

Abstract—A reliable controller is critical for execution of safe
and smooth maneuvers of an autonomous vehicle. The controller
must be robust to external disturbances, such as road surface,
weather, wind conditions, and so on. It also needs to deal with
internal variations of vehicle sub-systems, including powertrain
inefficiency, measurement errors, time delay, etc. These factors
introduce issues in controller performance. In this paper, a feed-
forward compensator is designed via a data-driven method to
model and optimize the controller’s performance. Principal
Component Analysis (PCA) is applied for extracting influential
features, after which a Time Delay Neural Network is adopted to
predict control errors over a future time horizon. Based on the
predicted error, a feedforward compensator is then designed to
improve control performance. Simulation results in different
scenarios show that, with the help of with the proposed
feedforward compensator, the maximum path tracking error
and the steering wheel angle oscillation are improved by 44.4%
and 26.7%, respectively.

Keywords – Data driven method, Vehicle control, Feedforward
compensator, Autonomous vehicles

I. INTRODUCTION

Recently, Autonomous Vehicles (AVs) have attracted much
attention with potential improvement in driving safety,
transportation efficiency and fuel economy. A typical
autonomous system features several main functional layers:
perception, decision-making, path planning and control. The
control layer guarantees the vehicle performance of tracking
the desired command inputs, e.g. velocity and yaw rate pairs
(𝑣#, 𝑤#). The measured velocity and yaw rate pairs (𝑣, 𝑤)
affect the upper layers (e.g. decision and planning layers) and
in turn influence the control command inputs [1]. As bucket
effect reveals, even if we have proper functions in upper
layers, the overall performance of the autonomous vehicle will
not be optimal without solid low-level control layers.
Therefore, learning and modeling the vehicle low level
controller’s performance based on real-world driving data is
vitally important in the development of an autonomous vehicle
system. Currently, most autonomous driving experiments
adopt the autonomous driving platforms with a drive-by-wire
system by controlling throttle paddle 𝑇(, brake paddle	𝑇* and
steering wheel angle δ to track the desirable waypoints of a
given trajectory.

The main challenge in controller design lies in the
difficulties of modeling the vehicle systems with uncertainties.
One challenge is that the access to engine, brake, and steering
systems is through several electronic control units in low-level
control, which is unrevealed to the drive-by-wire system. The

1. P. Wang and C. Chan are with California PATH, University of

California, Berkeley, Richmond, CA, 94804, USA. {pin_wang, cychan}
@berkeley.edu.

2. T. Shi and C. Zou are with Beijing Institute of Technology, Beijing,
100081, China. tianyu.s@outlook.com, zouchonghaobit@163.com.

other challenge is that it is hard to obtain a precise dynamic
model due to the inherent coupling of dynamics of multiple
sub-systems and highly non-linearity of the vehicle [2, 3, 4].
Therefore, learning and modeling the vehicle low-level
controller’s performance based on real-world driving
scenarios is vitally important for development of an
autonomous vehicle system.
 Data driven methods have a great potential for nonlinear
system prediction. For instance, Neural Network (NN) has an
excellent capacity of mapping complex inputs and outputs by
training with a large amount of off-line data. Some researchers
proposed adaptive PID control and used neural network to
optimize the existent controller’s parameter in autonomous
vehicle [5, 6]. However, sometimes the application is limited,
because the labeling signal of supervised learning is hard to
obtain due to environmental noise. In addition, the optimized
result is unstable, and inappropriate for implementation in the
low-level controller. Some researchers used neural network in
vehicle dynamic modeling. Wang et al. [7] proposed to obtain
the data by measuring the dynamic parameters of vehicle, then
set the mathematical model to predict the engine torque and
vehicle speed using non-linear neural network. However, they
did not make it explicit how and why they chose these data for
the input nor further validation of whether their method could
optimize the controller’s performance. Neural networks have
been wildly applied to enhance autonomous driving
performance [8, 13, 14]. Wang et al. [8, 15] proposed a lane
change control model under continuous action space based on
reinforcement learning algorithm, but how the output action
was converted to a low-level controller was not addressed.

Unlike previous research, we mainly focus on developing
an error mapping model between the designated input
commands and actually measured outputs of vehicle
dynamics, based on a data-driven method. By building the
input-output model, we predicate errors between input and
output, which can be applied to the feedforward compensation
optimization.

Our main contribution in this paper is that we designed a
feedforward compensator based on the prediction for future
control errors. It is considered to be more reliable and safer for
optimizing the motion control of autonomous vehicles as there
is no need to change the basic structure of the drive-by-wire
controller.

The rest of the paper is organized as follows: Section II
presents the methodology of how Principle Components
Analysis (PCA) and Time Delay Neural Network (TDNN) is
used in our study. Section III introduces the data that we used
in developing the error compensation model. Section IV

3. L. Xin is with School of Vehicle and Mobility, State Key Lab of
Automotive Safety and Energy, Tsinghua University, Beijing, 100084,
China. xin-113@mails.tsinghua.edu.cn.

* Indicates Equal Contribution.
P. Wang and L. Xin are corresponding authors.

Pin Wang1*, Tianyu Shi2*, Chonghao Zou2, Long Xin3, Ching-Yao Chan1

A Data Driven Method of Feedforward Compensator Optimization for
Autonomous Vehicle Control

PinWang
Published at the 30th IEEE Intelligent Vehicles Symposium (IV), 2019.

illustrates the results in detail. Section V summarizes the major
contributions and concludes the paper.

II. METHODOLOGY

Our goal is to derive a mathematical model of a system
using observed data. The architecture of the methodology is
depicted in Fig. 1. The set of influential features are defined
based on the prior knowledge of the data collection experiment.
Principal features are obtained through Principal Component
Analysis (PCA). Error compensation model and the
feedforward model are then built based on these features.

Figure 1. Architecture of the propose method

A. Key Factors Extraction
The control errors are sensitive to various variables, such as

steering wheel angle, vehicle speed, speed feedback of wheels,
etc., which leads to a complicated situation and influence the
design of an error compensation model.

In our training data, the number of samples collected from
on-board sensors is 𝑚 , and the number of features is 𝑛. The
input features include velocity, angular velocity and
acceleration for all three axes, as well as steering wheel angle,
torque, and speed for all four wheels. The data matrix	𝑋 is
established as follows:

𝑋 = 1
𝑥33 ⋯ 𝑥35
⋮ ⋱ ⋮

𝑥83 ⋯ 𝑥85
9 (1)

where each row represents a set of experimentally obtained
data. In order to apply PCA, we perform feature centering by
calculating the mean and covariance matrix of the sample of
each dimension.

The principal component is determined by calculating the
contribution rate of different components. Based on principal
component analysis, the contribution rates are sorted from
high to low, and the principal components corresponding to
the top 3 eigenvalues that satisfy our required contribution rate
are selected. The formula of the contribution rate 𝐶𝑟 is as
follows:

𝐶𝑟 =
𝜆=

∑ 𝜆=5
=?3

 (2)

 The eigenvectors 𝑣 = (𝑣3, 𝑣@, … , 𝑣5)corresponding to the
eigenvalues λ = [λ3, λ@, … λ5]D.Finally, we select the steering
wheel angle, steering wheel torque and longitudinal velocity
as our main input features to the network. (Detailed
computation result can be seen in data analysis of section Ⅲ).

B. Error Estimation

The control system for autonomous vehicle is a highly
complex hysteresis nonlinear dynamic system. We will
elaborate on this aspect further in Section III. By considering
the correlation of previous and current features, we adopt Time
Delay Neural Network (TDNN) as our training model which
can ensure that the output of our network has previous
information. As a result, we can model the hysteresis
characteristic of the dynamic system.

Figure 2. Time Delay Network structure

The prediction model can be established in the following
process. The structure of the neural network is represented in
Fig. 2. The input vectors [𝑥(𝑡), 𝑥(𝑡 − 𝑇),…	, 𝑥(𝑡 − (𝑚 −
1)𝑇)] are the current and previous features of main influential
factors, and each vector includes steering wheel angle, steering
wheel torque and longitudinal velocity, which are selected by
PCA. The output 𝑦(𝑡 + 𝜏) represents the predicted error
�̂�(𝑡 + 𝜏) between the designated command input and the
actual output in the future. The network has two hidden layers
with 8 nodes and 6 nodes in each layer. For the activation
function, we use a tansig function as follows:

𝑦M = 𝑡𝑎𝑛𝑠𝑖𝑔R𝑥MST =
2

1 + 𝑒V@WX
Y − 1 (3)

We use the square error function as our loss function:

𝑒(𝑤, 𝑏) =
1
2n\R𝑦8]^(𝑥=) − 𝑦((_𝜏)(𝑥=)T

@
5

=?3

 (4)

where 𝑒(𝑤, 𝑏) is the loss function,	𝑥= is the i-th sample, n is
the total number of samples, 𝑦8]^(𝑥=) is the measured steering

wheel angle error between the input and output, while
𝑦((_`)(𝑥=) is the predicted error based on neural network.

The learning rate is 0.001 and the final output is the
predicted error of the steering wheel angle between command
input and measured output.

C. Feedforward Compensator Design
The compensate process is depicted in Fig. 3. The reference

trajectory for path tracking is given as the input to the system.
Then, the path tracking control (PTC) approach will generate
several time series 𝑢@(𝑡) as command input to the controlling
plant (P). From the errors between the command input 𝑢(𝑡)
and the actual output 𝜃(𝑡) as well as the correlation between
current and previous data information acquired from on-board
sensors, the TDNN network can learn to forecast the future
compensation error �̂�(𝑡 + 𝜏) for the next (𝑡 + 𝜏) time steps.

Figure 3. Compensator architecture

 To optimize the control performance of the autonomous
vehicle, we have designed a PI controller and a PD controller
for different situations. The relationship between �̂�(𝑡 + 𝜏)
and 𝑢3(𝑡) is illustrated in (5). In the equation, 𝑇 is the
sampling period 	 (𝑇 = 0.05) . 𝑤f is the threshold 	(𝑤f =
2	𝑑𝑒𝑔/𝑠) . Output 𝑢@(𝑡) is added into the command input
𝑢3(𝑡) to generate the compensated input 𝑢(𝑡).

i
		𝑢3(𝑡) = (𝑘k + 𝑘=

𝑇𝑧
𝑧 − 1)�̂�

(𝑡 + 𝜏), |𝛾| < 𝑤f	

𝑢3(𝑡) = (𝑘k + 𝑘#
𝑧 − 1
𝑇𝑧)�̂�(𝑡 + 𝜏),									|𝛾| > 𝑤f

 (5)

 When the desired yaw rate γ is within the threshold, we can
assume the vehicle drive on a straight road and the predicted
error �̂�(𝑡 + 𝜏) goes through the PI controller to generate the
processed signal 𝑢3(𝑡) . The output of the PI controller will be
reset to zero when the predicted error �̂�(𝑡 + 𝜏) crosses zero.
This can make the steering control on a straight road more
stable and mitigate steering angle oscillation when the vehicle
proceeds on a straight road. When the yaw rate is beyond the
threshold, we can assume the vehicle drives on a curved road.
The predicted error �̂�(𝑡 + 𝜏) will go through the PD
controller, generating the processed signal 𝑢3(𝑡) to
compensate the 𝑢@(t)	 to optimize the control stability of the
plant. With the help of the PD controller on a curved road, the
compensator can generate quick response and enhance the
control performance.

III. EXPERIMENT DATA

A. Data Collection
We use Lincoln MKZ, equipped with different sensors and

software, to collect real-world driving data, as shown in Fig 4.

Figure 4. Senosors and computer inplemented on testing platform

In the vehicle platform, the drive-by-wire system receives
the sensor data over the CAN bus and transmits the data to the
planning layer. The planning layer will generate the desired
commands to actuators of the vehicle. The steering control is
implemented with a feedforward proportional controller, and
the yaw rate and current speed measurement are used to
compute a nominal steering angle based on a kinematic bicycle
model. The steering control work flow is shown in Fig 5.

Figure 5. Steering control work flow

The test was conducted in Richmond Field Station, UC
Berkeley. The driving scenarios include straight road, U-turn,
and road segment with slopes. These represent typical road
types in real-world driving conditions in suburban areas. With
the use of the preview target waypoints for path tracking, the
upper layer can generate desired input velocity and yaw rate
pairs(𝑣#, 𝑤#)	into the lower level controller.

B. Data Analysis
The experimental vehicle is built on the robot operation

system (ROS) [10], with which we can collect data of the
vehicle controller performance. We basically record the data
from the IMU, GPS and CAN bus. The data elements include
orientation of x, y, z, w, linear acceleration of x, y, z, steering
wheel angle command, steering wheel angle output, steering
wheel torque, etc. After preprocessing the data collected from
sensors, we analyze the performance of the control system.

First, we calculated the contribution rate based on PCA as
shown in Table I. We can select ‘steering wheel angle, steering
wheel torque, longitudinal velocity’ as our main input features.

As is shown in Fig. 6, during the drive on a straight road
(steering wheel angle between -0.2rad~0.2rad), the
𝑅𝑀𝑆𝐸w(x^=yz(= 0.0581 . As for the curved road (absolute
value of steering wheel angle more than 0.2rad) the
𝑅𝑀𝑆𝐸|}x~] = 0.3218 . We can conclude that the error is

relative larger in the curved route. We tested the curve driving
in simulation. We simulated ‘double lane change’ scenario
[11] and analyzed the steering stability of driving on a curved
road.

TABLE I
THE CALCULATED COMPUTATION RATE OF FEATURES

Type of data read by Sensors Eigenvalues Cr
Steering wheel angle 117.383 47.80%

Velocity(x axis) 116.385 47.39%
Steering wheel torque 11.674 4.75%

Turning radius 0.033 0.01%

Linear acceleration (x,y,z axis) 0.032 0.01%

Veloctiy (y,z axis) 0.03 0.01%

Angular velocity (x,y,z) 0.027 0.01%

Front right wheel speed 0.021 0.01%
Front left wheel speed 0.004 0.00%
rear right wheel speed 0.004 0.00%
Rear left wheel speed 0.001 0.00%

Figure 6. Steering control performance (selected from 20s to 40s)

We find that there are errors between the expected output in
the control system and the measurement output of the system.
Take the steering wheel angle as an example, as shown in Fig.
6, the error (here we use RSME to evaluate) between the
steering angle during the whole test is 0.254. It can be seen that
the output response always falls behind the command input
because of the time delay τ. To quantify the response time
delay τ , we translate the command input ∆t (∆t =0.02s,
0.04s,0.06s, …, 0.40s) to the right, then measure the RMSE
between the command input and measured output. The result
is shown in Fig 7. From the trend of RMSE in the Fig 7, we
can conclude that in ∆t =0.2s, the smallest RMSE=0.0713
(28.7% of the RMSE when ∆t =0s) which indicates that the
error between the command input and the measured output of
the steering wheel angle is the minimum. According to the
above analysis, we can quantify the delay time as 0.2s. After
compensating the delay time, we find that 71.3% of the error
is due to the steering control time delay.

Figure 7. Time delay analysis

IV. DEVELOPED MODELS

A. Error Estimation Model
The training process with the neural networks is

conducted in matlabR2018b. In the error estimation process,
we tested four typical networks, BP network, TDNN network,
NARX network, and LSTM network.

Figure 8. Predicting comparision between different networks

As shown in the Fig. 8, each network was trained based
on the same input variables: steering wheel angle, steering
wheel torque, longitudinal velocity (with 5989 samples
range). The other three networks have the same learning rate
𝑙� = 0.001 . The NARX and BP network both have two
hidden layers with 8 nodes and 6 nodes. The LSTM network
has one layer with 150 hidden units. We have trained different
types of networks both for ten times, and every time the
network starts from random parameters. In total, we get ten
different sets of network parameters from the ten trainings,
and we average the prediction results of them to reduce the
randomness of the prediction performance. The average
predicted results are shown in Fig. 9.

As we can see from Fig. 8 and 9, the results show that BP
network has a weak ability for predicting nonlinear system.
As the changing speed of the input signal gets larger, the
network’s prediction gets less accurate. The LSTM network
will be easily overfitting because the complex structure of the
network. Besides, the LSTM network has the longest training
time, which is nearly three times longer than the other
networks. Therefore, it is not an ideal network to implement
in the compensator of the vehicle. NARX and TDNN network
have similar predicting results. To further compare the
performance of these two networks, we consider two

coefficients to evaluate these two networks’ predicting
accuracy [12].

(a) LSTM (b) BP

(c) NARX (d) TDNN

Figure 9. Scatter Plot of Predicted Obtained from Different Models

First, the correlation coefficient (CC) for evaluating
accuracy is defined as:

𝐶𝐶 =
∑ �𝐻y]((𝑡) − 𝐻�y](�[𝐻kx](𝑡)�
(?3 − 𝐻�kx]]

�∑ �𝐻kx](𝑡) − 𝐻�kx]�
@�

(?3 �∑ �𝐻y]((𝑡) − 𝐻�y](�
@�

(?3

 (6)

where N is the number of the samples, 𝐻y]((𝑡) is the get by
measuring steering wheel angle error in time t, and 𝐻kx](𝑡) is
the predicted steering wheel angle error in time t. The 𝐻�y](
and 𝐻�kx] are the mean values of the measured and predicted
data.

Second, the coefficient of efficiency (CE) for evaluating
efficiency is defined as:

CE = 1 −
∑ �𝐻kx](𝑡) − Hy](�

@�
(?3

∑ �𝐻y]((𝑡) − 𝐻�y](�
@�

(?3

 (7)

We also extracted the straight and curved road scenario
with different number of samples to increase the uncertainty
of the training data. The modeling results with the evaluating
indexes are shown in the following Table II.

TABLE Ⅱ COMPARISION BETWEEN TDNN AND NARX

Case Samples
number Network CC CE

Straight
lane

5989
TDNN 0.895 0.874
NARX 0.924 0.901

425
TDNN 0.791 0.836
NARX 0.889 0.921

Curve
lane

5989
TDNN 0.981 0.961
NARX 0.921 0.912

425
TDNN 0.872 0.851
NARX 0.893 0.901

 According to data analysis in section Ⅲ, the total error in

straight-road cases is less than those in curved road. The main
reason for the error may be the inaccuracy of the sensors or
the disturbance from the environment. NARX network shows
good modeling ability for the irregular data. As in curve road,
the main contributing factor may be the time delay of the
steering control system, the TDNN has good modeling ability
for the apparent regular data. Furthermore, with the decrease
of training data quantity, the predicting ability of TDNN
network decreases. However, the NARX network’s
predicting ability remains almost the same.

Given the fact that the low-level control system has the
problem of inaccuracy in U-turn control and the TDNN
network is good at optimizing U-turn, the TDNN network,
compared with NARX, is more suitable in our analysis. The
existent control system (without compensated) usually has
more steering wheel angle errors during U-turn than during
straight route. To solve this problem, we can collect necessary
data to ensure the training accuracy by modeling and
compensating. In summary, TDNN is more stable and accurate
and is adopted as the predicting network in our compensator.

B. Model Validation
To validate the prediction ability of the proposed data-

driven method, we test our algorithm in simulation. We
adopted CarSim as our simulation environment, which can be
co-simulated with MATLAB SIMULINK.

In the simulation vehicle platform, the error between the
steering wheel angle command input and the measured output
is similar as our real vehicle platform. The error mainly
includes two terms:

𝑒𝑟𝑟𝑜𝑟 = 𝑤3 ∗ 𝑒𝑟𝑟𝑜𝑟D� + 𝑤@ ∗ 𝑒𝑟𝑟𝑜𝑟�� (8)

 One is the 𝑒𝑟𝑟𝑜𝑟D�which is due to the characteristic of the
time delay in the control system. The other is 𝑒𝑟𝑟𝑜𝑟�� which
is due to the random disturbance of the environment and
measurement inaccuracy of the sensors. The weighting values
are 𝑤3 = 71.3%, 𝑤@ = 28.7% ,which are calculated based on
our system analysis results in Section III.

In the simulation scenario, the vehicle parameters are
computed by the Multi-Rigid Body Dynamics and road
function embedded in CarSim. We set the sampling period
𝑇 = 0.05𝑠, with the vehicle’s main parameters the same as
our testing platform Lincoln MKZ hybrid. According to the
minimum turning radius of the testing platform, we set the
front wheel angle �𝛿�� < 0.4𝑟𝑎𝑑 , the initial course angle
𝜑(0) =0, the initial front wheel angle 	𝜃(0) = 0 , and the
initial speed (0) = 30𝑘𝑚/ℎ . The double lane change
scenario is commonly used to evaluate the steering control
performance of a vehicle [11]. The scenario is with a total
length of 200 meters and a double lane change is defined in
Fig. 10.

Figure 10. Simulation in Double Lane Change Scenario

The following Fig. 11 and Fig. 12 depicted the optimized
results compared with the original results in ‘double lane
change scenario’, the steering wheel angle performance
becomes more and more smooth and stable, which
demonstrates the improved performance of our controller.

Figure 11. Comparision of Path Tracking Performance between the

Optimized and Oringinal Method

Figure 12. Comparision of Steering Wheel Angle Performance between the

Optimized and Oringinal Method

V. CONCLUSION

In this paper, we proposed a data-driven method for
modeling and optimizing the controller of autonomous
vehicles. From the analysis of the naturalistic driving data, we
found out that 71.3% of the steering error was due to the time
delay in the steering controller. We used TDNN network as
our error compensation model by comparing the error
predicting performances of the four typical networks (BP,
NARX, LSTM, TDNN). Based on the error compensation
model we developed feedforward control model which shows
better path tracking performance. The maximum path
tracking error after optimization was improved by 44.4%
compared with the original one. The steering wheel angle

oscillation was reduced 26.7% from the original data. In
conclusion, our method shows the capability in improving the
steering stability and control accuracy. Furthermore, our
proposed approach also showed effectiveness in simulation
scenario.

Our future work will look into the fluctuations caused by
the uncertainties in real-world driving, and the controller’s
performance in low speed double lane changing situations.

ACKNOWLEDGMENT

The authors would like to thank Berkeley Deep Drive for
funding support and Dr. Chen-Yu Chan and Prof. Chaoyang
Jiang for their advice.

REFERENCES
[1] C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso, A.

Forechi, L. F. R. Jesus, R. F. Berriel, T. M. Paixão, F. Mutz, T. Oliveira-
Santos and A. F. D. Souza.(2019) Self-Driving Cars: A Survey. arXiv
preprint arXiv:1901.04407, 2019.

[2] Silva, L. I., Magallan, G. A., De Angelo, C. H., and Garcia, G. O,
“Vehicle dynamics using multi-bond graphs: Four wheel electric
vehicle modeling,” An Introduction to Signal Detection and Estimation.
New York: Springer-Verlag, pp.2846-2851, 2008.

[3] Will, A., and ZëAk, S, “Modelling and control of an automated
vehicle,” Vehicle System Dynamics, vol. 27, no. 3, pp.131-155, 1997.

[4] Smith, D. E., Starkey, J. M., and Benton, R. E, “Nonlinear-gain-
optimized controller development and evaluation for automated
emergency vehicle steering,” In Proceedings of the 2000 IEEE
American Control Conference, pp.3586-3591, 2000.

[5] P. Zhao, J. Chen, Y. Song, X. Tao, T. Xu, T. Mei, “Design of a control
system for an autonomous vehicle based on adaptive-PID,”
International Journal of Advanced Robotic Systems, pp.44, 2012.

[6] Z. Li, Y. Li, C. Yang and N. Ding, “Motion control of an autonomous
vehicle based on wheeled inverted pendulum using neural-adaptive
implicit control,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems on. IEEE, 2010, vol.25, pp.133-138.

[7] Alexa, O., Ilie, C. O., ViläƒU, R., Marinescu, M., and Truta, M, “Using
neural networks to modeling vehicle dynamics,” Applied Mechanics
and Materials, pp.133-138, 2014.

[8] P. Wang, C. Chan, “A Reinforcement Learning Based Approach for
Automated Lane Change Maneuvers,” in 2018 IEEE 29th Intelligent
Vehicles Symposium (IV), pp.1379-1384.

[9] Jolliffe, I. T, “Principal Component Analysis,” second edition Springer-
Verlag, 2002, pp.10-20.

[10] Quigley, M, “ROS: an open-source Robot Operating System,” In
Proceddings of 2002 IEEE ICRA Workshop on Open Source Robotics
vol.3, no 3.2, pp.5, 2009.

[11] Double lane-change ISO:https://www.iso.org/obp/ui/#iso:std:67973:en
[12] Yen-Ming Chiang, Ruonan Hao, Nannan Li, and Jian Wang, “Water

Level Forecasting by Static and Dynamic Neural Networks,” Journal
of Tianjin University (Science and Technology), vol.3, pp. 25-34, 2017

[13] L. Xin, P. Wang, C. Chan, J. Chen, S. E. Li and B. Cheng, “Intention-
aware Long Horizon Prediction of Surrounding Vehicle Trajectory
using Dual LSTM Networks,” The 21st IEEE International Conference
on Intelligent Transportation Systems (ITSC), 2018: 1441-1446

[14] C. Xi, T. Shi and J. Chen, (2019). “A data driven approach for motion
planning of autonomous driving under complex scenario,” arXiv
preprint arXiv:190408784.

[15] P. Wang, C. Chan, H. Li. “Automated Driving Maneuvers under
Interactive Environment based on Deep Reinforcement Learning,”
Transportation Research Board (TRB), Washington D.C., US, 2019.

