting targets leaving the field of
view of the sensor. Consequently the influence of changing
weather conditions and changing scenarios can be analyzed
separately.

In addition, road data has been recorded at several different
environmental conditions. The road data set contains 5
scenarios without any rain (4 at daytime, 1 at nighttime),
3 with occasional rain, and 4 with almost permanent rain
(3 at daytime, 1 at nighttime). Furthermore, the data set
includes many different traffic situations, such as traffic jam
or empty highway and different types of roads (highway,
rural road, inner city). Fig. 3 shows four different examples
of the data set. The driven speed of the data was between 0
and 160 km/h.

The sensor setup contains two state-of-the-art lidar
sensors: the Velodyne ’VLP16’ and Valeo ’Scala’. Both
sensors operate at about 905 nm wavelength with a scanning
system. The main difference is the mechanical design of
the scanning pattern. While the ’VLP16’ utilizes a rotator
to spin transmitter and receiver, the ’Scala’ keeps the
transmitter and receiver fixed and deflects sending and
receiving light with a rotating mirror. Another difference is
that the ’Scala’ sensor detects the echo pulse width (epw)
of the received light pulses, whereas the Velodyne sensor
measures the intensity of the received pulses. Both sensors
are able to detect multiple returns, which are referred
below as echoes. While the ’Scala’ sensor provides three
echoes ordered by distance, the ’VLP16’ provides the
last and the strongest echo. If the last and the strongest
echo are identical, the second strongest echo is provided
[23], [24]. In order to obtain a uniform denomination,
for the ’VLP16’ the strongest or second strongest echo
is denoted as 1 and the last return as 2. If no multiple
reflections are detected, there are no valid points for echo
2 or 3 on the ’Scala’ sensor, whereas for the ’VLP16’
echo 1 and 2 are identical.The recorded data set in the
climate chamber contains about 274,000 frames for the
’VLP16’ and 105,000 for the ’Scala’ Sensor. The road data



was recorded with the ’VLP16’ and includes 270,000 frames.

IV. METHOD
We compose a feature vector which reflects the impact

of fog and rain on the raw output data of lidar sensors
without preprocessed filtering. The point cloud at time k is
represented as matrix P ∈ R2 where each row i = (1, . . . ,n)
contains one point with j = (1, . . . ,m) number of attributes.

P(k)n×m =


p11(k) p12(k) · · · p1m(k)
p21(k) p22(k) · · · p2m(k)

...
...

...
pn1(k) pn2(k) · · · pnm(k)

 . (1)

The number and content of attributes is sensor specific but
the same for each and every point. To ensure a universal
structure the unification over all sensor specific signals is
represented in

pi j = (pi1, . . . , pi j, . . . , pim) (2)

where each column represents a single attribute. In order to
ensure a clear notation, the column index of a point cloud is
omitted, but marked with a variable per column.

pi = (xi,yi,zi,ri,θi,ϕi,ei, Ii,epwi) . (3)

The corresponding notation is: (x,y,z) for the cartesian and
(r,θ ,ϕ) for the spherical coordinates, e for the echo number,
I for the intensity and epw for the echo pulse width.

As the return energy of light scattered by atmospheric
particles is weak, impact of ambient conditions are mainly
expected at close range. Thus the point cloud is spatially
filtered, restricting processing to the near-range (x ≤ 20m)
of the ego-lane (−1.5m ≤ y ≤ +1.5m), for the following
analysis of the influence of fog and rain on the point
cloud attributes. The focus on a region of interest (ROI)
reduces dependencies of the composition of the point cloud
on a specific scenario (e.g. guardrails or vegetation at the
roadside) and saves computation time.

A distinction by the echo number t ∈ N representing the
first, second or third return signal of a transmitted light pulse,
is reasonable as the number of echoes per scan direction
relates not only to the number of objects but also atmospheric
particles which are potential scatter points for the light.
Hence, the amount Mt is defined as Mt := {ei|ei = t} with
t ∈ {1,2,3, · · ·} being the number of the respective received
return pulse per angle. For the number of points for a specific
echo, the signal Nt(k) is derived:

Nt(k) = |ei(k)| ∀ei ∈Mt . (4)

The mean and variance of one attribute p j is calculated for
each frame by:

p j(k) =
1
n

n

∑
i=1

pi j(k) var(p j(k)) =
1
n

n

∑
i=1

(pi j− pi j(k))2 . (5)

For example the mean distance of all points corresponding
to a specific return is given by:

rt(k) = ri(k) ∀ei ∈Mt . (6)
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Fig. 4. Point cloud of ’Scala’ sensor in birds-eye view for a single random
but representative frame k, split by echo number. The fig. visualizes the
scene of Setup B in the chamber and the resulting point cloud. An image
of a sate-of-the-art automotive camera is given at the right side, while the
meteorological visibility V is stated in meter rightmost in case of fog and
the rainfall rate in mm/h. For reference conditions the label ’clear’ is given.
The pedestrian mannequin is highlighted with red boxes (object no. 4 in fig.
2). and the car in blue stars (object no. 6 in fig. 2). All other points are
marked as black dots.

The spatial distribution of the points is represented by the
eigenvalues of the covariance matrices of x, y and z, similar
to [14].

Finally, the assignment of the resulting feature vector
f = ( f1, . . . , f16)

T , shown in table I, describes one frame
of the laser scanner. The features are down selected by
a neighboring component analysis to find the parameters
with the highest effect [25]. Additionally, the impact of
the rather static scene has to be mitigated to not bias the
training of ambient condition detection. For example, the
total number of points is not taken into consideration for
weather classification because it is highly dependent on the
scenario (empty highway vs. inner-city traffic jam).

TABLE I
FEATURE VECTOR FOR ENVIRONMENT CLASSIFICATION BASED ON

POINT CLOUD DATA. FOR THE FEATURE SET OF ’VLP16’ THE ECHO

PULSE WIDTH epw IS REPLACED BY THE INTENSITY I .

f1 N1 f5 r2 f9 mean(r) f13 mean(epw)
f2 N2 f6 r3 f10 mean(ϕ) f14 eig(cov(x))
f3 N3 f7 mean(e) f11 mean(θ) f15 eig(cov(y))
f4 r1 f8 var(e) f12 var(epw) f16 eig(cov(z))

V. EXPERIMENTAL RESULTS

First, we discuss the influence of different weather con-
ditions on point clouds and object perception, second we
discuss the previously determined features and third a clas-
sification procedure is presented to extract the weather
condition from the laser scanner’s point cloud. The ground
truth measurements are the meteorological visibility V in m
and the rainfall rate R in mm/h and are provided by the
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Fig. 5. Object perception for ’Scala’ sensor with 1,200 frames per weather
condition (except for rain, 921 frames). The boxplot shows the result of the
corresponding raw point cloud (x- and y-coordinate, echo and epw) for a
car and pedestrian. The weather is shown on the ordinate axes ordered by
descending meteorological visibility V . In case of fog the visibility is stated
in m, for rain the rainfall rate in mm/h and the label ’clear’ for reference
conditions. The locations of the target objects are given in fig. 4

climate chamber [18]. For road recordings the ground truth
is given by the signal of the so called rain light sensor, which
measures the rain intensity to automatically adjust the speed
of the wiper.

A. Weather Influence on Point Clouds and Object Perception

Fig. 4 shows the point cloud of ’Scala’ sensor in birds-
eye view for a single random but representative frame k,
split by echo number. Additionally, an image of a state-
of-the-art automotive camera sensor is given rightmost. The
depicted point cloud is taken from setup B shown in fig. 2
and illustrates the scene and the positions of the objects. For
a statistical comparison of the object perception performance,
the accumulation of points which are corresponding to a car
or pedestrian object of at least 1,200 frames for each weather
condition are shown in a boxplot in fig. 5 and 6.

The point cloud with strong rain (55 mm/h) shows less
points at the end of the climate chamber compared to the
point cloud without any simulated weather. This relates
to a reduced detection range of the sensor. The detection
quality of objects such as cars is highly important and
interesting: For example the car positioned in about 19m
distance (highlighted in blue) is detected by both sensors in
all scenarios, as shown in fig. 5 and 6. In clear conditions
always the first return is received from the car, while in
fog and rain the second echo contributes the majority to the
detection of this car. Consequently, the occurrence of second
echoes on objects can be an indication for the presence of
fog or rain.
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Fig. 6. Object perception for ’VLP16’ sensor with 1,200 frames per weather
condition. The structure of this fig. is identical to fig. 5.

In fog, at a visibility range from 50-60m, a large number
of first echoes is observed at very short distance. Moreover,
the detection quality and range is expected to be impaired
as significant laser power is scattered by the atmospheric
particles, leading to the other echoes. The environment
perception and the range of the sensor is limited. Only
few secondary echoes can be associated with the fog as
most coincide with the position of the car. In dense fog
(visibility at 20-40m) the environment perception is highly
limited. Nearly all primary echoes are observed at a range
of less than 5 m and thus caused by the fog. Nevertheless
highly reflecting targets like the retro reflectors of the tail
lights are still correlated with secondary or tertiary echoes.
Comparing all fog and rain measurements with the clear
ones, the number of second and third returns increases (fig.
5 and 6). Additionally, our evaluation shows, that a multi-
echo sensor is beneficial as it returns also weaker reflections
such as fog and rain, while maintaining reasonable object
detection performance compared to single return sensors.

Comparing these results with the four range measurement
behaviors of lidar sensors in the presence of dust, introduced
in [15], the influence of fog is similar to dust, in which the
measuring range is the front of the dust cloud. Whereas the
influence of rain seems to be different.

Mainly first echoes are received for rain and clear condi-
tions in fig. 5 and 6. Only few second and third echoes are
provided during rain. The variance of the epw is continuously
decreasing with lowering visibility range. This observation
holds true for the intensity measured by ’VLP16’. Conse-
quently, object detection algorithms that leverage intensity
or epw information are likely to be strongly influenced by
adverse weather conditions. In addition, with an decreasing
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Fig. 7. Object point density for a car and pedestrian object. The density is
the number of points per object in one frame scaled by the average number
of points per object in clear conditions.

visibility range, the measured distance of the car decreases
slightly as well as the number of outliers in terms of distance
accuracy. Furthermore, the majority of the received points are
detected as second returns.

Finally, in order to access the influence on the perception
performance, a point density is calculated as a key metric,
quantifying the impact of missing points. The density rate
is based on the total number of points NO

t (k) from object
O in frame k and scaled by the mean over all frames in
reference conditions without any fog or precipitation. Hence,
the object density is an indication of the degradation of the
object perception. In fig. 7 the resulting density is illustrated
for a pedestrian and a car for both sensors. As a result, the
perception of the car at 19m remains rather robust during
rainfall with 55mm/h and degrades in fog with a visibility
range of 20−30m to a median of 0.36 for ’VLP16’ and even
to 0.04 for ’Scala’. In contrast, the detection density for the
pedestrians at approximately 18m declines significantly to
0.72 in rain for ’VLP16’ and remains rather robust for the
’Scala’ sensor. In fog with a visibility range between 50−
60m the pedestrian is mostly not detected by the ’VLP16’.
The ’Scala’ sensor is able to detect the pedestrian with a
density of 0.87 down to a visibility of 50− 60m. Below a
visibility of 40m the detection density for the pedestrian is 0.
Consequently, objects without any retro-reflective materials
are not perceived by lidar sensors in dense fog, even at close
range.

B. Weather Influence on Feature Vector

In fig. 8 selected features are illustrated for more than
1,200 frames per weather condition of the static setup A.
Considering the number of points for each return Nt(k),
it is to be expected that the number of second and third
returns will increase with the presence of fog and rain due to
multiple reflections. In fig. 8 the different weather conditions
are discernible in the signal N1,2(k). There is a significant
difference for the variance of the second echo N2 in foggy,
rainy and clear conditions. It is also interesting, that there is
no distinctively difference in the number of N3 for dense fog
and rain.
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Fig. 8. Analysis of environmental influences on lidar point clouds. All
measurements represent the same static scene to investigate the influence
of the weather only. Each column within a subfigure denotes one distinct
weather condition with at least 1,200 frames, ordered by descending
visibility. The stated mean intensity ( f13) is taken from ’VLP16’ lidar sensor.
All other signals are based on ’Scala’ measurements, as ’VLP16’ behavior is
comparable. With the difference that the ’VLP16’ only outputs two echoes,
which yields differences in the number of points for second and third echo.
The intensity f13, epw f13 and the distances rt ( f4,5,6) are the mean values
over all points of one frame. The number of points Nt ( f1,2,3) and mean
distances rt are derived for each echo t ∈ 1,2,3 for the first, second or
last return separately. The eigenvalues ( f13,14,16) were calculated from the
covariance matrix of all points.

The mean distance rt , which is calculated for each echo
separately, seems to be a good measure for estimating the
presence of fog or rain. The described signal is illustrated in
fig. 8 and shows a strong decrease for r1 in fog. At the same
time, the variance is clearly greatest in the rain. The mean
and variance of r2,3 increases in rain and fog compared to
clear conditions.

The paradox of increased epw and reduced intensity by fog
is discussed in [26]. Fig. 8 confirms the claim of [26] as the
epw from the Scala sensor increases in foggy conditions and
is approximately inversely proportional to the fog density.
Furthermore, reflections from rain drops show an smaller
epw, as water drops in rain are less dispersed than in fog.
As a result, the epw is highly influenced by weather and
could be used as a signal to gain information about the local
environmental conditions. Regarding the intensity of the
Velodyne sensor, there is only a small decrease of intensity
in dense fog and the greatest variance in rain.

Furthermore, rain or fog are influencing the eigenvalues
of the covariance matrices of x and y ( f14,15). While the
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Fig. 9. Analysis of environmental influences on lidar point clouds. All
measurements represent the same dynamic scene to investigate the influence
of the weather and dynamic environments. The structure of this fig. is
identical to fig. 8.

presence of fog and rain is influencing the eigenvalue cov(x),
no dependency on eig(cov(y)) can be derived. This could be
based on the symmetrical structure of the setup related to
the y-axis. Due to the small field of view in z-direction, the
eig(z) is not evaluated. In summary, the influence of rain and
fog is visible in static scenes using the lidar point cloud.

Next, we evaluate dynamic scenarios with the same
methods. A setup of dynamic scenarios is repeated for
the well-controlled environmental conditions. The dynamic
scenes mimic an approaching car, crossing cyclists and a
pedestrian walking on the sidewalk. Comparing the static
scenes (fig. 8) with dynamic ones (fig. 9) the variance
increases for all derived signals, while the difference of the
mean decreases. In addition the number of outliers increases
significantly, especially for the intensity of the ’VLP16’
laser scanner. This can be explained with the scenario of the
approaching vehicle, since in this scenario for some frames
retro reflective objects were in the immediate vicinity of the
sensor. In conclusion, the pattern recognition task to cluster
the different environmental conditions is more challenging
in dynamic than in static scenarios.

C. Weather Classification by Means of Lidar Sensors

For the development of a weather detection algorithm a k
Nearest Neighbor classifier (kNN) with k = 10 and a Support
Vector Machine (SVM) are applied. The prediction feature

vector is given in table I. The response of the classifier is
set to ’clear’, ’fog’ or ’rain’. The different visibility ranges
in fog have not been taken into account for the classifier
response, since the features do not differ very much in
these conditions. The different setups in the chamber are

TABLE II
THE OVERALL CLASSIFICATION TESTING RESULTS FOR CLIMATE

CHAMBER AND ROAD DATA. THE NUMBER OF SAMPLES USED FOR

TESTING IS STATED IN EACH ROW PER CLASS. AS CLASSIFICATION

MEASURES THE TRUE POSITIVE RATE (TPR), FALSE POSITIVE RATE

(FPR) AND THE INTERSECTION OVER UNION (IOU) ARE GIVEN. THE

CLASSES ARE NUMBERED AS FOLLOWS: 1 CLEAR, 2 RAIN AND 3 FOG.
THE CLASSIFIERS WITH THE GREATEST PERFORMANCE IN THERMS OF

MEAN IOU ARE PRINTED IN BOLD.

pl
ac

e

cl
f

cl
as

s # samples TPR [%] FPR [%] IoU [%]
VLP Scala VLP Scala VLP Scala VLP Scala

cl
im

at
e

ch
am

be
r

kN
N 1 5,558 5,643 93.91 66.47 6.09 33.53 93.85 41.37

2 10,566 14,115 97.52 64.13 2.48 35.87 95.86 43.68
3 92,708 101,707 99.98 94.43 0.02 5.57 99.48 91.61

SV
M 1 5,558 5,643 100.00 83.19 0.00 16.81 96.29 53.34

2 10,566 14,115 95.86 84.92 4.14 15.08 95.78 83.70
3 92,708 101,707 99.80 99.78 0.20 0.22 99.35 98.95

ro
ad kN

N 1 33,369 – 97.60 – 2.40 – 96.72 –
2 4,570 – 92.45 – 7.55 – 77.04 –

SV
M 1 33,369 – 97.34 – 2.66 – 96.47 –

2 4,570 – 92.25 – 7.75 – 75.17 –

used to reduce the time correlation of the data set. Thus
Setup A and B are used for training, while setup C is used
for testing. The mean union over intersection (IoU) for the
’VLP16’ is 96.40 % (kNN) and 97.14 % (SVM) and thus
exceptionally satisfactory. The classification result for the
’Scala’ sensor is 58.89 % for the kNN and 78.66 % for the
SVM classifier and thus significantly lower than the results
of the ’VLP16’, which could be caused by the significantly
smaller vertical field of view and thus number of points per
frame. Since the number of samples per class is not evenly
distributed, the accuracy is not used to evaluate the classifiers
in detail as illustrated in table II. Regarding the IoU per
class, the kNN approach provides obviously not satisfying
classification results for the classes ’clear’ and ’rain’ for the
Scala sensor. The SVM achieves slightly better results for
the class ’clear’ and significantly better results for the class
’rain’.

Since the weather conditions of the real-world and climate
chamber data differ distinctly, they are considered separately.
The splitting for training and verification for the road data
is done similarly. Thus 4 recordings at clear conditions, 3
with occasional rain and 2 with permanent rain are used for
training, while the remaining recordings are preserved for
testing (1 recording with clear conditions, 2 with rain with
night- and daytime). The subdivision of the data set is chosen
in such a way that each data set has samples from every
traffic scenario (empty road, traffic jam, inner city, etc.) and
every weather condition and at the same time a subdivision
of 80% to 20% is given between training and testing. Thus
time series effects can be avoided. The achieved mean IoU



for the ’VLP16’ is 86.88 % with the kNN classifier. The IoU
for the class rain is at 77.04% significantly lower than the
IoU of the class ’clear’ (96.72%). The decrease of the IoU
for rain in real-world environments could be caused by the
larger variety of the rainfall rate and the lower accuracy of
ground truth.

VI. CONCLUSION
We presented an in-depth analysis of the influence of fog

and rain on lidar sensors and introduced a novel approach to
classify the weather status based on a laser scanner’s point
cloud for both controlled and uncontrolled environments. The
detailed analysis of object perception shows a significant
reduction of the number of points per object and decreased
variance of the measured intensity or epw values. As a
result, the perception of objects is expected to be significantly
impaired by adverse weather in addition to the reduction
of detection range. Moreover, we expect an increase of
misclassifications and even wrong detections due to the
reduced contrast in intensity. Thus, the recognition of these
weather conditions becomes indispensable, especially for
low reflective objects. The proposed classification approach
achieves very satisfactory results for the majority of the
classes. In order to reduces dependencies of the composition
of the point cloud on a specific scenario, a region of interest
for weather classification is introduced. This also reduces the
processing time, especially for high-resolution lidar sensors.

Compared to [7], [8], [14], we used a more extensive data
with a larger range of meteorological visibility, stabilized
with a closed-loop control, a larger spatial measuring range
and rain data recorded in both controlled and uncontrolled
environments.

Further extensions of our work can be achieved by apply-
ing advanced classification methods, an accumulation over
time for the classifier result and a finer division of classes.
In addition, the ROI can be selected dynamically for example
based on map data.
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“Automotive lidar performance verification in fog and rain,” in
IEEE International Conference on Intelligent Transportation Systems.
IEEE, 2018, pp. 1695–1701.

[22] J. Zhu, D. Dolgov, and D. Ferguson, “Methods and systems for
detecting weather conditions including fog using vehicle onboard
sensors,” 2015.

[23] Valeo. (2018) Valeo Scalar : a laser scanner for highly automated
driving. [Online]. Available: https://www.valeo.com/en/valeo-scala/

[24] Velodyne Lidar Inc., “Velodyne Lidar Puck: Real-Time 3D Lidar
Sensor,” 2017.

[25] W. Yang, K. Wang, and W. Zuo, “Neighborhood Component Feature
Selection for High-Dimensional Data,” JCP, vol. 7, no. 1, pp. 161–
168, 2012.

[26] H. Gotzig and G. Geduld, “Automotive LIDAR,” in Handbook of
Driver Assistance Systems: Basic Information, Components and Sys-
tems for Active Safety and Comfort, H. Winner, S. Hakuli, F. Lotz, and
C. Singer, Eds. Springer International Publishing, 2014, pp. 1–20.


