
 
 

  

Abstract—A reliable controller is critical for execution of safe 
and smooth maneuvers of an autonomous vehicle. The controller 
must be robust to external disturbances, such as road surface, 
weather, wind conditions, and so on. It also needs to deal with 
internal variations of vehicle sub-systems, including powertrain 
inefficiency, measurement errors, time delay, etc. These factors 
introduce issues in controller performance. In this paper, a feed-
forward compensator is designed via a data-driven method to 
model and optimize the controller’s performance. Principal 
Component Analysis (PCA) is applied for extracting influential 
features, after which a Time Delay Neural Network is adopted to 
predict control errors over a future time horizon. Based on the 
predicted error, a feedforward compensator is then designed to 
improve control performance. Simulation results in different 
scenarios show that, with the help of with the proposed 
feedforward compensator, the maximum path tracking error 
and the steering wheel angle oscillation are improved by 44.4% 
and 26.7%, respectively. 
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I. INTRODUCTION 

Recently, Autonomous Vehicles (AVs) have attracted much 
attention with potential improvement in driving safety, 
transportation efficiency and fuel economy. A typical 
autonomous system features several main functional layers: 
perception, decision-making, path planning and control. The 
control layer guarantees the vehicle performance of tracking 
the desired command inputs, e.g. velocity and yaw rate pairs 
(𝑣#, 𝑤#). The measured velocity and yaw rate pairs (𝑣, 𝑤) 
affect the upper layers (e.g. decision and planning layers) and 
in turn influence the control command inputs [1]. As bucket 
effect reveals, even if we have proper functions in upper 
layers, the overall performance of the autonomous vehicle will 
not be optimal without solid low-level control layers. 
Therefore, learning and modeling the vehicle low level 
controller’s performance based on real-world driving data is 
vitally important in the development of an autonomous vehicle 
system. Currently, most autonomous driving experiments 
adopt the autonomous driving platforms with a drive-by-wire 
system by controlling throttle paddle 𝑇(, brake paddle	𝑇* and 
steering wheel angle δ to track the desirable waypoints of a 
given trajectory.  

The main challenge in controller design lies in the 
difficulties of modeling the vehicle systems with uncertainties.  
One challenge is that the access to engine, brake, and steering 
systems is through several electronic control units in low-level 
control, which is unrevealed to the drive-by-wire system. The 
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other challenge is that it is hard to obtain a precise dynamic 
model due to the inherent coupling of dynamics of multiple 
sub-systems and highly non-linearity of the vehicle [2, 3, 4]. 
Therefore, learning and modeling the vehicle low-level 
controller’s performance based on real-world driving 
scenarios is vitally important for development of an 
autonomous vehicle system. 
 Data driven methods have a great potential for nonlinear 
system prediction. For instance, Neural Network (NN) has an 
excellent capacity of mapping complex inputs and outputs by 
training with a large amount of off-line data. Some researchers 
proposed adaptive PID control and used neural network to 
optimize the existent controller’s parameter in autonomous 
vehicle [5, 6]. However, sometimes the application is limited, 
because the labeling signal of supervised learning is hard to 
obtain due to environmental noise. In addition, the optimized 
result is unstable, and inappropriate for implementation in the 
low-level controller. Some researchers used neural network in 
vehicle dynamic modeling. Wang et al. [7] proposed to obtain 
the data by measuring the dynamic parameters of vehicle, then 
set the mathematical model to predict the engine torque and 
vehicle speed using non-linear neural network. However, they 
did not make it explicit how and why they chose these data for 
the input nor further validation of whether their method could 
optimize the controller’s performance. Neural networks have 
been wildly applied to enhance autonomous driving 
performance [8, 13, 14]. Wang et al. [8, 15] proposed a lane 
change control model under continuous action space based on 
reinforcement learning algorithm, but how the output action 
was converted to a low-level controller was not addressed.  

Unlike previous research, we mainly focus on developing 
an error mapping model between the designated input 
commands and actually measured outputs of vehicle 
dynamics, based on a data-driven method. By building the 
input-output model, we predicate errors between input and 
output, which can be applied to the feedforward compensation 
optimization.  

Our main contribution in this paper is that we designed a 
feedforward compensator based on the prediction for future 
control errors. It is considered to be more reliable and safer for 
optimizing the motion control of autonomous vehicles as there 
is no need to change the basic structure of the drive-by-wire 
controller. 

The rest of the paper is organized as follows: Section II 
presents the methodology of how Principle Components 
Analysis (PCA) and Time Delay Neural Network (TDNN) is 
used in our study. Section III introduces the data that we used 
in developing the error compensation model. Section IV 
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illustrates the results in detail. Section V summarizes the major 
contributions and concludes the paper.  

II. METHODOLOGY 

Our goal is to derive a mathematical model of a system 
using observed data. The architecture of the methodology is 
depicted in Fig. 1. The set of influential features are defined 
based on the prior knowledge of the data collection experiment.  
Principal features are obtained through Principal Component 
Analysis (PCA). Error compensation model and the 
feedforward model are then built based on these features.   
 

 
Figure 1.  Architecture of the propose method 

A. Key Factors Extraction 
The control errors are sensitive to various variables, such as 

steering wheel angle, vehicle speed, speed feedback of wheels, 
etc., which leads to a complicated situation and influence the 
design of an error compensation model.  

In our training data, the number of samples collected from 
on-board sensors is 𝑚 , and the number of features is 𝑛. The 
input features include velocity, angular velocity and 
acceleration for all three axes, as well as steering wheel angle, 
torque, and speed for all four wheels. The data matrix	𝑋 is 
established as follows: 

 

𝑋 = 1
𝑥33 ⋯ 𝑥35
⋮ ⋱ ⋮

𝑥83 ⋯ 𝑥85
9 (1) 

 
where each row represents a set of experimentally obtained 
data. In order to apply PCA, we perform feature centering by 
calculating the mean and covariance matrix of the sample of 
each dimension. 

The principal component is determined by calculating the 
contribution rate of different components. Based on principal 
component analysis, the contribution rates are sorted from 
high to low, and the principal components corresponding to 
the top 3 eigenvalues that satisfy our required contribution rate 
are selected. The formula of the contribution rate 𝐶𝑟  is as 
follows: 

𝐶𝑟 =
𝜆=

∑ 𝜆=5
=?3

 (2) 

     The eigenvectors 𝑣 = (𝑣3, 𝑣@, … , 𝑣5)corresponding to the 
eigenvalues λ = [λ3, λ@, … λ5]D.Finally, we select the steering 
wheel angle, steering wheel torque and longitudinal velocity 
as our main input features to the network. (Detailed 
computation result can be seen in data analysis of section Ⅲ). 

B. Error Estimation 

The control system for autonomous vehicle is a highly 
complex hysteresis nonlinear dynamic system. We will 
elaborate on this aspect further in Section III.  By considering 
the correlation of previous and current features, we adopt Time 
Delay Neural Network (TDNN) as our training model which 
can ensure that the output of our network has previous 
information. As a result, we can model the hysteresis 
characteristic of the dynamic system.  

 
Figure 2.  Time Delay Network structure 

The prediction model can be established in the following 
process. The structure of the neural network is represented in 
Fig. 2. The input vectors [𝑥(𝑡), 𝑥(𝑡 − 𝑇),…	, 𝑥(𝑡 − (𝑚 −
1)𝑇)] are the current and previous features of main influential 
factors, and each vector includes steering wheel angle, steering 
wheel torque and longitudinal velocity, which are selected by 
PCA. The output 𝑦(𝑡 + 𝜏)  represents the predicted error 
�̂�(𝑡 + 𝜏)  between the designated command input and the 
actual output in the future. The network has two hidden layers 
with 8 nodes and 6 nodes in each layer. For the activation 
function, we use a tansig function as follows: 

𝑦M = 𝑡𝑎𝑛𝑠𝑖𝑔R𝑥MST =
2

1 + 𝑒V@WX
Y − 1 (3) 

We use the square error function as our loss function: 

𝑒(𝑤, 𝑏) =
1
2n\R𝑦8]^(𝑥=) − 𝑦((_𝜏)(𝑥=)T

@
5

=?3

 (4) 

where 𝑒(𝑤, 𝑏) is the loss function,	𝑥= is the i-th sample, n is 
the total number of samples, 𝑦8]^(𝑥=) is the measured steering 



 
 

wheel angle error between the input and output, while 
𝑦((_`)(𝑥=) is the predicted  error based on neural network.  

The learning rate is 0.001 and the final output is the 
predicted error of the steering wheel angle between command 
input and measured output. 

C. Feedforward Compensator Design 
The compensate process is depicted in Fig. 3. The reference 

trajectory for path tracking is given as the input to the system. 
Then, the path tracking control (PTC) approach will generate 
several time series 𝑢@(𝑡) as command input to the controlling 
plant (P). From the errors between the command input 𝑢(𝑡) 
and the actual output 𝜃(𝑡) as well as the correlation between 
current and previous data information acquired from on-board 
sensors, the TDNN network can learn to forecast the future 
compensation error �̂�(𝑡 + 𝜏) for the next (𝑡 + 𝜏) time steps.  
 

 
Figure 3.  Compensator architecture  

    To optimize the control performance of the autonomous 
vehicle, we have designed a PI controller and a PD controller 
for different situations. The relationship between �̂�(𝑡 + 𝜏) 
and 𝑢3(𝑡)  is illustrated in (5). In the equation, 𝑇  is the 
sampling period 	 ( 	𝑇 = 0.05) . 𝑤f is the threshold 	(	𝑤f =
2	𝑑𝑒𝑔/𝑠) . Output 𝑢@(𝑡)  is added into the command input 
𝑢3(𝑡) to generate the compensated input 𝑢(𝑡). 

i
		𝑢3(𝑡) = (𝑘k + 𝑘=

𝑇𝑧
𝑧 − 1)�̂�

(𝑡 + 𝜏), |𝛾| < 𝑤f	

𝑢3(𝑡) = (𝑘k + 𝑘#
𝑧 − 1
𝑇𝑧 )�̂�(𝑡 + 𝜏),									|𝛾| > 𝑤f

 (5) 

    When the desired yaw rate γ is within the threshold, we can 
assume the vehicle drive on a straight road and the predicted 
error �̂�(𝑡 + 𝜏) goes through the PI controller to generate the 
processed signal 𝑢3(𝑡) . The output of the PI controller will be 
reset to zero when the predicted error �̂�(𝑡 + 𝜏) crosses zero. 
This can make the steering control on a straight road more 
stable and mitigate steering angle oscillation when the vehicle 
proceeds on a straight road. When the yaw rate is beyond the 
threshold, we can assume the vehicle drives on a curved road. 
The predicted error �̂�(𝑡 + 𝜏)  will go through the PD 
controller, generating the processed signal 𝑢3(𝑡)  to 
compensate the 𝑢@(t)	 to optimize the control stability of the 
plant. With the help of the PD controller on a curved road, the 
compensator can generate quick response and enhance the 
control performance. 

III. EXPERIMENT DATA 

A. Data Collection  
We use Lincoln MKZ, equipped with different sensors and 

software, to collect real-world driving data, as shown in Fig 4. 

 
Figure 4.  Senosors and computer inplemented on testing platform 

In the vehicle platform, the drive-by-wire system receives 
the sensor data over the CAN bus and transmits the data to the 
planning layer. The planning layer will generate the desired 
commands to actuators of the vehicle. The steering control is 
implemented with a feedforward proportional controller, and 
the yaw rate and current speed measurement are used to 
compute a nominal steering angle based on a kinematic bicycle 
model. The steering control work flow is shown in Fig 5.  

 

Figure 5.  Steering control work flow 

The test was conducted in Richmond Field Station, UC 
Berkeley. The driving scenarios include straight road, U-turn, 
and road segment with slopes. These represent typical road 
types in real-world driving conditions in suburban areas. With 
the use of the preview target waypoints for path tracking, the 
upper layer can generate desired input velocity and yaw rate 
pairs(𝑣#, 𝑤#)	into the lower level controller.  

B. Data Analysis 
The experimental vehicle is built on the robot operation 

system (ROS) [10], with which we can collect data of the 
vehicle controller performance. We basically record the data 
from the IMU, GPS and CAN bus. The data elements include 
orientation of x, y, z, w, linear acceleration of x, y, z, steering 
wheel angle command, steering wheel angle output, steering 
wheel torque, etc. After preprocessing the data collected from 
sensors, we analyze the performance of the control system. 

First, we calculated the contribution rate based on PCA as 
shown in Table I. We can select ‘steering wheel angle, steering 
wheel torque, longitudinal velocity’ as our main input features. 

As is shown in Fig. 6, during the drive on a straight road 
(steering wheel angle between -0.2rad~0.2rad), the 
𝑅𝑀𝑆𝐸w(x^=yz( = 0.0581 . As for the curved road (absolute 
value of steering wheel angle more than 0.2rad) the 
𝑅𝑀𝑆𝐸|}x~] = 0.3218 . We can conclude that the error is 



 
 

relative larger in the curved route. We tested the curve driving 
in simulation.  We simulated ‘double lane change’ scenario 
[11] and analyzed the steering stability of driving on a curved 
road. 

TABLE I 
THE CALCULATED COMPUTATION RATE OF FEATURES 

Type of data read by Sensors Eigenvalues Cr 
Steering wheel angle  117.383 47.80% 

Velocity( x axis) 116.385 47.39% 
Steering wheel torque 11.674 4.75% 

Turning radius 0.033 0.01% 

Linear acceleration (x,y,z axis) 0.032 0.01% 

Veloctiy ( y,z axis) 0.03 0.01% 

Angular velocity (x,y,z) 0.027 0.01% 

Front right wheel speed 0.021 0.01% 
Front left wheel speed 0.004 0.00% 
rear right wheel speed 0.004 0.00% 
Rear left wheel speed 0.001 0.00% 

 

 
Figure 6.  Steering control performance (selected from 20s to 40s)  

We find that there are errors between the expected output in 
the control system and the measurement output of the system. 
Take the steering wheel angle as an example, as shown in Fig. 
6, the error (here we use RSME to evaluate) between the 
steering angle during the whole test is 0.254. It can be seen that 
the output response always falls behind the command input 
because of the time delay τ. To quantify the response time 
delay τ , we translate the command input ∆t  ( ∆t  =0.02s, 
0.04s,0.06s, …, 0.40s) to the right, then measure the RMSE 
between the command input and measured output. The result 
is shown in Fig 7. From the trend of RMSE in the Fig 7, we 
can conclude that in ∆t  =0.2s, the smallest RMSE=0.0713 
(28.7% of the RMSE when ∆t =0s) which indicates that the 
error between the command input and the measured output of 
the steering wheel angle is the minimum. According to the 
above analysis, we can quantify the delay time as 0.2s. After 
compensating the delay time, we find that 71.3% of the error 
is due to the steering control time delay. 

 

 
Figure 7.  Time delay analysis 

IV.  DEVELOPED MODELS 

A. Error Estimation Model 
The training process with the neural networks is 

conducted in matlabR2018b. In the error estimation process, 
we tested four typical networks, BP network, TDNN network, 
NARX network, and LSTM network.  

 
Figure 8.  Predicting comparision between different networks  

As shown in the Fig. 8, each network was trained based 
on the same input variables: steering wheel angle, steering 
wheel torque, longitudinal velocity (with 5989 samples 
range). The other three networks have the same learning rate 
𝑙� = 0.001 . The NARX and BP network both have two 
hidden layers with 8 nodes and 6 nodes. The LSTM network 
has one layer with 150 hidden units. We have trained different 
types of networks both for ten times, and every time the 
network starts from random parameters. In total, we get ten 
different sets of network parameters from the ten trainings, 
and we average the prediction results of them to reduce the 
randomness of the prediction performance. The average 
predicted results are shown in Fig. 9. 

As we can see from Fig. 8 and 9, the results show that BP 
network has a weak ability for predicting nonlinear system. 
As the changing speed of the input signal gets larger, the 
network’s prediction gets less accurate. The LSTM network 
will be easily overfitting because the complex structure of the 
network. Besides, the LSTM network has the longest training 
time, which is nearly three times longer than the other 
networks. Therefore, it is not an ideal network to implement 
in the compensator of the vehicle. NARX and TDNN network 
have similar predicting results. To further compare the 
performance of these two networks, we consider two 



 
 

coefficients to evaluate these two networks’ predicting 
accuracy [12].  

 

  
(a) LSTM (b) BP 

  
(c) NARX (d) TDNN 

Figure 9.  Scatter Plot of Predicted Obtained from Different Models  

First, the correlation coefficient (CC) for evaluating 
accuracy is defined as: 

𝐶𝐶 =
∑ �𝐻y]((𝑡) − 𝐻�y](�[𝐻kx](𝑡)�
(?3 − 𝐻�kx]]

�∑ �𝐻kx](𝑡) − 𝐻�kx]�
@�

(?3 �∑ �𝐻y]((𝑡) − 𝐻�y](�
@�

(?3

 (6) 

where N is the number of the samples, 𝐻y]((𝑡) is the get by 
measuring steering wheel angle error in time t, and 𝐻kx](𝑡) is 
the predicted steering wheel angle error in time t. The 𝐻�y]( 
and 𝐻�kx] are the mean values of the measured and predicted 
data. 

Second, the coefficient of efficiency (CE) for evaluating 
efficiency is defined as: 

CE = 1 −
∑ �𝐻kx](𝑡) − Hy](�

@�
(?3

∑ �𝐻y]((𝑡) − 𝐻�y](�
@�

(?3

 (7) 

We also extracted the straight and curved road scenario 
with different number of samples to increase the uncertainty 
of the training data. The modeling results with the evaluating 
indexes are shown in the following Table II. 

TABLE Ⅱ COMPARISION BETWEEN TDNN AND NARX 

Case Samples 
number Network CC CE 

Straight 
lane  

5989 
TDNN 0.895 0.874 
NARX 0.924 0.901 

425 
TDNN 0.791 0.836 
NARX 0.889 0.921 

Curve 
lane 

5989 
TDNN 0.981 0.961 
NARX 0.921 0.912 

425 
TDNN 0.872 0.851 
NARX 0.893 0.901 

 
 According to data analysis in section Ⅲ, the total error in 

straight-road cases is less than those in curved road. The main 
reason for the error may be the inaccuracy of the sensors or 
the disturbance from the environment. NARX network shows 
good modeling ability for the irregular data. As in curve road, 
the main contributing factor may be the time delay of the 
steering control system, the TDNN has good modeling ability 
for the apparent regular data. Furthermore, with the decrease 
of training data quantity, the predicting ability of TDNN 
network decreases. However, the NARX network’s 
predicting ability remains almost the same. 

Given the fact that the low-level control system has the 
problem of inaccuracy in U-turn control and the TDNN 
network is good at optimizing U-turn, the TDNN network, 
compared with NARX, is more suitable in our analysis. The 
existent control system (without compensated) usually has 
more steering wheel angle errors during U-turn than during 
straight route. To solve this problem, we can collect necessary 
data to ensure the training accuracy by modeling and 
compensating. In summary, TDNN is more stable and accurate 
and is adopted as the predicting network in our compensator.  

B. Model Validation 
To validate the prediction ability of the proposed data-

driven method, we test our algorithm in simulation. We 
adopted CarSim as our simulation environment, which can be 
co-simulated with MATLAB SIMULINK.  

In the simulation vehicle platform, the error between the 
steering wheel angle command input and the measured output 
is similar as our real vehicle platform. The error mainly 
includes two terms: 

𝑒𝑟𝑟𝑜𝑟 = 𝑤3 ∗ 𝑒𝑟𝑟𝑜𝑟D� + 𝑤@ ∗ 𝑒𝑟𝑟𝑜𝑟�� (8) 

    One is the 𝑒𝑟𝑟𝑜𝑟D�which is due to the characteristic of the 
time delay in the control system. The other is 𝑒𝑟𝑟𝑜𝑟�� which 
is due to the random disturbance of the environment and 
measurement inaccuracy of the sensors. The weighting values 
are 𝑤3 = 71.3%, 𝑤@ = 28.7% ,which are calculated based on 
our system analysis results in Section III. 

In the simulation scenario, the vehicle parameters are 
computed by the Multi-Rigid Body Dynamics and road 
function embedded in CarSim. We set the sampling period 
𝑇 = 0.05𝑠, with the vehicle’s main parameters the same as 
our testing platform Lincoln MKZ hybrid. According to the 
minimum turning radius of the testing platform, we set the 
front wheel angle �𝛿�� < 0.4𝑟𝑎𝑑 , the initial course angle 
𝜑(0) =0, the initial front wheel angle 	𝜃(0) = 0 , and the 
initial speed (0) = 30𝑘𝑚/ℎ . The double lane change 
scenario is commonly used to evaluate the steering control 
performance of a vehicle [11]. The scenario is with a total 
length of 200 meters and a double lane change is defined in 
Fig. 10.  

 



 
 

 
Figure 10.  Simulation in Double Lane Change Scenario 

The following Fig. 11 and Fig. 12 depicted the optimized 
results compared with the original results in ‘double lane 
change scenario’, the steering wheel angle performance 
becomes more and more smooth and stable, which 
demonstrates the improved performance of our controller. 
 

 
Figure 11.  Comparision of Path Tracking Performance between the 

Optimized and Oringinal  Method 

 
Figure 12.  Comparision of Steering Wheel Angle  Performance between the 

Optimized and Oringinal  Method 

V. CONCLUSION 

In this paper, we proposed a data-driven method for 
modeling and optimizing the controller of autonomous 
vehicles. From the analysis of the naturalistic driving data, we 
found out that 71.3% of the steering error was due to the time 
delay in the steering controller. We used TDNN network as 
our error compensation model by comparing the error 
predicting performances of the four typical networks (BP, 
NARX, LSTM, TDNN). Based on the error compensation 
model we developed feedforward control model which shows 
better path tracking performance. The maximum path 
tracking error after optimization was improved by 44.4% 
compared with the original one.  The steering wheel angle 

oscillation was reduced 26.7% from the original data. In 
conclusion, our method shows the capability in improving the 
steering stability and control accuracy. Furthermore, our 
proposed approach also showed effectiveness in simulation 
scenario.  

Our future work will look into the fluctuations caused by 
the uncertainties in real-world driving, and the controller’s 
performance in low speed double lane changing situations.  
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